# LDS COMETUSETM

**Vibration Control System** 



Offering high performance at a very affordable price, the COMET<sub>USB</sub> Vibration Controller is an ideal solution to the everyday demands of your shock and vibration testing. COMET<sub>USB</sub> provides the flexibility to do random, swept sine, and shock testing on electrodynamic shakers. Easy-to-use software together with extensive automation features, it is a perfect fit for vibration stress screening and production test applications.

#### **Key Benefits**

- Supports both 32 and 64-bit Windows® operating systems
- Suitable for random, sine, and shock tests
- Simplified or advanced user interfaces suitable for different operators and tests
- Setup Wizard for quick and sure test setup
- Coordinated operation of thermal chamber and vibration controller from the same PC for seamless combined thermal and vibration testing
- Superb dynamic range aids control of highly dynamic structures
- Automatic safety checks to protect your valuable equipment
- USB connectivity for easy installation

#### Uses

- Vibration testing in both R&D and production environments
- Intended to drive a switching power amplifier
- Random tests
- Sine oscillator tests
- Swept sine tests
- Shock tests

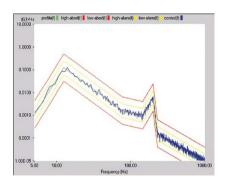
## COMET<sub>USB</sub> Delivers What Test Engineers Demand: Convenience, Performance, Flexibility, and Safety

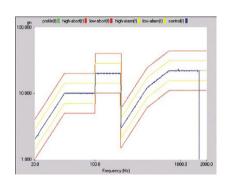
#### Convenience

All major PC makers, and consumers worldwide, have adopted USB 2.0 because of its superior speed and convenience. As a true USB 2.0 device, connecting COMET<sub>USB</sub> to your PC or notebook is as easy as plugging in a mouse or keyboard. But plug and play is just the beginning of COMET<sub>USB</sub>'s convenience. In addition:

- The vibration control applications are easy to master
- The Setup wizard smoothes the learning curve and reduces set-up time
- Powerful automation features take the tedium out of repeitive tasks, allowing you to run complex test schedules with a single keystroke

#### **Performance**


COMET<sub>USB</sub> delivers exceptional performance in both R&D and production environments. Distributed DSP processors provide fast loop times for quick test load equalization and enhanced safety. COMET<sub>USB</sub> is a true multi-tasking system with the control loop handled independently of the PC. You can use test run time to analyze data and prepare test reports, instantly transmitting all reports and data via email. The system features 24-bit resolution hardware. Housed in a lownoise enclosure, the hardware offers programmable voltage ranges on all inputs and outputs. This design provides the exceptional dynamic range you need for precise control of complex structures or difficult fixtures.


### Flexibility

Design and development of COMET<sub>USB</sub> included input from test engineers within many industries in order to ensure that the software is user-friendly and rich in features. All applications minimize training time, allow quick test setup, and easy report generation. They help you handle operation, monitoring, and reporting in the way that works best for you. COMET<sub>USB</sub> is an ideal solution to the everyday demands of your vibration testing. It provides the flexibility to do random, swept sine, and shock testing on electrodynamic shakers.

## Safety

COMET<sub>USB</sub> offers enhanced safety and reliability. Over 20 safety checks and interlocks act to ensure the safety of the test article, shaker system, and personnel. In addition, COMET<sub>USB</sub> provides unique safety features not available with other controllers. A built-in hardware abort button connects directly to the output hardware circuitry so that you are never at the mercy of the software user interface. Special circuitry on the output protects the shaker from voltage transients due to power failures or accidents such as switching off controller





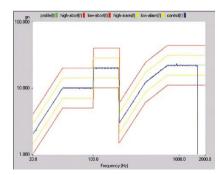



Fig 1. Examples of COMET<sub>USB</sub> displays during Random, Sine, and Shock testing, respectively

# Specifications - COMET<sub>USB</sub> Vibration Control System

| Innute                     |                                                                                                           |
|----------------------------|-----------------------------------------------------------------------------------------------------------|
| Inputs                     |                                                                                                           |
| Analogue                   | 2 standard                                                                                                |
| Channels                   | Differential inputs with 220 kΩ impedance                                                                 |
| Filtering                  | An analog filter plus a 160 dB/octave digital filter eliminates non-linear phase, distortion and aliasing |
| Signal-to-Noise            | >100 dB (from DC to 1 kHz measured with half-full scale sine wave)                                        |
| Voltage Ranges             | ±10, 1 or 0.1 V                                                                                           |
| Signal                     | Voltage or CCLD* sensor power                                                                             |
| Conditioning               | (4.7 mA, 23 Vpeak open circuit)                                                                           |
| Maximum Input              | ±36 Vpeak without damage                                                                                  |
| Resolution                 | 24-bit Analog-to-Digital converter                                                                        |
| Dynamic Range              | 120 dBfs                                                                                                  |
| Accuracy                   | ±0.08 dB (1 kHz sine at full scale)                                                                       |
| Channel Match<br>Amplitude | Within ±0.04 dB                                                                                           |
| Channel Match<br>Phase     | Witin ±0.5 degree, from DC to 20 kHz                                                                      |
| <b>Channel Crosstalk</b>   | <-110 dB                                                                                                  |
| Harmonic<br>Distortion     | <-105 dBfs                                                                                                |

<sup>\*</sup> CCLD is Constant Current Line Drive, the generic name for a constant power supply for accelerometers with built-in electronics

| Outputs                |                                                                                                          |
|------------------------|----------------------------------------------------------------------------------------------------------|
| <b>Analog Channels</b> | One drive channel standard                                                                               |
| Resolution             | 24-bit Digital-to-Analog Converter (DAC)                                                                 |
| Filtering              | A 160 dB/octave digital filter plus an analog filter eliminates non-linear phase, distortion and imaging |
| Voltage Ranges         | ±10 Vpeak with adjustable attenuator                                                                     |
| Harmonic<br>Distortion | < –95 dBfs                                                                                               |

| Reference Profile        |                                                                                                                                                                                                                  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Validation Tools         | Profile displayed and updated as it is created. Automatic listing of peak acceleration, peak velocity, and peak-to-peak displacement values for profile. Profiles are validated against shaker pararameter table |
| <b>Engineering Units</b> | English, SI, metric, mixed                                                                                                                                                                                       |
| Test Schedule            | User-defined sequence of events or profiles that are automatically executed during the test                                                                                                                      |

## Post-test Documentation

Icon for single click generation of data plots and test reports, including setup parameter listings, test logs, and formatted signal plots, within Microsoft® Word.

| Software: Random  |                                                                                                              |
|-------------------|--------------------------------------------------------------------------------------------------------------|
| Reference Profile | Breakpoint table with unlimited combination of PSD levels with slope (dB/octave) at user-defined frequencies |
| Frequency Range   | 0 to 2.4 kHz in eight ranges<br>4 kHz optional                                                               |
| Resolution        | 110, 225 or 450 spectral lines<br>800 lines optional                                                         |
| Dynamic Range     | Up to 95 dB                                                                                                  |
| Randomization     | True gaussian distribution                                                                                   |
| Loop Time         | Typically 100 ms                                                                                             |
| Transfer Function | Measure during pre-test or, for quickest test start-up, recall a function from disk                          |
| DOF               | 2 to 1000                                                                                                    |
| Control Accuracy  | ±1 dB at 99% confidence with 200 DOFs                                                                        |
| Control Strategy  | Control to any single channel<br>Multiple channel control optional                                           |
| Drive Clipping    | 2.5 to 6 sigma                                                                                               |

| Software: Swept Sine |                                                                                   |
|----------------------|-----------------------------------------------------------------------------------|
| Reference Profile    | Unlimited combination of amplitudes (A, V or D) and slopes at defined frequencies |
| Frequency Range      | 0.4 Hz to 2.4 kHz<br>4 kHz and 12 kHz optional                                    |
| Resolution           | 110, 225, 450, 900, or 1800 lines                                                 |
| Dynamic Range        | Up to 100 dB                                                                      |
| Loop Time            | Typically 10 ms                                                                   |
| Control Accuracy     | ±1 dB through a peak-notch with a Q of 50, at 1 octave/min                        |
| Control Strategy     | Control to any single channel<br>Multiple channel control optional                |
| Compression Rate     | Adaptive or fixed 0.3 to 3000 dB/s                                                |
| Signal Processing    | Peak, Mean or RMS input channel amplitude processing<br>Tracking filters optional |
| Sweep Type and Rate  | Linear from 0 to 6 kHz/min or logarithmic from 0 to 100 octaves/min               |
| Drive Resolution     | As fine as 0.000001 Hz                                                            |
| Sine Dwell           | User-specified dwell frequency with duration in cycles or time                    |

| Software: Classical Shock |                                                                                                                                             |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Pulse Types               | Half-sine, Haversine, initial and terminal peak sawtooth, triangle, rectangle, and trapezoid                                                |
| Compensation              | Pre- and post-pulse, post-pulse only, or prepulse only<br>Single- or double-sided for minimum acceleration and<br>full use of shaker stroke |
| Frequency Range           | 0 to 22 kHz                                                                                                                                 |
| Frame Size                | 128 to 16384 points or automatically optimized Linear filter design minimizes distortion and preserves the true waveform shape              |
| Transfer Function         | Measure during pre-test or, for quickest test start-up, recall a function from disk                                                         |
| Averaging                 | User-defined coefficient from 1 to 500                                                                                                      |
| Filtering                 | User-defined cut-off frequency for low-pass filtering                                                                                       |
| Pulse Delay               | User-defined, in seconds                                                                                                                    |

| Hardware        |                                                                                                                             |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------|
| AC Power        | 100 to 240 V, 50/60 Hz, auto-sensing                                                                                        |
| Power           | 25 W                                                                                                                        |
| Consumption     |                                                                                                                             |
| Dimensions      | Height: 20.6 cm (8.1 in)<br>Width: 8.9 cm (3.5 in)<br>Depth: 34.0 cm (13.4 in)                                              |
| Weight          | 3.1 kg (6.8 lb)                                                                                                             |
| Temperature     | 5 to 45° C (41 to 113° F)                                                                                                   |
| Humidity        | 10% to 90% RH non-condensing                                                                                                |
| PC Requirements | USB 2.0 port<br>Windows 7(32 and 64-bit), Windows 8 (64-bit), or<br>Windows 10 (64-bit) operating system<br>Microsoft® Word |
| PC Expansion    | PC upgrades and peripheral additions do not delay or interrupt the control loop processing                                  |

| Safety Features       |                                                                                         |
|-----------------------|-----------------------------------------------------------------------------------------|
| Control Signal        | Automatic detection of input overload, open loop, and loss of signal                    |
| Line-abort<br>Trigger | Ratio of spectral lines allowed to exceed their limits, from 0 to 1                     |
| Test Shutdown         | Shutdown initiated by operator or software. Performed gracefully at a user-defined rate |

| Regulatory Compliance |                                                                 |
|-----------------------|-----------------------------------------------------------------|
| Compliance            | CE marking                                                      |
| Safety                | EN 61010-1, IEC 1010-1                                          |
| EMC                   | FCC Par 15 (CFR 47) Class A, EN 61326 Class A, CISPR 22 Class A |

## Ordering Information

## Hardware

COM-200 COMET<sub>USB</sub> Shaker Control System, including:

- Two inputs
- One output

#### **Software Bundles**

SCO-107 Value Bundle: Value Random, Value Sine, Value Shock,

and Analyse Anywhere

## **Software Packages**

| SCO-01V | Value Random Vibration Control          |
|---------|-----------------------------------------|
| SCO-02V | Value Swept-sine Vibration Control      |
| SCO-03V | Value Classical Shock Transient Control |

## **Optional Hardware**

COM-204 Rack Mounting Kit

ACC-101 Wireless Remote Control Pendant (includes hardware and

## **Optional Software**

| SCO-05P    | Sine Oscillator                                |
|------------|------------------------------------------------|
| SCO-01V-02 | Resolution Extension for Value Random          |
| SCO-01V-03 | Frequency Range Extension for Value Random     |
| SCO-01V-04 | Import of PSD as Reference for Value Random    |
| SCO-02V-03 | Frequency Range Extension for Value Swept-sine |
| SCO-100-02 | Multi-layer Password Security System           |
| SCO-110    | Analyze Anywhere for Shaker Control            |
| SCO-111    | Waveform Editor                                |
| SCO-113    | Thermal Chamber Communication and Control      |
| SCO-114    | Amplifier Control Interface                    |

## **Network Enabled Software**

NET-103-01 NET-Integrator™ ActiveX Command and Communication

Interface

NET-104-01 NET-Integrator Run-time License (per seat)

## Calibration

VTS-CTRL-CAI Initial Accredited Calibration

Brüel & Kjær and all other trademarks, service marks, trade names, logos and product names are the property of Brüel & Kjær or a third-party company.

© Brüel & Kjær. All rights reserved 2017-10

