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Use of Weighting Functions in 
DFT/FFT Analysis (Part I) 

by Svend Gade and 
Henrik Herlufsen 

Abstract 
This article demonstrates how the analogy between DFT/FFT (Discrete 
Fourier Transform/Fast Fourier Transform) analysis and filter analysis 
(analogue or digital) can be used to better understand the applications of 
different weighting functions used in DFT/FFT. 

The filter characteristics of the most commonly used weighting func- 
tions (also called windows) are illustrated and discussed with respect to 
their use in various practical applications of system and signal analysis. 

The mathematical formulations of the analogy as well as rigorous de- 
tails of the article will be given in the Appendices in Part II of this article 
to be published in Technical Review No. 4-1987. 

Sommaire 
Cet article démontre comment l'analogie entre les analyses FFT ou DFT 
(Fast Fourier Transform et Discrete Fourier Transform) et les analyses 
par filtres (analogiques ou numériques) peut être utilisée pour mieux com- 
prendre les applications des différentes pondérations utilisées en FFT ou 
DFT. 

Les caractéristiques des filtres les plus couramment utilisés pour les 
fonctions de pondération (aussi appelées fenêtres) sont illustrées, et discu- 
tées en fonction de diverses applications pratiques, que ce soit en analyse 
de signaux ou de systèmes. 

Les formules mathématiques de cette analogie, ainsi que les points de 
détail de cet article, seront donnés en appendice dans la seconde partie de 
ce même article, qui paraîtra dans Technical Review No.4-1987. 
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Zusammenfassung 
Dieser Artikel demonstriert, wie die Analogie zwischen DFT/FFT (Dis- 

crete Fourier Transformation/Fast Fourier Transformation) -Analyse 
und Filteranalyse (analog und digital) benutzt werden kann, um die An- 
wendung verschiedener Bewertungsfunktionen (auch Zeitfenster) bei der 
DFT/FFT besser zu verstehen. 

Die Filtercharakteristiken der gebräuchlich angewendeten Bewertungs- 
funktionen werden illustriert und bezüglich ihrer Anwendung in der Sy- 
stem- und Signalanalyse diskutiert. 

Die mathematische Formulierung der Analogie sowie weitere Einzelhei- 
ten werden im Appendix des zweiten Teils dieses Artikels beschrieben, 
der im Technical Reviev Nr. 4-1987 erscheinen wird. 

Introduction 
Whenever frequency analysis is performed, it is desirable that a choice of 
filter type should be available to suit the specific application. In acoustics 
there is a long tradition for using octave and one third octave-band filters, 
with standardized filter characteristics. For vibration analysis, narrow- 
band spectra based on constant-bandwidth analysis are usually preferred. 

FFT/DFT 
FFT/DFT (Fast Fourier Transform/Discrete Fourier Transform) analyz- 
ers produce narrow-band line spectra, in which each line represents the 
output of a filter/detector centered at the frequency of the line. The shape 
of the filter is determined by the chosen weighting function. The weight- 
ing function, also known as the window, is applied to the data record to be 
analyzed (i.e. the data is multiplied by the weighting function). The data 
record (block) is T s long and the filters are separated by ∆f = 1/T Hz. This 
filter spacing f is also called the line spacing, since the spectrum appears 
as a line spectrum on the analyzer. All the filters have the same character- 
istic on a linear frequency axis, which means that we obtain a constant 
bandwidth analysis with an FFT/DFT analyzer. 

The analogy between filter analysis and FFT/DFT analysis is discussed 
in detail in Appendix A (found in Part II of this article). See also 
Refs. [1,2,4,7,8] which have a common approach for characterizing 
weighting functions. 

In this article, the weighting functions and their spectra are treated as 
continuous, rather than discrete functions. This is to simplify the expres- 
sions and make interpretation easier. 
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Weighting Functions 
The B & K Dual Channel Signal Analyzers Type 2032 and 2034 offer a 
choice of seven different weighting functions. The characteristics of four 
of these windows are fixed and three have user-definable characteristics. 

The availability of different windows provides a choice of using filters 
with different characteristics in terms of bandwidth, band-pass ripple and 
selectivity. 

The benefit of having different windows/filters available is that the user 
can select an optimum filtershape for a given application. The correct 
choice can minimize the measurement errors due to the fact that no filter 
is ideal. 

Filter Analysis 
A filter is a device that transmits a signal in such a manner that its output 
is the result of convolving the input signal with the impulse response func- 
tion h (t) of the filter. In the frequency domain this corresponds to a (com- 
plex) multiplication of the frequency spectrum of the signal, by the fre- 
quency response function of the filter H (f). The filter is characterized by 
its impulse response in the time domain, and by its frequency response in 
the frequency domain. Both characterizations contain the same informa- 
tion about the filter and are related via the Fourier Transform: 

H (f) = F {h (t)}                                                                                                            (1) 

The transmitted signal will have an amplitude spectrum equal to the 
product of the input signal amplitude spectrum and the amplitude of the 
filter frequency response | H (f) | (the filter amplitude characteristic). 
Consequently the power spectrum, (or rather the mean-square spectrum) 
of the transmitted signal, is the product of the input power spectrum and 
the squared filter amplitude characteristic | H (f) |2. This is illustrated in 
Fig. 1. 

The output of the filter is fed to a detector which detects the power (the 
mean square) of the output signal, represented by the area under the am- 
plitude spectrum squared, shown in Fig. 1 as the dotted curve. The square 
root of this, the root mean square (RMS), is the estimate of the amplitude 
spectrum of the input signal in that filter bandwidth. Frequency analysis 
is then performed by sweeping, or stepping, the filter through the frequen- 
cy range of interest, or by using a bank of parallel filters. For more details 
see Ref. [1]. 
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Fig. 1. Amplitude spectra for a filtered signal 

Filter Characteristics 
A filter is generally characterized in the frequency domain by four param- 
eters; centre frequency, bandwidth, ripple and selectivity. 

An ideal bandpass filter will transmit all components lying within its 
passband, of width B Hz, and completely attenuate all components at oth- 
er frequencies (see Fig. 2). 

The Centre Frequency fo of a filter is defined as either the geometric, or 
the arithmetic mean value of the lower and upper frequency limits. Geo- 
metric mean is used for constant percentage bandwidth filters. Arithmetic 
mean is used for constant-bandwidth filters (see Fig. 2). The centre fre- 
 

 
Fig. 2. An ideal filter 
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Fig. 3. Practical vs. ideal filter 

quencies for DFT/FFT analysis are given by the choice of frequency 
range, or span, and the number of filters/lines in the analysis. 

Practical filters deviate from ideal filters in several ways as illustrated in 
Fig. 3. The so-called effective noise bandwidth of a filter is defined as the 
width of an ideal filter which, with an identical reference-amplitude gain, 
would transmit the same power from a white noise source. 

Another bandwidth associated with a filter is its 3 dB bandwidth, this is 
the difference in Hz or Rad/s between the half power points of the ampli- 
tude characteristic (i.e. the points where the level is 3 dB below the refer- 
ence amplitude level). In most practical filters, the difference between the 
3 dB bandwidth and the effective noise bandwidth is relatively small. 

The 3 dB bandwidth is usually specified, in preference to the noise 
bandwidth, because it can easily be measured using a variable sine 
generator. 

The bandwidth of a filter gives information about its ability to separate 
components of similar amplitudes, and thus determines the resolution of 
the analysis. 
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Fig. 4. Shape factor 

Selectivity is a descriptor which indicates the ability of a filter to sepa- 
rate components of widely different levels. The basic parameter for selec- 
tivity is the shape factor, the ratio of the filter bandwidth at an attenua- 
tion of 60 dB, to its 3 dB bandwidth. Shape factor is normally used for 
constant-bandwidth filters, which have symmetrical characteristics on a 
linear frequency scale (see Fig. 4). For constant-percentage-bandwidth fil- 
ters, which have symmetrical characteristics on a logarithmic frequency 
scale, it is more usual to use octave selectivity, which gives the attenuation 
of the filter characteristic one octave on either side of the centre 
frequency. 

The amount of ripple in the passband of the filter, characterises the 
uncertainty with which the amplitude of a given signal can be determined 
(see Fig. 3). 
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Windowing 
DFT/FFT analysis is made on blocks (time records) of data i.e. each 
DFT/FFT calculation is a transform of a time record of finite length. The 
signal is thus limited (truncated) by a the time-window. What happens to 
the signal before, and after, the time-window is not observed by the ana- 
lyzer. Individual window types will emphasize parts of the signal in differ- 
ent ways, and thus give different results (spectra). 

Time Windows 

 Max. 
Amplitude 

Min. 
Amplitude 

Effective 
Duration 

Rectangular 1 1 1 · T 
Hanning 2 0 0,375 · T 
Kaiser-Bessel 2,48 0 0,291 T 
Flat Top 4,64 -0,33 0,175 · T 
 
Table I. Time domain characteristics of weighting functions 

Fig.5. Rectangular, Hanning, Kaiser-Bessel and Flat Top weighting functions found in 
2032/34 
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Table 1 lists and compares the various window functions (shown in 
Fig. 5) in the time domain, with respect to the following parameters: 
1. Max. amplitude 
2. Min. amplitude 
3. Effective duration 

Table 2 lists and compares the same window functions in the frequency 
domain, with respect to the following parameters: 
1. Effective noise bandwidth 
2. 3 dB bandwidth 
3. Ripple in the passband. (The passband is defined here as the band- 

width A/centered around the centre frequency f0. This is also the band 
between the crossover points of the filter with its two adjacent filters.) 

4. Highest sidelobe 
5. Sidelobe fall-off rate 
6. 60 dB bandwidth 
7. Shape factor 

Parameters (4), (5), (6) and (7) are all used to characterize the selectivity 
of the window. 

Window Noise 
Band- 
width 

3 dB 
Band- 
width 

Ripple Highest 
Sidelobe 

Sidelobe 
Fall-Off 
rate per 
Decade

60 dB 
Band- 
width 

Shape 
Factor 

Rectangular ∆ f 0,89 A f 3,92 dB -13,3 dB 20 dB 665 ∆f 750 
Hanning 1,5 ∆f 1,44 ∆f 1,42 dB -31,5 dB 60 dB 13,3 ∆f 9,2 
Kaiser-Bessel 1,80 ∆f 1,71 ∆f 1,02 dB -66,6 dB 20 dB 6,1 ∆f 3,6 
Flat Top 3,77 ∆f 3,72 ∆f 0,01 dB -93,6 dB 0 dB 9,1 ∆f 2,5 
 
Table 2. Frequency domain characteristics of weighting functions 

BTeff per record 0% 50% 75% 

Rectangular 1 0,660 0,363 
Hanning 1 0,947 0,520 
Kaiser-Bessel 1 0,989 0,628 
Flat Top 1 1,000 0,995 
 T01596GB0 
Table 3. Effective BT-product per filter, per record when overlap analysis is performed 
(theoretical values) 
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Table 3 lists the effective BT-product per filter per record, when 0%, 
50% and 75% overlap is used in the analysis. The values in Table 3 have 
been verified experimentally. See Appendix D. 

Formulae for calculating some of these parameters are given and dis- 
cussed in Appendix B. 

Rectangular Weighting 
The Rectangular weighting, also called Flat or Boxcar weighting, is actual- 
ly no weighting at all on the finite time record. It is defined as: 

w (t) = 1    for 0  t < T 

where T is equal to the record length (see Fig. 5). 
The filter characteristic given by the integral Fourier transform of the 

Rectangular window is shown in Fig. 6. The filter has a mainlobe, which is 
twice the width of the line/filter spacing ∆f, and an infinite number of 

Fig. 6. Filter shape of the Rectangular Weighting function 

w (t) = 0 elsewhere  (2) 
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Fig.7. The "best case" and the "worst case", when analysing a sinusoid using Rectangu- 
lar Weighting function 

sidelobes with widths equal to the line/filter spacing. For the analysis of 
deterministic/harmonic signals this is a poor filter because it has: 
1. A very poor selectivity, due to the wide 60 dB bandwidth. 
2. A relatively large (3,9 dB) ripple in the passband. 

At first sight, it would seem that the Rectangular window is a bad choice 
of window due to its poor filter characteristics. 

On the other hand, if we analyze a sinusoid which has a frequency that 
coincides with the centre frequency of one of the filters we have the special, 
optimal, or "best case", situation where the frequency also coincides with a 
zero amplitude point for all of the other filters. Thus only one line, with the 
correct amplitude, will be displayed (see Fig. 7.a). 

The "worst case" is when the frequency of the sinusoid coincides with a 
crossover frequency between two adjacent filters. The output of both fil- 
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ters will then be 3,9 dB too low, while all the other filters will give an out- 
put which corresponds to the maximum level in one of the sidelobes (see 
Fig. 7b). This effect is called leakage because energy, or power, appears to 
leak into all the filters/lines, instead of being concentrated into only one 
filter. Note, however, that the sum of the power/energy in all the filters will 
give the correct value (calculated and shown as Total in the cursor auxilia- 
ry information field, see Fig. 7a and b). 

The practical use of the Rectangular window is for analyzing transients 
with shorter durations than the record length T. Due to the flat character- 
istic in the time domain all parts of the signal are equally weighted. In the 
frequency domain the bandwidth of the signal is greater than the band- 
width of the filters, because the signal is shorter than T, and therefore the 
filter characteristic will have no influence on the calculated spectrum of 
the transient signal. 

When the spectral amplitude variations of a random signal are less than 
the variations of the filtershape, Rectangular weighting may be used for 
the analysis. This is exemplified in Fig. 10 a for a narrow band random sig- 
nal, where only the relatively flat centre part of the spectrum is unaffected 
by the filter shape. 

As explained, and shown in Fig. 7, the Rectangular window can only be 
used for analysis of sinusoids when their frequencies coincide exactly with 
the centre frequencies of the filters. 

One such application is order tracking, used in the analysis of run-up/ 
coast-down of machines, see Refs. [1, 2 and 11]. In this case external sam- 
pling is used to keep the sampling frequency in synchronism with the shaft 
speed. All components harmonically related to the shaft speed can then be 
arranged to coincide with centre frequencies of the filters (lines). It may be 
argued that Hanning weighting is a better choice when the speed varia- 
tions are large. In this situation it may be difficult to track the signal, and 
the Rectangular weighting function would give more apparent leakage 
than the Hanning weighting function. 

An application where Rectangular weighting is a "must", is in system 
analysis using a pseudo-random excitation signal, see Ref. [9]. A pseudo- 
random signal is a periodic signal with its period length adjusted to the 
record length T of the analysis. All the components of the pseudo-random 
signal will therefore coincide with the centre frequencies of the filters 
(lines) and the analysis will be free of leakage assuming Rectangular 
weighting is used (optimal situation or "best case"). 
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Hanning Weighting 
The Hanning weighting as shown in Fig. 5 is a smooth window function 
which is defined as: 

Fig. 8. Filter shape of Hanning Weighting function 
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w (t) = 1 - cos 2 π t /T 
= 2 sin2 2 π t/T   for 0 < t < T =  

w (t) = 0    elsewhere                                                                                        (3) 

As can be seen, the window is a sum of a Rectangular window and one 
period of a cosine of equal amplitude (i.e. the sum of a DC and an AC 
component). The Hanning window can also be described as one period of a 
sine squared. In literature the Hanning window is often defined as a cosine 
squared, which is the case if the window starts at - T/2 rather than at time 
zero. 

The window is shown in Fig. 5 and its filter characteristic in Fig. 8. The 
mainlobe is 4 ∆f, double the width of the Rectangular window. The num- 
ber of filters/lines excited will always be greater than or equal to three. The 
first sidelobe is much more attenuated, and the fall-off rate is much faster, 
 



 

Fig. 9. The "best case" and the "worst case", when analysing a sinusoid using Hanning 
Weighting function 

than for Rectangular weighting. This means that the 60 dB bandwidth is 
much narrower giving far better selectivity (see Table 2). 

The maximum amplitude error, also known as the picket fence effect and 
given by the ripple in the passband, is only 1,4 dB for this window (see 
Fig. 9.b). In Appendix F the picket fence effect is discussed and it is 
shown how to compensate for it. 

In comparison with Rectangular weighting, the noise bandwidth of Han- 
ning weighting is 50% greater. Power spectrum values for broadband ran- 
dom signals will, therefore, be 1,5 times higher when analyzed using Han- 
ning rather than Rectangular weighting. This correspond to a factor of 
√(1,5) = 1,22 for RMS readout, or 10 log (1,5) = 1,76 dB for readout in rel- 
ative units, see Fig. 10. Correction of the noise bandwidth, to convert the 
power spectrum to the correct power spectral density (PSD) unit, should 
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Fig. 10. The analysis of a narrow band random signal using Rectangular and Hanning 
Weighting 

therefore be made by selecting PSD (rather than the RMS) in the display 
settings in Fig. 10. Note also that the total power across the full frequency 
range will be the same with either weighting, since the noise bandwidth is 
compensated for in this calculation. The Hanning window thus performs 
better than the Rectangular window with respect to selectivity, passband 
ripple and apparent leakage, and should be used in most cases where con- 
tinuous signals are analyzed. 

From Table 1 it can be seen that the effective duration is 3/8 of the record 
length T. An analysis using 50% overlap can therefore be made, giving 
results in half the time required with 0% overlap, without any significant 
loss of confidence in the results. (See Table 3). 

Another feature of this window is that with linear averaging it gives an 
effective flat time weighting when 2/3 (66,67%) or 3/4 (75%) overlap is cho- 
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 Real-Time Bandwidth 
(Display of Autospectrum) 

 

 Type 2032 Type 2034 

Window Single 
Channel 

Dual 
Channel 

Single 
Channel 

Dual 
Channel 

Rectangular 17,7kHz 5,8 kHz 2,0 kHz 0,9 kHz 
Hanning 16,6kHz 5,4 kHz 1,9kHz 0,9kHz 
Kaiser-Bessel 10kHz 3,8 kHz 1,6kHz 0,8 kHz 
Flat Top 10kHz 3,8 kHz 1,6kHz 0,8 kHz 
User Defined 10kHz 3,8 kHz 1,6kHz 0,8 kHz 
 T01600GB0 
Table 4. Real-Time bandwidth for the B & K Analyzers Type 2032 and 2034 using dif- 
ferent weighting functions 

sen (see Appendix C and Refs. [1 and 5]). The widest analysis bandwidth, 
in which a uniform weighting of the time signal can be obtained, is thus 
found to be with an overlap of 2/3. While 2/3 is not a practical overlap, since 
most DFT/FFT calculations use a transform length which is a power of 
two, the nearest value is good enough. For a transform size of 2048 sam- 
ples, it is an overlap of 1365 samples. 

In order to obtain results equivalent to a real-time analysis, where the 
overall weighting function must be uniform, the overlap has to be at least 
2/3. This gives an effective real-time bandwidth which is 1/3 of the generally 
quoted Real-Time Bandwidth of an analyzer (based on analysis of adja- 
cent blocks of data - i.e. 0% overlap). For the 2032 analyzer, this is 
16,6 kHz/3 = 5,5 kHz in single channel mode. Table 4 shows the Real- 
Time Bandwidth of the 2032 and 2034 for the various windows. 

Another use of the Hanning Window with, for example, 75% overlap is 
in the analysis of transients longer than the record length. With this tech- 
nique, spectrum units of energy spectral density (ESD) must be chosen. 
The effective time-record length to use when scaling from PSD to ESD is, 
in the case of 75% overlap and nd averages, given by T · nd/4 Refs. [1 & 5]. 
If a default value of T is used for the effective time-record length a further 
scaling (multiplication) of nd/4 then has to be performed. 

The Hanning window is also the best choice for system analysis (Fre- 
quency Response Function measurements) using a true random excitation 
signal. The relatively narrow mainlobe and low sidelobes give the lowest 
possible leakage (leakage causes underestimation of the peak value at reso- 
nance) Ref. [9]. 
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The Hanning weighting function is a good overall, general purpose 
weighting function for continuous signals, it is easy to implement and 
gives a high real-time rate. 

Kaiser-Bessel Weighting 
The Kaiser-Bessel window as shown in Fig. 5 is calculated from 

 

w (t) = 1 - 1,24 cos 2 π t/T + 0,244 cos 4 π t/T- 0,00305 cos 6 π t/T 
for    0 < t < T  =

w (t) = 0     elsewhere                                                                                      (4) 

The Integral Fourier Transform gives the filter characteristic of the 
window, shown in Fig. 11. This is superior to the other filters with respect 
to selectivity. The 60 dB bandwidth is only 6,1 times the line spacing. This 
is mainly due to the low level of the highest sidelobe, which is found to be 
at -67 dB. 

Fig. 11. Filter shape of Kaiser-Bessel Weighting Function 
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Fig. 12. The "best case" and the "worst case", when analysing a sinusoid using Kaiser- 
Bessel Weighting function 

For analysing harmonic signals, the only difference between "best case" 
and "worst case" is, as shown in Fig. 12, the maximum amplitude error 
(ripple in the passband) of -1,0 dB. 

Because it has good selectivity, the main use of the Kaiser-Bessel win- 
dow is for two-tone separation of closely spaced frequency components 
with widely different levels. This is demonstrated in Figs. 13 and 14, 
where two "worst case" sinusoids, separated by a 40 dB difference in level 
and six times the line spacing in frequency, are analyzed using the four 
different standard weighting functions. Only the Kaiser-Bessel window 
can fully separate the two components over a dynamic range of 60 dB. 
Note that for the Rectangular Weighting the lower component is com- 
pletely masked by the higher component. 

17 



 

Fig. 13. Two-tone separation using Rectangular and Hanning Weighting. Level differ- 
ence is 40 dB 

For analysis of periodic signals the Kaiser-Bessel window is probably 
the best choice. Harris (Ref. [2]) states in his article: "This suggests that 
the Kaiser-Bessel or the Blackman-Harris window should be declared the 
top performer. My preference is the Kaiser-Bessel." 

The only disadvantages, in comparison with the Hanning weighting 
function, are speed (Table 4) and that a uniform weighting of the time 
signal cannot be achieved by standard overlap analysis. Also note that, for 
system analysis using random excitation, this window will cause more 
leakage (than the Hanning window) at resonances and anti-resonances, 
due to its wider noise bandwidth. 
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Fig. 14. Two-tone separation using Kaiser-Bessel and Flat Top weighting. Level differ- 
ence is 40 dB 

Flat Top Weighting 
The Flat Top window as shown in Fig. 5 is calculated from 

w(t) = 1 - 1,93cos2π t/T+ 1,29cos4π t/T - 0,388cos6π t/T + 0,0322cos8π t/T 
for    0 < t < T  =

w (t) = 0      elsewhere                                                                                     (5) 

and the filter shape is shown in Fig. 15. The name comes from the low 
ripple (< 0,01 dB) in the passband. The ripple is negligible and the ampli- 
tude error will be determined by the overall linearity of the analyzer. Thus 
the window is designed mainly for calibration purposes, although calibra- 
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Fig. 15. Filter shape of Flat Top Weighting Function 

tion could be made using the Hanning or Kaiser-Bessel windows and a 
readout of the total power (RMS), or power (RMS) in a delta band which 
included all the filters excited by the calibration signal (Fig. 9 and 12). 

The selectivity is not as good as that of Kaiser-Bessel (Fig. 14). The 
shape factor is in fact lower which is an indication of the very steep filter 
skirts, but its 60 dB bandwidth is wider. 

The Flat Top window is the FFT-filter which has a performance closest 
to that of an ideal filter with nearly identical 3 dB and Noise Bandwidths. 
It can be seen from Fig. 14 that it is also the only weighting function which 
measures the correct level of the lower amplitude component in the two- 
tone example. 

In most applications one will probably prefer the Hanning weighting, to 
the Flat Top, for the following three reasons; it has a 2,5 times narrower 
bandwidth, it has a higher real-time rate, and it gives a uniform weighting 
achieved by simple overlap analysis. 

The main use for the Flat Top window is for calibration, due to its negli- 
gible amplitude errors. 
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Fig.16. The "best case" and the "worst case" when analysing a sinusoid using Flat Top 
Weighting function 

User Defined Weighting 
The User Defined window is calculated from the general window 

formulation. 

w (t) = a0 - a1 cos 2 π t/T + a2 cos 4 π t/T - a3 cos 6 π t/T + a4 cos 8 π t/T 
for     0 < t < T  =

w (t) = 0        elsewhere                                                                                    (6) 

where the coefficients a0, a1, a2, a3 and a4 can be defined using special 
parameters 10 to 15 in the 2032/34. 

The effective noise bandwidth must also be defined and entered using 
special parameters 6 to 9, if readout of power spectral density (PSD) or 
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energy spectral density (ESD), which are the proper units for random and 
transient signals respectively, are desired, Ref. [1 & 12]. The noise band- 
width is also needed for correct calculation of the overall power, or for pow- 
er in a delta band as discussed earlier. 

The Kaiser-Bessel and Flat Top windows are implemented as special 
versions of the User Defined window in 2032/34, and thus have the same 
real-time bandwidth (RTB) as defined in equation (7), independent of the 
number of coefficients used. 

RTB =   No. of lines                                           (7) 
Calculation Time 

where the calculation time is the effective time taken for the analyzer to 
make one average. 
Examples of User Defined windows are shown in Appendix E. 

Transient Weighting 
The Transient window is similar in performance and use to the Rectangu- 
lar window, but is shorter than the record length, thus giving a broader 
filter characteristic. The user can define both the starting point and the 
length of the Transient window, with respect to the measurement record. 
The samples outside the chosen time interval are set to zero, which im- 
proves the signal to noise ratio for analysis of short transients. 

If smooth tapering is needed a leading and trailing half-cosine (half- 
Hanning) can be chosen using special parameters 16 and 17 in the 2032/34 
(see Fig. 17 b). 

As a visual feedback for correct positioning, the time weighting function 
or the weighted time signal can be viewed using special parameters 76 and 
77 (Fig. 17 b and c). 

The use of the Transient window is for the analysis of short transients, or 
for gating parts of a time signal contained in the input memory of the 
analyzer. 

Exponential Weighting 
The Exponential window is defined as 

w (t) = e -(t-t0)/τ     for    t0 <  t < T =     and   0 ≤ τ < T 

w (t) = 0     elsewhere                                                                                      (8) 
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Fig. 17. Visual feedback when windowing time signals. 
a) Unweighted signal. b) Weighting function. c) Weighted time signal 
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Fig. 18. A "best case" sinusoid analyzed with a) Rectangular Weighting b) Exponential 
Weighting, τ = 10 ms 

where τ, the time constant, is selected as the length of the window and t0 is 
the shift of the window. Thus the time signal is attenuated by a factor of 
e = 2,71828 or 8,69 dB per time constant. 

The 3 dB bandwidth is given by 1/πτ Hz and the effective noise band- 
width is given by 1/2 τ Hz Ref. [I]. 

The filter characteristic (complex) given by the integral Fourier trans- 
form of the window is: 

W(f) =         τ                                                                                                   (9) 
1 + j 2 π f τ 

It is assumed here that the window is infinitely long, which means that 
the effect of the truncation at t = T is neglected. This can only be done if 
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the time constant τ is much shorter than T (at least a factor of 4). Other- 
wise the convolution of the filter characteristic (complex) of a rectangular 
window would have to be included in Eq. (9). 

A leading half-cosine taper, as well as a delay from the end of the taper 
to the beginning of the exponential decay, can be chosen in special param- 
eters 18 and 19 in 2032/34. 

In Fig. 18 b, a "best case" sinusoid is analysed with an Exponential win- 
dow using a time constant of 10 ms. Note that the 3 dB bandwidth of the 
spectrum is approximately 32 Hz (1/π τ). 

The main use of the Exponential window is for the analysis of transients 
longer than the record length. Signals, which exhibit an exponentially de- 
caying amplitude as a function of time, should be weighted by this win- 
dow. This is typically the case for the response of lightly damped struc- 
tures when they are excited by an impact. If the signal is not sufficiently 
attenuated (40 dB is sufficient) at the end of the record, the truncation of 
the signal will produce an undesirable amount of leakage, resulting in rip- 
ples in the spectrum (Ref. [13]). By applying an exponential window, 
which forces the amplitude to be sufficiently attenuated at the end of the 
record, the amount of leakage is predictable and can be compensated for 
as shown in Eq. (10) 

1/τsignal = 1/τmeasured – 1/τwindow                                                                        (10) 

which leads to the following simple relationship in the frequency 
domain 

∆f3 dB signal = ∆f 3 dB measured - ∆f 3 dB Window                                                        (11) 

Implementation 
All the time windows in the B & K Analyzers Types 2032 and 2034 are 
implemented as multiplications in the time domain. They could also have 
been implemented as convolutions in the frequency domain, but this 
would be inappropriate for the Transient and the Exponential windows. 

The window parameters, and the choice of windows, can be changed 
after recording of the time signal has been completed by using special pa- 
rameter 30 "Free Windows". This gives the user the ability to get a visual 
feedback so that the choice of an optimal window, and window parame- 
ters, can be made for a given signal. 
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Summary 
For the analysis of transients the following windows should be used: 

Rectangular Weighting for general purposes. 
Transient Weighting for short impulses and transients, to improve 

the signal to noise ratio and for gating purposes. 
Exponential Weighting should be applied for transients longer than 

the record length, e.g. exponentially decaying signals, which do not decay 
sufficiently within the record length. 

Hanning Weighting with 66 2/3% or 75% overlap for transients much 
longer than the record. 

For the analysis of continuous signals we have the following conclusions: 
Rectangular Weighting should only be used when analysing special 

sinusoids, the frequencies of which coincide with the centre frequencies/ 
lines in the analysis. This is often the situation when pseudo-random types 
of signal are analysed, or when order tracking is applied. 

Hanning Weighting is a general purpose weighting and should be 
used in most cases. Hanning window with 66 2/3% or 75% overlap should be 
used when true real-time analysis is needed. 

Kaiser-Bessel Weighting shows very good selectivity and should be 
used for two-tone separation of harmonic signals with widely different 
levels. 

Flat Top Weighting is mainly designed for calibration and correct 
amplitude measurement. 

For system analysis, that is frequency response function measurements, 
the following windows should be used (Refs. [9 and 10]): 

Transient Weighting for the excitation signal when an impact ham- 
mer is used for excitation. 

Exponential Weighting for the response signal of lightly damped 
systems, when an impact hammer is used for excitation. 

It should be noted that for low frequency or zoom analysis where the 
record length T becomes long it will be advantageous to use random im- 
pact with the hammer in which case Hanning weighting should be used 
(Ref. [13]). 

Hanning Weighting for both excitation and response signals when a 
random excitation signal is used. 

Rectangular Weighting for both excitation and response signal 
when a pseudo-random excitation signal is used. 
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Conclusion 
FFT analyzers are widely used today for frequency analysis of vibration 
signals. A careful choice with respect to weighting function or filtershape 
is required since no standard exists. This is in contrast to acoustic noise 
measurements, where there has been a long tradition for using standard- 
ized octave and 1/3 octave filter bands. 

Even if an optimum FFT-filter shape is chosen the results must be 
scaled in the right unit according to the signal type (Ref. [12]). This is be- 
cause the absolute bandwidth is also related to the chosen frequency range 
and the number of lines in the analysis. 

Hopefully this article has enlightened and clarified some of the difficul- 
ties that exist in the choice of a proper weighting function for a given ap- 
plication using DFT/FFT analysis. 
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Signals and Units 

by Svend Gade and 
Henrik Herlufsen 

Abstract 
The range of window functions available in DFT/FFT (Discrete Fourier 
Transform / Fast Fourier Transform) analyzers gives them the ability to 
analyze a wide variety of different signal types. The shape of the window 
function and the frequency span of the analyzer, determine the noise 
bandwidth of the filters and the analysis time for the signal. Consequent- 
ly, it is important that the correct units are used to scale the frequency 
spectra. To obtain consistent results for some signals, the spectra have to 
be normalized with respect to the noise bandwidth and the measurement 
time. 

Sommaire 
La gamme de fonctions fenêtres des analyseurs DFT/FFT (Transformeé 
de Fourier discrète/rapide) permet d'analyser des types de signaux très 
divers. La forme de la fenêtre et la gamme de fréquence de l'analyseur 
déterminent la largeur de bande des filtres et le temps d'analyse du signal. 
En consequence, il est important de choisir des unités adaptées aux spec- 
tres de fréquence étudiés. Avec certains types de signal, il est nécessaire de 
normaliser les spectres en fonction de la largeur de bande et du temps de 
mesure afin d'obtenir des résultats cohérents. 

Zusammenfassung 
Für die DFT/FFT- (Diskrete Fourier Transformation/Fast Fourier 
Transformation) Analysatoren gibt es eine Reihe von Zeitbewertungs- 
funktionen, die die Analyse der verschiedensten Signalarten ermöglichen. 
Die Rauschbandbreite der Filter und die Analysenzeit für das Signal wird 
durch die Form der Zeitbewertung und den Frequenzbereich des Analysa- 
tors bestimmt. Darum ist es wichtig, die Frequenzspektren in der richti- 
gen Einheit zu skalieren. Bei bestimmten Signaltypen müssen die Spek- 
tren mit Bezug auf die Rauschbandbreite und Meßzeit normalisert 
werden, um reproduzierbare Ergebnisse zu erzielen. 
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Introduction 
The analysis of different signal types requires not only that we use the 
appropriate weighting functions (Refs. [1 and 2]), but also the correct 
analysis parameters or units. 

Fig. 1 illustrates the three basic types of signals. One fundamental dif- 
ference is found in the duration of the signals, whether they are transients 
or continuous signals. 

A transient is a signal which starts and ends at zero amplitude. In this 
case the complete signal should be analyzed in units of energy. 

Fig. 1. Classifications of signals into deterministic, random and transient types 
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This is in contrast with stationary continuous signals, in which the 
amount of energy measured in is proportional to the observation time. 
These signals should be analyzed in units of power, energy per unit time. 

Another basic difference between the signal types is found in the fre- 
quency domain, depending on whether they have line spectra or continu- 
ous spectra. Continuous spectra (like continuous signals, where the results 
are normalized with respect to unit time) should be normalized with re- 
spect to the frequency unit (i.e. Hz) to give Spectral Density. This is be- 
cause the measured level (or amplitude) at a relatively flat part of the 
spectrum, is proportional to the filter/analysis bandwidth. 

For line spectra, on the other hand, the measured amplitude is indepen- 
dent of the filter bandwidth, if the resolution of the analysis is sufficient to 
separate the individual frequency components. 

Deterministic Signals 
Stationary, deterministic (periodic) signals are made up entirely of sinu- 
soids at discrete frequencies. The resolution of the frequency analysis is 
determined by the filter noise bandwidth used. The filter bandwidth 
should enable the analyzer to distinguish between the two most closely 
spaced frequency components (see Fig. 2). This means that only one sinu- 
soid should lie within the filter passband at any one time, in which case the 
power transmitted by the filter is independent of the analysis bandwidth. 
The averaged frequency spectrum of a deterministic signal should, there- 
fore, be scaled either in terms of mean square or power (PWR), in U2 

 

Fig. 2. For analysis of periodic, deterministic signals, the power or RMS amplitude 
transmitted by the filter in each frequency band should be measured in U2 (PWR) 
or in U (RMS) 
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(units squared), or in terms of root mean square (RMS), in U (units). The 
unit U may be volts (V), or any of the physical units such as Pascals, 
m/s2, m/s, m, g, N etc. 

Fig. 3 shows the time record and the frequency spectrum for a determin- 
istic signal analyzed on a Brüel & Kjær 2032/2034 Dual Channel Signal 
Analyzer. The "TOTAL" field gives the total power, or total RMS values, 
of the displayed frequency spectrum. Alternatively a delta cursor can be 
used, in which case the "  TOTAL" field gives the total power (or RMS) 
within the band selected by the delta cursor, and the " /TOTAL" field 
gives the fraction of the total power (or RMS) within the selected band. 

Each type of time-weighting function/filter produces a different num- 
ber of frequency lines in the spectrum (see Ref. [2]). But in the 2032/34 the 
 

Fig. 3. Time record and frequency spectrum of a stationary, deterministic (period- 
ic) signal. The frequency spectrum is scaled to the root mean square (RMS) 
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weighting functions are scaled so that the reference gain of the filter/lines 
is unity. This means that the amplitudes are correct power (PWR) or 
RMS spectrum amplitudes, except for possible picket fence effect errors 
due to the ripple in the passband of the filters. When the power in a user- 
defined (delta cursor) frequency band is calculated, by summing the pow- 
er in the relevent lines, the correction for the noise bandwidth of the se- 
lected weighting function is automatically made. 

Random Signals 
Continuous, stationary random signals have spectra which are continuous 
functions of frequency (see Fig. 4). Consequently there is a continuous fre- 
quency distribution within the filter passband and the power transmitted 
by the filter depends on the filter bandwidth (the resolution of the analy- 
sis). In situations where the amplitude variations within the analysis 
bandwidth are relatively small, the influence of the filter bandwidth can 
be removed by dividing the transmitted power by the filter bandwidth. 
This process normalizes the result to a mean square spectral density, or 
Power Spectral Density (PSD) in U2/Hz, which is a measure of the power 
per unit bandwidth. Sometimes the square root of PSD is preferred giving 
U/√Hz. 

Fig. 5 shows the time record and the PSD frequency spectrum for a nar- 
row band random signal. Note that read out using "TOTAL" or "∆ TO- 
TAL" will be the power or mean square value of the selected band. 

When using broadband analysis, such as the A-weighted, octave or one 
third octave analysis often used in acoustics, it is very seldom that the 
 

Fig. 4. For analysis of stationary random signals, the Power Spectral Density 
(PSD) should be measured, in U2/Hz 

33 



 

Fig. 5. Time record and frequency spectrum of a stationary, random process. The 
frequency spectrum is scaled as Power Spectral Density 

results of analyzing stationary random signals are normalized to the band- 
width of the analysis/filters. This is because analysis using filters with 
standardized characteristics gives consistent results independent of the 
frequency range and averaging technique. 

Transient Signals 
Transient signals start and end with zero amplitude, and thus contain fi- 
nite amounts of energy. They cannot, therefore, be characterized in terms 
of power which will depend on the record length (or averaging time). Ana- 
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Fig. 6. For analysis of transient signals, the Energy Spectral Density (ESD) 
should be measured, in U2s/Hz 

lyzers detect power with reference to the record length T, or averaging 
time TA (power is found by dividing the measured energy by T or TA), thus 
the longer the time window - the lower the average power. 

Transient signals also have spectra which are continuously distributed 
with frequency (see Fig. 6). Consequently, the transmitted energy per fil- 
ter/line must be normalized with respect to the filter bandwidth, which 
results in units of energy per unit bandwidth, often termed energy spectra] 
density (ESD). 

Fig. 7 shows the time record and the frequency spectrum (scaled in 
ESD), for a transient signal. Transients must be analyzed using an equal 
time-weighting function across the signal. To achieve this a Rectangular 
Weighting (no weighting), or a shorter Transient Weighting function, 
should be used depending on the length of the transients relative to the 
record length. An Exponential window or overlapping Hanning Windows 
can be used for transients which do not decay sufficiently within the record 
length (see Refs. [1 and 2]). Note that the read out, in "TOTAL" or "∆ TO- 
TAL", will give the total energy in the selected band. 

With standardized A-weighted, octave or one third octave filter analysis, 
compensation for the filter bandwidth is very rarely used (for the same 
reasons given for the analysis of stationary random signals). As already 
mentioned, it is necessary to compensate for the averaging time so that the 
results are consistent in terms of energy. 

In acoustics this type of scaling for A-weighted sound pressure levels is 
called Sound Exposure Level (SEL), and it is used to express the amount 
of A-weighted energy in a transient. 
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Fig. 7 Time record and frequency spectrum of a transient signal. A transient 
weighting function is applied to the time record, and the frequency spectrum is 
scaled as Energy Spectral Density 

Conclusions 
Analyzers normally detect the mean square (PWR) or the root mean 
square (RMS) of the filtered signal. Depending upon the type of signal to 
be analyzed, the results should be scaled properly by calculation of: 

RMS: 
                                        RMS = √PWR                                                                        (1) 

Power: 
                                        PWR = RMS2                                                           (2) 
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Fig. 8. Signal types and correct units 

Power Spectral Density: 
                                     PSD = PWR/Bandwidth                                             (3) 

Energy Spectral Density: 
                                     ESD = PSD · Observation Time                                 (4) 

It should be noted that "Power" is engineering units squared, it is not 
physical power because impedance is not taken into account. 

As shown in Fig. 8 and summarized in Table 1: 

1. Periodic, deterministic signals should be analyzed in terms of RMS or 
PWR spectrum units 
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Type of Signal Spectrum Unit Units 
 (Scaling) Absolute Relative 

RMS 
(Root Mean Square) U 

e.g. 
dB re 1 u

 
Deterministic 

PWR 
(Power) U2 e.g. 

dB re 1 u2 
Random PSD 

(Power Spectral 
Density)

 
U2/Hz 

e.g. 
dB re 1 u2/Hz 

Transient ESD 
(Energy Spectral 

Density) 

 
U2s/Hz 

e.g. 
dB re 1 u2s/Hz 

 T01643GB0 

Table 1. A summary of the scaling units to be used with different signal types 

2. Stationary, random signals should be analyzed in terms of PSD spec- 
trum units 

3. Transient signals should be analyzed in terms of ESD spectrum units 

Correct scaling of the results is obtained by selecting the appropriate 
unit in the "Spectrum Unit" field for the type of signal to be analyzed. 

In many practical situations where the signals are combinations of dif- 
ferent types, for example periodic and random, RMS or PWR values 
should be used for scaling the sinusoidal components (individual lines in 
the spectrum) and PSD for the continuous part of the spectrum given by 
the random content of the signal. 
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