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1  Introduction 

Near-field Acoustical Holography (NAH) is based on performing 2D spatial Discrete 

Fourier Transforms (DFT), and therefore the method requires a regular mesh of measure-

ment positions. To avoid spatial aliasing problems, the mesh spacing must be somewhat 

less than half of the acoustic wavelength. In practice, this requirement sets a serious lim-

itation on the upper frequency limit. 

Some Patch NAH methods, for example the Equivalent Source Method (ESM) [1] and 

Statistically Optimized NAH (SONAH) [2-3], can work with irregular microphone array 

geometries, but still require an average array element spacing of less than half the wave-

length. As described by Hald [4], this allows the use of irregular arrays that are actually 

designed for use with beamforming. Typically, good performance with beamforming can 

be achieved up to frequencies where the average array inter-element spacing is two to 

three wavelengths. A practical consequence with such a solution is the fact that the Patch 

NAH method requires measurement at a small distance to provide good resolution at low 

frequencies, while beamforming requires a medium-to-long distance to keep sidelobes at 

low levels. So for optimal wide-band performance, two measurements must be taken at 

different distances, and separate types of processing must be used with the two measure-

ments, making it difficult to combine the results into a single result covering the combined 

frequency range. 

The rather new Compressive Sensing (CS) methods have started making it possible to use 

irregular array geometries for holography up to frequencies where the average array inter-

element spacing is significantly larger than half of the wavelength, see for example [5] 

and [6]. In general, these methods allow reconstruction of a signal from sparse irregular 

samples under the condition that the signal can be (approximately) represented by a sparse 

subset of expansion functions in some domain, i.e., with the expansion coefficients (am-

plitudes) of most functions equal to zero. The underlying problem solved is that at high 

frequencies the microphone spacing is too large to meet the spatial sampling criterion, 

and thus there is no unique reconstruction of the sound field. A reconstruction must there-

fore have a built-in “preference” for specific forms of the sound field. Doing just a Least 

Squares solution will typically result in reconstructed sound fields with sound pressure 

equal to the measured pressure at the microphones, but very low elsewhere. By building 

in a preference for compact sources, a smoother form of the reconstructed sound field is 

enforced. 

The present paper describes a new method called Wideband Holography (WBH), which 

was introduced in reference [6], and which is covered by a pending patent [7]. The method 

is similar to the Generalized Inverse Beamforming method published by T. Suzuki [8]. 

However, instead of applying a 1-norm penalty to enforce sparsity in a monopole source 

model, WBH uses a dedicated iterative solver that enforces sparsity in a different way. 
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The main contribution of the present paper is a comparison of WBH results and perfor-

mances with those of a method that solves an optimization problem with 1-norm penalty. 

Section 2 outlines the basic theory. After an introduction to the applied array designs in 

section 3, results of different simulated measurements are presented in section 4, and fi-

nally section 5 contains the conclusions. 

2  Theory 

Input data for patch holography processing is typically obtained by simultaneous acqui-

sition with an array of M microphones, indexed by m = 1,2…,M, followed by averaging 

of the M × M element cross-power spectral matrix between the microphones. For the 

subsequent description, we arbitrarily select a single high-frequency line f with associated 

cross-power matrix G. An eigenvector/eigenvalue factorization is then performed of that 

Hermitian, positive-semi-definite matrix G: 

H
VSVG  , (1) 

V being a unitary matrix with the columns containing the eigenvectors vµ, µ = 1,2….M, 

and S a diagonal matrix with the real non-negative eigenvalues s on the diagonal. Based 

on the factorization in formula (1), the Principal Component vectors p can be calculated 

as: 

 vp s . (2) 

Just like ESM and SONAH, the WBH algorithm is applied independently to each of these 

principal components, and subsequently the output is added on a power basis, since the 

components represent incoherent parts of the sound field. So for the subsequent descrip-

tion we consider a single principal component, and we skip the index , meaning that 

input data is a single vector p with measured complex sound pressure values. 

WBH uses a source model in terms of a set of elementary sources or wave functions and 

solves an inverse problem to identify the complex amplitudes of all elementary sources. 

The source model then applies for 3D reconstruction of the sound field. Here we will 

consider only the case where the source model is a mesh of monopole point sources re-

tracted to be behind/inside the real/specified source surface, i.e., similar to the model ap-

plied in ESM [1]. With Ami representing the sound pressure at microphone m due to a unit 

excitation of monopole number i, the requirement that the modelled sound pressure at 

microphone m must equal the measured pressure pm can be written as: 





I

i

imim qAp
1

. (3) 
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Here, I is the number of point sources, and  qi, i = 1,2…,I, are the complex amplitudes of 

these sources. Equation (3) can be rewritten in matrix-vector notation as: 

Aqp  , (4) 

where A is an M × I matrix containing the quantities Ami, and q is a vector with elements 

qi. In Compressive Sensing terminology the matrix A is called the Sensing Matrix. 

When doing standard patch holography calculations using ESM, Tikhonov regularization 

is typically applied to stabilize the minimization of the residual vector 𝐩 − 𝐀𝐪. This is 

done by adding a penalty proportional to the 2-norm of the solution vector when mini-

mizing the residual norm: 

2

2

22

2
Minimize qAqp

q
 . (5) 

A very important property of that problem is the fact that it has the simple analytic solu-

tion: 

  pAIAAq
HH 12 

  , (6) 

where I is a unit diagonal matrix, and H represents Hermitian transpose. A suitable value 

of the regularization parameter  for given input data p can be identified automatically, 

for example by use of Generalized Cross Validation (GCV), see Gomes and Hansen [9]. 

When using a specific irregular array well above the frequency of half wavelength aver-

age microphone spacing, the system of linear equations in formula (4) is in general 

strongly underdetermined, because the monopole mesh must have spacing less than half 

of the wavelength, i.e., much finer than the microphone grid. During the minimization in 

formula (5), the undetermined degrees of freedom will be used to minimize the 2-norm 

of the solution vector. The consequence is a reconstructed sound field that matches the 

measured pressure values at the microphone positions, but with minimum sound pressure 

elsewhere. Estimates of, for example, sound power will therefore be much too low. An-

other effect is ghost sources because available measured data is far from determining a 

unique solution. This will be illustrated by simulated measurements. 

If the true source distribution is sparse (with a majority of elements in q equal to zero), 

or close to sparse, the above phenomena can be alleviated by replacing the 2-norm in the 

penalty term of formula (5) by a 1-norm: 

1

22

2
Minimize qAqp

q
 , (7) 

see for example references [5] and [8]. Important problems related to this formulation are 

the lack of an analytic solution and the fact that no good tool is available to identify an 

optimal value of the regularization parameter  for given input data p. An equivalent 

problem was solved by Chardon et al. [5]: 
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
21

subject toMinimize Aqpq
q

. (8) 

Here, however, the parameter   is difficult to determine. In cases where the applied 

source model cannot represent the full measured sound field (for example due to reflec-

tions), a rather large value of   may be needed for the problem to be solvable. Instead of 

requiring a small residual ‖𝐩 − 𝐀𝐪‖2, we can alternatively require a solution close to a 

minimum of that residual, which will be characterized by the gradient vector 𝐰, 

 AqpAqw  H)(  (9) 

of the squared residual function 
2
1 ‖𝐩 − 𝐀𝐪‖2

2 being small: 

  
221

)(subject toMinimize AqpAqwq
q

H
. (10) 

The optimization problem of formula (10) is convex and can be solved quite efficiently 

by available Matlab libraries. In the present paper the CVX library has been used, see 

references [5] and [10], so the method will be called just “CVX”. Still, the computational 

demand is significantly higher than for the Tikhonov problem in formula (5) because no 

analytic solution exists. The minimization of the 1-norm of the solution vector will have 

the effect of favouring sparse solutions. According to experience, a good way of defining 

the parameter  in formula (10) is 

22
)( pA0qw

H  , (11) 

where  is a small number. Too small values will, however, make the method very sensi-

tive to noise/errors in the measured data. The same condition ‖𝐰(𝐪)‖2 ≤ ‖𝐀𝐻𝐩‖2 oc-

curs also in the stopping criterion of the iterative solution method implemented in Wide-

band Holography (WBH), but only as one of several conditions that will imply stopping. 

A main idea behind the WBH method is to remove/suppress the ghost sources associated 

with the real sources in an iterative solution process, starting with the strongest real 

sources. In the following we will just highlight some of the most important points – a 

detailed mathematical description is given in reference [6]. 

WBH applies a Steepest Descent iteration to minimize the squared residual ‖𝐩 − 𝐀𝐪‖2
2 

of formula (4). In the first step a number of real as well as ghost sources are intro-

duced/identified in 𝐪. When using irregular array geometries, the ghost sources will in 

general be weaker than the strongest real source(s). We can therefore suppress the ghost 

sources by setting all components in 𝐪 below a certain threshold to zero. The threshold is 

computed as being a number of decibels below the amplitude of the largest element. 

The dynamic range of retained sources, Dk, is updated during the iteration steps, k, in such 

a way that an increasing dynamic range of sources will be retained, typically: 
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DDD kk 1 . (12) 

In the limiting case when 𝐷𝑘  for 𝑘  , the dynamic range limitation is gradually 

removed. However, the iteration is stopped when:  

2221max1 )()(or pA0qwqw
H

kk DD    , (13) 

where Dmax is an upper limit on Dk and  is a small number. The following values have 

been found to work in general very well:  D0 = 0.1 dB,  ΔD = 1.0 dB,  Dmax = 60 dB and 

 = 0.01. Due to slow final convergence of the steepest descent method, the first of the 

two criteria in formula (13) will usually be first fulfilled. 

The upper limiting dynamic range Dmax can be changed to match the quality of data, but 

the choice does not seem to be critical. Dmax = 60 dB has been found to support the iden-

tification of weak sources, even when measurements are slightly noisy. Larger values do 

not seem to improve much. Smaller values may be required for very noisy data. 

Starting with only 0.1 dB dynamic range means that only the very strongest source(s) will 

be retained, while all related ghost sources will to be removed. When we use the dynamic 

range limited source vector as the starting point for the next iteration, the components of 

the residual vector related to the very strongest source(s) have been reduced, and therefore 

the related ghost sources have been reduced correspondingly. Increasing the dynamic 

range will then cause the next level of real sources to be included, while suppressing the 

related ghost sources, etc. Another aspect is the fact that a minimum number of the point 

sources of the model will be assigned an amplitude different from zero, enforcing effec-

tively a sparse solution. 

After the termination of the above algorithm based on steepest descent directions, a good 

estimate of the basic source distribution has been achieved. Final convergence is, how-

ever, very slow, exhibiting so-called zigzagging. Good progress can often be achieved by 

an extrapolation step, which minimizes the residual ‖𝐩 − 𝐀𝐪‖2
2 in a direction defined as 

the average of the two latest steepest descent steps. A few Conjugate Gradient iterations 

without dynamic range limitation can then optionally be performed to ensure convergence 

to a point very close to a minimum of ‖𝐩 − 𝐀𝐪‖2
2.  Usually, the effect on the source model 

and the modelled sound field is very small, because the primary Steepest Descent algo-

rithm has already reduced the residual to be close to a minimum, but it ensures that full 

convergence has been achieved. The stopping criteria used with the conjugate gradient 

method are: 

221
221 )()(or)( qwqwpAqw   k

H
k  . (14) 

In comparison with the CVX method defined in formulae (10) and (11) notice that selec-

tion of a too small value of  will not destabilize the conjugate gradient algorithm of 
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WBH, since it will then stop, when the gradient norm starts increasing. When that hap-

pens, the last step is discarded. 

The WBH algorithm, which enforces a maximum degree of sparsity in the source distri-

bution, has been found to work well at high frequencies, when a suitable array is used at 

a not too small measurement distance. However, at low frequencies WBH easily leads to 

misleading results, when two compact source are so closely spaced that available data 

does not support a resolution of the two with beamforming. In that case, the WBH algo-

rithm will often identify a single compact source at a position between the two real 

sources, so the user might be drawing wrong conclusions about the root cause of the noise. 

Use of the traditional Tikhonov regularization of formula (6), i.e. a standard ESM algo-

rithm, will in that case typically show a single large oblong source area covering both of 

the two real sources. To minimize the risk of misleading results, it is recommended to use 

the standard ESM solution up to a transition frequency at approximately 0.7 times the 

frequency of half wavelength average array inter-element spacing (i.e. spacing ≈ 0.35λ), 

and above that transition frequency switch to the use of WBH. See reference [6] for de-

tails. The CVX method shows similar behaviour, so it should also be supplemented by a 

different algorithm at low frequencies. 

3  Array Design 

As described in the introduction, the method of the present 

paper follows the principles of Compressive Sensing, being 

based on measurements with a random or pseudo-random ar-

ray geometry in combination with an enforced sparsity of the 

coefficient vector of the source model. The array geometry 

used in the simulated measurements of the present paper is 

shown in Figure 1. It has 12 microphones uniformly distrib-

uted in each one of five identical angular sectors. The average 

element spacing is approximately 12 cm, implying a low-to-

high transition frequency close to 1 kHz (where 0.35λ is close 

to 12 cm). The geometry has been optimized for beamforming 

measurements up to 6 kHz as described in reference [4].  

An important finding from simulated measurements with the chosen array design is that 

the measurement distance should not be shorter than approximately a factor two times the 

average microphone spacing for the method to work well at the highest frequencies. A 

factor of three is even better, and distances up to typically 0.7 times the array diameter 

work fine. When the measurement distance is increased, each source in the WBH source 

model will expose the microphones over a wider area, increasing the ability of the irreg-

ular array to distinguish different sources. To get acceptable low-frequency resolution, 

Figure 1: Geometry of 

the applied planar 

pseudo-random 60-el-

ement microphone ar-

ray with 1 m diameter  
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however, the measurement distance should not be too long either, so overall the best dis-

tance seems to be two to three times the average array inter-element spacing. 

4  Simulated Measurements 

All CVX and WBH calculations in the present paper were performed using D0 = 0.1 dB,  

ΔD = 1.0 dB,  Dmax = 60 dB and  = 0.01. 

4.1  Single monopole point source 

The aim of single-monopole simulated measurement is to demonstrate: i) What happens 

if Tikhonov regularization is applied above the frequency of half wavelength average 

array element spacing. ii) How much and which kind of improvement is achieved by 

applying the sparsity enforcing CVX and WBH algorithms. 

Figure 2: Arrangement for simulated measurement on a single monopole point source 

As shown in Figure 2, we consider a setup with a monopole point source located on the 

array axis at 28 cm distance from the array plane, while the source-model mesh is at 27 

cm distance, and the sound field in reconstructed in a “Source Plane” 24 cm from the 

array plane. The reconstruction mesh has 51 columns and 51 rows with 2 cm spacing, 

covering a 1 m × 1 m area centred on the array axis, and the source-model mesh is similar, 

i.e. with 2 cm spacing, but it is extended by 6 rows/columns in all four directions. In total, 

63 × 63 = 3969 complex point-source amplitudes must be determined from the 60 meas-

ured complex sound-pressure values. No measurement errors/noise was simulated in the 

single-monopole measurements. 

Figure 3 shows from left to right the true 4 kHz sound intensity map on the Source Plane, 

followed by three reconstructed maps calculated using (i) Tikhonov regularization with 

20 dB dynamic range (formula (6)), (ii) the CVX algorithm (formulae (10) and (11)) and, 

(iii)  the WBH algorithm. The CVX and WBH maps are both very close to the true inten-

sity map, as could be expected in the present case, although the source-model plane is 1 
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cm from the real monopole point source. The sound intensity reconstruction based on 

Tikhonov regularization shows a small low-level peak at the true source position, but in 

addition there are quite a lot of ghost sources. These ghost sources are responsible for the 

focusing of the radiation towards the microphones that can be seen in Figure 4. 

Figure 4 shows from left to right the true 4 kHz sound pressure level (SPL) on the array 

plane followed by corresponding reconstructed SPL maps calculated from the source 

model using (i) Tikhonov regularization with 20 dB dynamic range, (ii) CVX and, (iii) 

WBH. Looking at the Tikhonov result it is clear that the 2-norm minimization has used 

the heavily underdetermined nature of the problem to focus sound radiation towards the 

microphones to produce a sound pressure close to the measured pressure, while in all 

other directions the radiated sound is minimized. Figure 5 shows the implied underesti-

mation of sound power. Using CVX or WBH to get source model amplitudes, the recon-

structed array-plane SPL is close the true SPL map, although it has some small ripples.  

    

Figure 3: Contour plots of sound intensity in the “Source Plane”, see Figure 2. Display 

range is 30 dB with 3 dB contour interval, and the same scale is used in all four plots 

    

Figure 4: Contour plots of sound pressure in the array plane, see Figure 2. Display range 

is 15 dB with 1 dB contour interval, and the same scale is used in all four plots 

As shown in Figure 5, the sound power is predicted accurately across the full frequency 

range, when CVX or WBH is used. When Tikhonov regularization is used, sound power 

underestimation increases quickly with increasing frequency above 1 kHz, since the abil-

ity of the source model to focus radiation only towards the microphones increases. Cal-

culation times for the 64 frequencies represented in Figure 5, using Matlab implementa-

tions of the CVX and WBH methods, were 829 sec for CVX and 32 sec for WBH. 
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Figure 5: Relative sound power spectra from area-integration of the sound intensity maps 

in Figure 3. The sound power from the True intensity map is taken as the reference 

4.2  Two monopole point sources with 10 dB level difference 

Figure 6:  Side view illustration of the simulated measurement on two point sources 

A main purpose of this section is to demonstrate the ability of the CVX and WBH meth-

ods to identify weak sources in the presence of strong ones, even though by nature the 

methods will maximize the number of sources with amplitude equal to zero. We use a 

setup with two coherent in-phase monopole point sources located 29 cm in front of the 

array plane. Source 1 is at (x,y) coordinates (15,15) cm and source 2 is at (-15,-15) cm 

relative to the array axis, with source 1 excited 10 dB stronger than source 2. Figure 6 

illustrates the setup as seen from the side, with the source-model mesh 25.5 cm from the 

array and the “Source Plane” (sound-field reconstruction plane) 24 cm from the array 

plane. Thus, in this case, the real sources are 3.5 cm behind the source model. The recon-

struction mesh has 51 columns and 51 rows with 1 cm spacing, covering a 0.5 m × 0.5 m 

area centred on the array axis, and the source-model mesh is similar, i.e., with 1 cm spac-
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ing, but it is extended by 6 rows/columns in all four directions. In all the simulated meas-

urements of this section, random noise was added to the complex microphone pressure 

data at a level 30 dB below the average sound pressure across the microphones. 

   

Figure 7: Contour plots of sound intensity in the Source Plane, see Figure 6. Display range 

is 20 dB with 2 dB contour interval. The same scale is used in all four plots. Source 1 is 

the stronger source in the upper right corner, while source 2 is in the lower left corner. 

Figure 8: Sound power spectra for source 1 and 2, obtained by area-integration of sound 

intensity maps as those in Figure 7. 

Figure 7 shows the true and the reconstructed sound intensities at 5 kHz with a 20 dB 

display range. Clearly, the two sources are well identified by both CVX and WBH, and 

the two methods show very similar results. Actually, the maps look much the same at all 

frequencies between 1 kHz and 5 kHz. Sound power integration areas are shown with line 

style corresponding to the sound power spectra in Figure 8. Except for the weakest source 

2 at the lowest frequencies, the two reconstruction methods estimate almost the same 

sound power spectra for the two sources. As mentioned at the end of section 2, a different 

solution method based on Tikhonov regularization should be used anyway at the lowest 

frequencies - for the present array up to 1 kHz. The small over-estimation of the source 1 

sound power up to around 4 kHz is probably due to the stronger concentration of the 

intensity in the reconstructed intensity maps, implying that less power will be outside the 

integration area. Apart from a 2.5 dB dip around 4 kHz in the estimated source 2 power, 
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accuracy is good up to around 5 kHz and above that frequency, an increasing under-esti-

mation is observed. The maximum frequency of the present array (with 12 cm average 

microphone spacing) in connection with the SONAH and ESM algorithms is 1.2 kHz, so 

apparently the CVX and WBH methods extend the frequency range by a factor around 4. 

The calculation times for the 32 frequencies represented in Figure 8 were 490 sec for 

CVX and 16 sec for WBH, so again WBH is faster by approximately a factor 30. Another 

advantage of WBH is the already mentioned smaller sensitivity of WBH to the specified 

target reduction in the gradient norm, see formulae (10) and (11) for CVX, and (13) and 

(14) for WBH: A too small value of  causes the CVX method to become unstable. 

4.2  Plate in a baffle 

 2 kHz 3 kHz 4 kHz 
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Figure 9: Contour plots at 2, 3 and 4 kHz of sound intensity in the reconstruction plane 1 

cm above the plate. Display range is 20 dB with 2 dB contour interval as in Figure 7. For 

each frequency, the true sound intensity and the reconstructed maps use the same scale. 
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The aim of the simulated plate measurements is to show that the WBH method can give 

quite good results, even when the true source distribution is not sparse. As an example of 

a more distributed source, a baffled, centre-driven, simply supported, 6 mm thick, 40 cm 

× 40 cm aluminum plate has been used. The coincidence frequency for the plate is at 2026 

Hz. The vibration pattern was calculated using the formulation by Williams [11], and 

subsequently the radiated sound field was obtained using the discretized Rayleigh inte-

gral, approximating the plate velocity distribution by 161 × 161 monopole point sources. 

This allowed the microphone sound-pressure values and the “true” pressure and particle 

velocity in a reconstruction plane 1 cm above the plate to be calculated. As for the simu-

lated measurements on two monopole point sources, random noise was added to the com-

plex microphone pressure data at a level 30 dB below the average sound pressure across 

the microphones. The reconstruction mesh had 41 × 41 points with 1 cm spacing, covering 

exactly the plate area, and the array was placed 24 cm above the plate. For the WBH 

sound field reconstruction a source model comprising 53 × 53 monopole point sources 

with 1 cm spacing was located 1 cm below the plate. 

Figure 9 shows the true sound intensity and the corresponding CVX and WBH recon-

structions at 2, 3 and 4 kHz with a 20 dB display range. Overall the reconstruction is 

good, with a bit too high weight on the central area, the two methods performing again 

very equal. At 4 kHz the reconstructed intensity patterns start getting distorted, because 

the amount of information in the vibration pattern becomes too large in relation to the 

data provided by the array. As mentioned earlier, the reconstruction accuracy at the high-

est frequencies can be improved by an increase of the measurement distance up to three 

times the array inter-element spacing, but of course at the expense of slightly poorer low-

frequency resolution. 

Figure 10:  Reconstructed sound power relative to true sound power in decibels. 

Figure 10 shows the relative sound power spectrum of the CVX and WBH reconstruc-

tions: At each frequency, the reconstructed and true sound intensity maps (as shown in 

Figure 9) have been area-integrated, and the ratio between the estimated and the true 
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sound power values have been plotted in decibels. There is a consistent small underesti-

mation, but up to 5 kHz it remains within 2 dB. Above 5 kHz the underestimation in-

creases rapidly, in particular for the CVX based algorithm. The calculation time for the 

32 frequencies represented in Figure 10 was 238 sec for CVX and 9 sec for WBH. 

5  Conclusions 

An iterative algorithm has been described for sparsity enforcing near-field acoustical ho-

lography over a wide frequency range based on the use of an optimized pseudo-random 

array geometry. The method, which is called Wideband Holography (WBH), can be seen 

as an example of Compressed Sensing. The algorithm has been tested by a series of sim-

ulated measurements on point sources and on a plate in a baffle. Very good results were 

in general obtained at frequencies up to four times the normal upper limiting frequency 

for use of the particular array with holography. The focus has been on the ability to locate 

and quantify the main sources (source areas) in terms of sound power within approxi-

mately a 10 dB dynamic range. The method was found to work surprisingly well with 

distributed sources, such as vibrating plates. Typical application areas could be engines 

and gearboxes, where measurements at close range are often not possible, and the method 

seems to work very well at the distances that are typically realistic in such applications. 

The iterative WBH algorithm was shown to provide sound field reconstructions almost 

identical to those of a conventional Compressed Sensing algorithm, where an optimiza-

tion problem must be solved, involving a 1-norm of the solution vector. In the present 

work, such optimization problems have been solved using the CVX Matlab toolbox. For 

all the considered examples, the computation time of the CVX-based solution were ap-

proximately 30 times longer than those of WBH. In addition, the stopping criteria of the 

iterative WBH algorithm support the reconstruction of a large dynamic range without the 

risk of introducing numerical instability. Effectively, the optimal amount of regulariza-

tion in applied. This is not possible in the CVX-based approach, where a fixed dynamic 

range must be specified. 

Engine and gearbox measurements are characterized by having sources at different dis-

tances. The sensitivity of the WBH algorithm to sources located outside the assumed 

source plane was therefore investigated in reference [6]. In general, the estimation of 

sound power was found to be not sensitive to sources situated outside the assumed source 

plane. To check the sound power estimation, a scanned measurement with a sound inten-

sity probe was performed on a loudspeaker setup. 

It was argued in the present paper that it is advantageous to supplement the WBH algo-

rithm with a Tikhonov regularized solution at the lowest frequencies. This was confirmed 

by simulated measurements in reference [6]. 
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