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Abstract 
Traditionally, the design of control 
algorithms for wind turbines is performed 
based on (linearized) models of the wind 
turbine dynamics. Control performance is 
strongly dependent on the accuracy of 
these models and for this reason 
validation of the dynamics is essential for 
achieving optimal control. The aim of this 
work is to identify, at different wind 
speeds, the dynamic model of a wind 
turbine in operation by means of two 
different system identification techniques. 
This work has been partly performed 
within the SenternNovem long-term 
research project “SusCon: a new 
approach to control wind turbines” 
(EOSLT02013) and partly within the 
InVent project-ACC1Ó (CIDEM | COPCA). 

Keywords: System Identification, wind 
turbine. 

1 Introduction  
Two different system identification 
methods have been applied on a wind 
turbine so to extract modal information at 
different operational conditions: 
Experimental modal analysis, where 
input/output signals are measured, and 
Operational modal analysis, where only 
output signals are measured.  

On the Experimental modal analysis, the 
application of band-limited pseudo-random 
binary excitation signals (PRBS) have 
been carefully designed to avoid the 
induction of undesired significant loads on 
the tower and rotor, taking also into 
account the constraints of the actuators. 
When using Operational modal analysis, 
no forced excitation is needed and only 

the (unmeasured) ambient excitation from 
the wind is used. However, an elevate 
number of sensors must be used to 
recollect the vibrational responses since 
the modal parameters are dependent on 
the modal shape.  

2 Theoretical background 
2.1 Experimental Modal Analysis 
Experimental modeling is an orthogonal 
approach to “first principles” physical 
modeling, where the phenomena observed 
in reality are modeled by using measured 
data from the operational wind turbine. To 
this end, system identification techniques 
are used to fit the parameters of a suitable 
mathematical model to the measured data 
as good as possible.  

For wind turbine applications, 
experimental modeling has only received 
limited attention in the literature. The 
application of “exciter methods”, where 
rather unrealistic direct and measurable 
excitation on several points on the blades 
is assumed, has been investigated in [1]. 
Recently, research on modal analysis has 
been performed within the framework of 
the European research project 
“STABCON” - Stability and control of large 
wind turbines'', where both simulation 
studies and experimental results have 
been reported [2, 3]. The simulation 
studies are based on blade excitations that 
are difficult to realize in practice. More 
realistic excitation signals were 
investigated at Risø National Laboratory, 
where the use of the blade pitch and 
generator torque to excite the first two 
tower bending modes by harmonic signals 
and measurement of the decaying 
response proved to be unsuitable for 



accurate estimation of the damping [3]. 
The identification of open-loop drive train 
dynamics from closed-loop experimental 
measurements on a fixed-pitch variable 
speed wind turbine for the purposes of 
control design algorithms is reported in [4].  

Because the experimental modeling is 
based on data collected from a wind 
turbine during operation, i.e. with the 
controller in operation, closed-loop system 
identification must be applied. In this work, 
a detailed study is performed on the 
application of the following closed-loop 
identification (CLID) approaches to wind 
turbine model identification: 

� Direct method [5], 

� Indirect method [5], 

� Joint Input/output method [5], 

� Closed-loop instrumental variable 
method [6], 

� Tailor made instrumental variable 
method [7], 

� Closed-loop N4SID subspace 
identification [8], 

� Parsimonious subspace identification 
method (PARSIM) [9], 

� Subspace identification based on 
output predictions (SSARX) [10]. 

Initial studies using simulation data from 
both linear and nonlinear aeroelastic 
simulations have indicated that the 
methods Direct, SSARX and PARSIM are 
the most potential ones for wind turbine 
applications, with the Direct method often 
outperforming the other methods. For that 
reason, and for the sake of space 
limitation, only the Direct method is 
summarized in Section 2.1.2. 

In order to identify accurate (unbiased) 
input-output models using the above-
mentioned system identification methods, 
it is necessary that the inputs are 
additionally excited by signals that are 
uncorrelated with the wind. How this can 
be achieved without introducing 
unacceptable additional loads will be 
discussed in Section 2.1.1. 

Finally, special attention has also been 
paid on data-driven model validation, for 
which purpose several techniques are 
developed and summarized in Section 
2.1.3. 

2.1.1. Excitation signal design 

 
Figure 1. System identification setup 

A possible system identification setup is 
depicted schematically on Figure 1. 
Typical inputs are the (collective) blade 
pitch angle θ and generator torque Tg 
setpoint, and outputs – generator speed Ω 
and tower fore-aft vnod and sideward vnay 
speed (or accelerations). The blocks Kg 
and Kθ in the feedback loops represent the 
torque and the pitch controllers, 
respectively, which are not required in the 
Direct identification methods, presented in 
Section 2.1.2. Time series of these typical 
inputs and outputs allow for the 
identification of the transfer functions from 
θ to vnod, from Tg to Ω, and from Tg to vnay, 
from which the tower fore-aft, tower side-
to-side and drive train dynamics can be 
analyzed. The frequency region, in which 
the identified models will be accurate 
depend on the bandwidth of the excitation 
signals rθ (on the blade pitch) and/or rg (on 
the generator torque). When the frequency 
and damping of the first tower mode need 
to be identified, the bandwidth should at 
least include the (expected) first tower 
frequency. When the first drive-train mode 
is needed, the excitation bandwidth must 
at least include the first drive-train 
frequency. Hence, the proper choice of 
excitation signals is of paramount 
importance for achieving informative 
experiment under reasonable amount of 
excitation. In fact, there are two conflicting 
objectives, between which a trade-off 
should be made. On the one hand, a good 
excitation for system identification can be 
achieved by choosing a high energy 
excitation signal with wide flat spectrum. 
On the other hand, the system limitations 
(such as hardware limits, loads, etc.) 
necessitate the use of low-energy, narrow 
bandwidth excitation. The goal is to design 



an excitation signal in such a way, that, 
(a), the signals remain within the hardware 
limits, (b) the additional loads are as small 
as possible, and (c), it still allows the 
identification of accurate models. 

For the considered wind turbine, the 
excitation signals rθ and rg have been 
designed in such a way, that no 
unacceptable loads are induced, the 
excited pitch demand has acceptable 
speed and acceleration, and the electric 
power remains within acceptable limits. To 
this end, 

� the pitch excitation signal rθ is 
designed as a pseudo-random binary 
signal (PRBS) with amplitude of 0.5 
degrees, filtered with a 31st order low-
pass FIR filter with cutoff frequency of 
1 Hz, and an elliptic bandstop filter 
with 20 dB reduction, 1 dB ripple, and 
stop-band of 30% around the 
expected first tower frequency (0.32 
Hz). In this way the pitch excitation 
does not excite the region around the 
expected first tower frequency, as well 
as frequencies above 1 Hz.  

� the generator torque excitation signal 
is also designed as PRBS signal, but 
uncorrelated with the one used for 
pitch excitation, and with an amplitude 
of 483.8 Nm (3% of the rated torque of 
16.128 kNm), filtered with a 31st order 
lowpass FIR filter with cutoff frequency 
of 2 Hz, so that the excitation is 
concentrated in the frequency region 
up to 2 Hz. 

Simulations made with an aerolastic code 
have revealed that these excitations 
introduce significant increment in loads. 

2.1.2. Direct method for closed-loop 
identification 

In the direct method [5], a so-called 
prediction error model identification is 
applied to the data, collected while the 
wind turbine operates in closed-loop. The 
starting point of the method is the 
selection of a suitable model structure. For 
wind turbine applications, a simple auto-
regressive-with-exogenous-input (ARX) 
model proves to be sufficient. The ARX 
model has the following form 

)()().()().( kekupBkypA +=  (1) 

where  is a generalized output 

vector, is the input vector, 

is some unknown and 
immeasurable generalized disturbance 
signal representing the influence of the 
wind on the output measurements, k is the 
moment of time, and  and 

are matrix polynomials 
dependent on the unknown parameter P: 
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The goal is to estimate the model 
parameters p given input/output data 
{ }Nkkyku 1)(),( = . This is achieved in the 
following way. Given the ARX model 
structure, the one step ahead predictor for 
the output vector is formed 
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where vec(M) is the “vectorization” 
operator which stacks the columns of a 
matrix into one vector. This predictor 
model is used for constructing the 
prediction error 

)()()(ˆ)()( kPkykykyk ϕε −=−=   (2) 

To estimate the unknown parameter 
matrix P, the following prediction error 
criterion is minimized with respect to P 
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An analytical expression can be obtained 
for the parameter matrix P that minimizes 
the prediction error criterion by using the 
fact that for given matrices of appropriate 
dimensions, the following expression holds 
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The identified ARX model is then 
parameterized by this optimal parameter 
matrix P. It can be theoretically shown that 
the identified model is unbiased under 
reasonable assumptions [5]. 

2.1.3. Modal parameters estimation 

Once a model of the wind turbine is 
identified, there are different ways to 
extract modal parameters, such as the first 
tower and drive-train frequency and 
damping. One way to do that is by 
performing model reduction on the 
identified mode to reduce the model order, 
such that there is only one mode in a 
specified interval of interest where the 
frequency is expected to lie. For the 
considered wind turbine in this paper, this 
interval is chosen as [0.25,0.40] Hz for the 
tower, and [0.7,1] Hz for the drive train. 
The retained mode is the mode with the 
largest participation factor. The frequency 
and damping of this mode of the reduced 
system are then selected. 

2.1.4. Model validation methods 

Model validation is the process of deciding 
whether an identified model is reliable and 
useful for the purposes for which it has 
been created.  

The following model validation methods 
have been used to check the accuracy of 
the identified model: 

� Variance-accounted-for (VAF): this is 
a model validation index often used 
with subspace identification methods. 
Given the measured output y(k) and 
the output predicted by the one step 
ahead predictor , the VAF 
criterion is defied as 
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where yσ  is the variance of the signal 

y(k), and εσ  - the variance of the 
prediction error ε . It is expressed in 
percentage. A VAF above the 95% is 
usually considered to represent a very 
accurate model. 

� Prediction error cost (PEC): this is the 
value of the prediction error cost 

function, defined above. The smaller 
the value, the better the model 
accuracy. 

� Auto-correlation index ( ): when a 
consistent model estimate is made, 
the prediction error 

ε
ixR

ε  should be a 
white process, so that its auto-
correlation function  should be 
small for non-zero

)(τεR
τ , whereτ  denotes 

the discrete time step. For a given 
confidence level α  (e.g. %99=α ), 
a bound  can be derived 
such that for an accurate model the 
inequality 
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hold for all 1≥τ . The index is 
then computed as the square sum of 
the distance between each value of 
the correlation function  and the 

bound , where only the 
values outside the bound are used. 
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� Cross-correlation index ( ): in the 
closed-loop situation the prediction 
error will be correlated with future 
values of the input, but should be 
uncorrelated with past inputs when the 
model is consistent. The cross-
correlation function  should 
then be limited in absolute value for 

u
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1≥τ . The index  is computed 

similarly to . 
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It is important to point out that the data set 
that is used for validating the models 
should be different from the data used for 
obtaining the model, as otherwise wrong 
conclusions could be drawn. When the 
data length is short, a rule of thumb is to 
use two thirds of the data for identification, 
and the remaining one third for validation. 

2.2 Operational Modal Analysis 
The ability to obtain modal characteristics 
of the big structures and particularly wind 
turbines played an important role in the 
establishment and further development of 
operational modal analysis (OMA). There 
are two significant advantages of OMA 
when one considers its application to wind 
turbine. First of all, OMA does not require 
the knowledge of the excitation forces; 
instead it applies the assumption that the 
forces are uncorrelated, distributed over 



the entire structure and have flat 
broadband spectra. Secondly, since the 
tested structure is in its typical operational 
regime, all boundary conditions and the 
load levels are correctly reproduced: these 
conditions are very difficult to fulfill in the 
laboratory tests. This especially important 
for the aeroelastic damping estimation that 
varies with wind speed, wind direction, 
rotor speed and the blade pitch. 

The following expression relates the 
(linear) response of the structure to the 
excitation forces: 

)()()( ωωω fHx = , (6) 

where x(ω) is the vector of the response 
spectra, f(ω) is the vector of the excitation 
spectra and H(ω) is the frequency 
response functions (FRF) matrix. From 
modal analysis theory, it is known that 
FRF matrix contains all necessary 
information to extract modal parameters. 
Applying simple algebra one can obtain 

)()()()( ωωωω HHGHG ffxx = , (7) 

where Gxx(ω)  is the response cross-
spectra matrix and Gff(ω) is excitation 
cross-spectra matrix. (.)H stands for matrix 
Hermitian (conjugate transpose). 

Assuming the forces are uncorrelated, 
distributed over the structure and having 
flat broadband spectrum, its cross-
spectrum matrix becomes IGff ∝)(ω and 

)()()( ωωω HHHGxx ∝ . (8) 

This proves that, if the excitation 
assumptions fulfilled, the response cross-
spectrum matrix contains the full 
information required to obtain (un-scaled) 
modal model of the system. 

Excitation due to wind turbulence fulfills 
the abovementioned assumptions, which 
makes the application of OMA to standstill 
wind turbine a straightforward task. Paper 
[11] proves the feasibility of the method. 
However, the application of OMA to 
operational wind turbines is not simple. It 
is being considered in the next sections.  

2.2.1. Violation of the Time invariance 
assumption 

One of the fundamental assumptions 
behind any experimental modal analysis 

techniques is that the structure under test 
must not change during the test (so-called 
structure invariance). It is not the case for 
operational wind turbines: the rotation of 
the rotor must be somehow taken into 
account.  

The effect of rotor rotation manifests itself 
in the equation of motion: the mass, 
stiffness and gyroscopic force matrices 
become time-dependent. Formulating and 
solving the eigenvalue problem for this 
case lead to time-dependent eigenvalues 
and eigenvectors which become 
meaningless as modal parameters. 
Fortunately, so-called Coleman coordinate 
transformation (also known as multi-blade 
coordinate transformation) allows one to 
eliminate time dependency of the system 
matrices, thus converting the original time-
varying eigenvalue problem to a time-
invariant one. The modal parameters: 
modal frequencies, damping and mode 
shapes are then obtained by solving the 
corresponding eigenvalue problem.  

Study [12] extends this approach to 
experimental modal analysis. Forward 
Coleman transformation is applied to the 
data measured on the wind turbine blades, 
which is then combined with responses 
measured on the tower. The OMA 
methods are then applied to the 
transformed data, resulting in modal 
frequencies, damping and mode shapes. 
Backward Coleman transformation is 
finally employed for the mode shapes for 
their visualization. 

2.2.2. Violation of the excitation 
assumptions  

Analyzing interaction between wind 
turbulence and rotating blades [13], it is 
possible to show that the aerodynamic 
forces do not fulfill OMA assumptions: first 
of all the forces acting at different parts of 
the blades are correlated around 
fundamental frequency and its harmonics. 
Secondly the forces have periodic nature 
which manifests itself by peaks on force 
frequency spectra. The peaks are located 
at the fundamental frequency and its 
harmonics and have “thick tails” which 
narrows the regions where OMA 
assumptions are valid.  



In [12] a careful experiment planning is 
suggested as a tool to avoid the frequency 
regions where OMA assumptions are not 
fulfilled. 
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3 Results 
3.1  Experimental Modal Analysis 
Results  
Time domain closed-loop system 
identification methods (CLID) are applied 
to both simulated data, used to verify 
loads and to check identification 
methodologies, and measurement data 
from an Ecotècnia 100 wind turbine using 
PRBS signals as defined in section 2.1.1.  

Figure 3: PRBS excitation signal on 
generator torque. 

Figure 2 and 3 show the PRBS excitation 
signals added to the collective pitch and 
generator torque demand following the 
scheme presented in Figure 1. 

 
As explained in section 2, Closed-loop 
identification techniques are used to 
identify open loop models. Given the 
identified models, the corresponding 
frequency and damping of the first tower 
fore-aft and sidewards mode and the first 
drive train mode of the open-loop wind 
turbine can be computed at different wind 
speeds. Time and frequency validation 
methods are used to evaluate each 
method. 
 
As first step, closed-loop identification 
techniques are applied to (excited) 
input/output data from aeroelastic 
simulations. Simulations show that no 
significant loads were induced on the 
turbine, the excited pitch demand had 
acceptable speed and acceleration, and 

the electric power remained within 
acceptable limits.  
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As second step, studies on the closed-
loop identification methods are carried out 
using simulation data. Since information 
about the controller and the exact 
excitation signals used (rө and rg from 
Figure 1) is not given, the Direct, SSARX 
and PARSIM demonstrate to be the most 
promising methods for wind turbine 
applications.  
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3.1.1 The measurement 
campaign 

The same closed-loop identification 
techniques are applied using real (excited) 
input/output data collected from 
measurements on Alstom ECO 100 3MW 
wind turbine. The measurement campaign 
was performed at below rated wind 
speeds varying between 4 and 8m/s. The 
control inputs, collective pitch demand and 
generator torque demand, have been 
simultaneously excited with the PRBS 
signals s in order to make the identification 
of the transfer functions from these inputs 
to the outputs generator speed and tower 
top fore-aft and sidewards velocities 
possible. The input/output measurement 
data collected is summarized in the 
following table: 

frequency [Hz] time [s] time [s]

Figure 2.: PRBS excitation signal on
collective pitch. 

 
 
 
 
 
 
 



Generator speed Ω rpm 

Tower top fore-aft acceleration  fav& m/s2 

Tower  

top fore-aft acceleration  sdv& m/s2 

Excited blade pitch angle demand ө deg 

Excited blade pitch angle demand Tg Nm 

Wind speed at nacelle Vnac m/s Lin. Mod @ 5m/s

Table 1.: Signals stored from the real wind 
turbine 
 
Experience shows that working with tower 
top velocities improves the quality of the 
identified models around the first tower 
modes. Hence, for the estimation of the 
tower modes, the outputs and are 
integrated to velocities vnod and vnay. 

fav& sdv&

 
Four measurement time series are 
available, each taken during partial load 
operation. Due to the fact that each of 
these four measurements cases contains 
some irrelevant information from the 
identification point of view, they haven 
been concatenated as indicated in the 
following table. 

 
As can be seen from the Table 2, Test 1 
and 2 have the same mean wind speed. 
Hence, Test 1 data can be used for model 
identification, while Test 2 can be used as 
validation data at 4.5m/s. The same hold 
for Test 3 and 4, where mean wind speed 
is 6.3m/s. 
 

3.1.2 Tower First fore-aft mode 
identification 

In order to estimate the tower first fore aft 
modal frequency and damping, the 
transfer function from pitch angle demand 
ө to the tower top fore-aft velocity vnod,.is 
identified. For identification the test set 
Test 1 and test 3 are used.  
Figure 4 compare the bode plots of the 
identified models at 4.5m/s with the 
linearized model (indicated as Lin. mod.) 
at 5m/s. 

 
From Figure 4, it can be observed that the 
identified models are very well comparable 
to the l models around the first tower 
frequency. 
 
Given the identified models, the 
corresponding frequency and damping are 
computed as explained in section 2.1.4.  
 
The modal frequencies and logarithmic 
decrements, computed from the identified 
modes are compared to those obtained 
from the linearized models at 5 and 7m/s.  
 
Wind [m/s] Method Freq [Hz] Log.decr [%]
5 
4.5 
4.5 
4.5 

Lin. Mod. 
Direct 
SSARX 
PARSIM 

0.3133 
0.3195 
0.3202 
0.3204 

27.45 
36.8 
27.41 
21.38 

7 
6.3 
6.3 
6.3 

Lin. mod. 
Direct 
SSARX 
PARSIM 

0.3161 
0.3228 
0.3222 
0.3278 

33.49 
35.05 
36.85 
29.55 

Table 3.: Frequency and logarithmic 
decrement of the tower first fore-aft mode 
 
The validation results, based on sets Test 
2 and Test 4, are summarized in the 
following table. 
 

Wind 
[m/s] Method VAF PEC 

(x10-5) 
ε
ixR  u

ixR
ε (x10-2)

4.5 
4.5 
4.5 

Direct 
SSARX 
PARSIM 

97.43 
97.26 
95.99 

3.592 
3.706 
4.487 

0.7129 
2.744 
2.517 

1.2 
1.344 
6.346 

6.3 
6.3 
6.3 

Direct 
SSARX 
PARSIM 

97.36 
97.36 
97.18 

4.684 
4.68 
4.841 

0.7638 
0.6674 
0.8528 

3.59 
3.843 
4.164 

Table 4.: Validation results for identified 
models of the tower first fore aft. 
 
As can be seen from Table 4, the 
validation results indicate that all models 
have comparable high accuracy. 
 

Table 2.: Measurement time series from 
the real wind turbine  

Test case Data 
length 

Mean 
(Vnac) Purpose 

Test 1 1459s 4.5115m/s ident.4.5m/s 
Test 2 1130s 4.7783m/s Valid.4.5m/s 
Test 3 1651s 6.1169m/s Ident.6.3m/s 
Test 4 983s 6.5285m/s Valid.6.3m/s 

Figure 4.: Bode plot of the identified tower 
fore-aft models at mean wind speed of 
4.5m/s and linearized model at 5m/s 



3.1.3 Tower First side to side 
mode identification 

Similarly, to estimate the tower first side to 
side modal frequency and damping, the 
transfer function from generator torque 
demand Tg to the tower top side to side 
velocity vnay is identified. 
Next figure shows the comparison of the 
bode plots of the identified models at 

 

6.3m/s with linearized model at 7m/s.   

 can be observed the good overlap 

Wind [m/s] Method Freq [Hz] Log.decr [%] 

It
between the identified models and the 
linearized model. Those similarities are 
quantified in terms of frequency and 
logarithmic decrement in the following 
table. 
 

5 
4.5 
4.5 
4.5 

Lin. mod. 
Direct 

 SSARX
PARSIM 

0.3115 
0.3151 
0.3156 
0.3147 

5.426 
3.037 
2.549 
4.763 

7 
6.3 
6.3 
6.3 

Lin. mod. 
Direct 

 SSARX
PARSIM 

0.3115 
0.3148 
0.3143 
0.3153 

5.556 
5.883 
2.17 

3.861 
Table 5.: Frequen nd lo mic 

he time domain validation results are 

Win PEC 

cy a garith
decrement of the tower first sidewards 
mode 
 
T
shown in Table 6.   
d Method VAF [m/s] (x10-5) 

ε
ixR  u

ixR
ε  

4.5 
4.5 
4.5 

Direct 
SSARX 

1.118 8.9x10

PARSIM 

99.99 
99.99 
99.99 

4.487
 4.506 

4.03 
1.174 
1.467 

-3

0 
0.136 

6.3 
6.3 
6.3 

Direct 
 SSARX

PARSIM 

99.99 
99.99 
99.99 

5.514  
5.399  
6.557  

0.8991 

0.1165 
0.8085 
0.9674 

0 
0 

Table 6.: Validation lt d   resu s for i entified
models of the tower first sidewards mode 

3.1.4 First drive train mode 
Finally, the first drive train frequency and 
damping are estimated from the identified 
transfer function from the generator torque 
demand Tg to the generator speed Ω.  
Next figure shows the Bode plots of the 
transfer functions identified with the Direct, 
SSARX and PARSIM method, compared 
to the linear model obtained from the 
aerolastic code. 

Lin. Mod @ 7m/s
Lin. Mod @ 7m/s

 

Figure 6.: Bode plot of the identified first 
drive train models at mean wind speed of 
6.3m/s 

Figure 5.: Bode plot of the identified tower
side to side models at mean wind speed of
6.3m/s 

As can be observed in the figure above, 
the identified drive-train frequency is about 
10% higher than the linearized model.  
 

Wind [m/s] Method Freq [Hz] Log.decr [%]
5 

4.5 
4.5 
4.5 

Lin. mod. 
Direct 
SSARX 
PARSIM 

0.7777 
0.8773 
0.878 
0.8261 

1.304 
14.12 
16.61 
6.877 

7 
6.3 
6.3 
6.3 

Lin. mod. 
Direct 
SSARX 
PARSIM 

0.778 
0.8496 
0.8534 
0.8305 

1.642 
1.499 
1.822 
3.857 

Table 7.: Frequency and logarithmic 
decrement of the first drive train mode. 
 
Comparing the linearized model obtained 
with the aerolastic code with the identified 
model using PARSIM method, better 
estimation is obtained. In any case, the 
drive train frequency is not well present in 
the input-output data.  
In contrast with the frequency domain 
results showed in Table 7, the Time 
domain validation methods shows 
excellent results. 

Wind 
[m/s] Method VAF PEC 

(x10-3) 
ε
ixR  u

ixR
ε  

4.5 
4.5 
4.5 

Direct 
SSARX 
PARSIM 

99.98 
99.98 
99.96 

6.797 
6.731 
10.04 

0.0707 
0.0508 
0.8471 

0.7321 
0.6704 
0.856 

6.3 
6.3 
6.3 

Direct 
SSARX 
PARSIM 

100 
100 
100 

5.97 
5.962 
6.908 

0.24 
0.181 
0.13 

0.0996 
0.2558 
0.4208 

Table 8.: Validation results for identified 
models of the first drive train mode  



A justification for those differences could 
be either that the drive-train frequency is 
not well represented in the data due to the 
presence of a drive-train damping filter 
existing in the control or that in reality, the 
drive train is less flexible than in the 
lineraized model obtained from the 
aerolastic code.  
 
Further experiments needs to be 
performed to clarify the exact reason of 
this divergence. 
 

3.2  Operational Modal Analysis 
Results 
In order to ensure feasibility of the 
application of OMA to operational wind 
turbine, a series of numerical experiments 
were conducted. Using commercial 
aeroelastic software, the acceleration time 
histories for the following locations were 
synthesized: 

- points on the different blade radii; 

- hub; 

- points on the different heights of the 
tower. 

The data was accompanied with the time 
histories for azimuth and pitch angles, 
rotor RPM, wind speed and direction, etc.  

The acceleration data from the blades 
were subjected to Coleman transformation 

and then used as the input to commercial 
OMA software, where the modal 
parameters were extracted. Figure 7 
presents the obtained modal frequency for 
the rotor-related modes as a function of 
the wind speed (Campbell diagram). Note, 
sometimes it was not possible to extract 
some of the modes for specific wind 
speeds. Confidence intervals (shown as 
vertical line segments) were found to be a 
useful tool for judging applicability of OMA 
to specific operational conditions (wind 
speed/pitch/rotor RPM). Figure 8 shows 
the Campbell diagram for modal damping 
(in-plane and out-of-plane rotor-related 
modes). Similar graphs were obtained for 
the damping, and for modal parameters of 
the tower-related modes.  
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Figure 7.: Modal frequency as a function of wind speed. Letters in the mode name: “O” – out-
of-plane, “I” – inplane, “C” -- collective, “W” – whirling; “bw” – backward; “fw” – forward; “DT” – 

drive-train mode; 1p, 2p, 3p – fundamental frequency and its first two harmonics. 
 

Using backward Coleman transformation, 
mode shapes were calculated and 
visualized (Figure 9); this visualization 
played an important role in mode 
identification. 

Work is currently ongoing to apply OMA 
on a real wind turbine. 



4 Conclusions 
Theory and results of two different system 
identification methods for estimating modal 
parameters of a wind turbine in operation 
have been presented. 

In the first method, additional excitation on 
the controllable inputs of the turbine (pitch 
and/or generator) is needed. These 
signals are designed in such a way that 
accurate models are identified and no 
unacceptable turbine loads occur. In order 
to validate the identified open-loop 
models, both time-domain validation 
methods and frequency-domain 
comparisons to linearized aeroelastic 
models are made. The results show good 
match in frequency and damping ratio for 
a frequency range up to 1Hz. The time 
domain validation indexes indicate in all 
cases good model quality. Although no  
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Figure 8. Modal damping as a function of wind speed. Top: in-plane modes; Bottom: out-of-plane modes 
 

 
 

Figure 9.: Visualization of mode shape  

frequency-domain validation is possible 
due to the lack of information about the  all 
excitation signals, Frequency domain 
comparison can be performed using 
linearized models at mean wind speeds of 
5 and 7m/s. This comparison shows very 
good overlap around the first tower fore-aft 
and side to side frequencies, but some 
discrepancies are found at first drive train 
frequencies. Further experiments need to 
be performed to clarify the exact reason of 
this divergence by either increasing the 
generator torque excitation amplitude or 
by de-activating the drive-train filter in the 
controller. 

In the second method, only output 
measurements were used. A feasibility 
study has been performed on simulation 
data in order to investigate the possibility 
of using OMA to identify the dynamic 
characteristics of a wind turbine under 
operation. OMA techniques are applied 
using time domain response data obtained 
from simulations carried out with an 
aerolastic code. Response data is 
obtained at the locations coinciding (or 
located close to) future real wind turbine 
measurement locations. Results presented 
as Campbell diagrams show promising 
applicability of OMA techniques in an 
operating wind turbine. 

Major differences between both methods 
are mainly the frequency range that can 
be identified, the equipment needed for 
implementation and the modal information 
extracted. The use of PRBS methods, 
allows extracting the transfer functions 
directly, which are used in control design. 
However, limitations on the actuators 
bound the identification frequency range. 



On the other side, OMA techniques allow 
to extract the mode shapes. However, 
dedicated equipment is needed to extract 
the relevant data. 

At last, using those methods, the modal 
parameters estimated can be used for 
either improving the existing control loops, 
for achieving additional functionality by 
designing new control strategies for 
fatigue reduction or for updating the 
existing FEM and multibody models. 
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