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ABSTRACT 

 Often structural dynamic systems cannot be modeled with constant stiffness, mass and 

damping.  For example, wind turbines, helicopters, turbomachinery, and a variety of nonlinear 

structures linearized about a periodic limit cycle all may contain time-periodic terms in their 

equations of motion even if the equations are still linear.  Linear time periodic systems such as 

these may exhibit parametric resonance, where the damping in the system is negative at certain 

rotational frequencies, leading to catastrophic failure.  The authors previously presented an 

extension of operational modal analysis to linear time periodic systems.  The previous work 

introduced a new type of spectrum, dubbed the harmonic autospectrum, discussed how to 

interpret the spectra, and showed how the simple peak picking method could be used to extract 

an estimate for the linear time-periodic model of a system from measurements.  This paper builds 

on that work, revealing how more advanced operational modal analysis methods can be extended 

to linear time-periodic systems.  Curve fitting approaches for both the harmonic autospectra and 

the positive harmonic spectra are applied to simulated measurements from two time-periodic 

systems, and the OMA based Enhanced Mode Indicator Function (EMIF) method is used to 

extract the modal parameters from the enhanced positive power spectrum.  These extensions are 

found to provide more accurate estimates of the damping of the modes of the time-periodic 

systems, and to provide good estimates of the mode shapes of the systems so long as the 

measurements stand out clearly above the noise.  Application of the complex mode indicator 

function an the EMIF algorithm makes it possible to separate the forward and backward whirling 

modes of a wind turbine, which is difficult since each of these modes is manifest at several 

harmonics due to the anisotropy in the tower supporting the turbine. 
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1. INTRODUCTION 

 Many important structural systems require time-varying terms in their equations of 

motion.  For example, the stiffness matrix of a two-bladed wind turbine [1] or any wind turbine 

with non-identical blades [2] depends on the angle of the rotor, and if the rotor speed is constant 

the equations of motion become linear time periodic (LTP).  Linear time periodic equations of 

motion are commonly used to model other kinds of rotating machinery [3], for studying the 

stability of various classes of nonlinear systems linearized about a periodic limit cycle , and they 

have also been used to accelerate laser Doppler vibrometry measurements using the Continuous 

Scan (CSLDV) approach [4]. 

 In a prior work, the authors presented a operational modal analysis (OMA) methodology 

for linear time periodic systems and validated it using simulated measurements from a Mathieu 

oscillator and a rotating wind turbine [5, 6].  Measurements from the latter were simulated using 

HAWC2 [7], a high fidelity simulation code that includes the random loading that the wind 

applies to the rotating turbine.  The LTP-OMA methodology was subsequently applied to 

continuous scan laser vibrometry measurements from a few different structures [8], revealing 

that the methodology is capable of extracting detailed mode shapes from real experimental 

measurements. 

 The authors’ original work [5, 6] presented the LTP-OMA methodology and focused on 

interpreting spectral measurements from the time-periodic systems.  The simple peak-picking 

method was used to extract time-periodic models of the systems from the autospectrum of the 

output.  Several more advanced techniques exist for interrogating and curve fitting operational 

modal analysis measurements from linear time invariant systems.  This work shows how some of 

those methods can be applied to measurements from linear time periodic systems.  Methods for 

curve fitting the spectra to a modal model, both the full harmonic power spectra as well as the 

positive harmonic spectra, and the two methods are compared.  The OMA based Enhanced Mode 

Indicator Function (EMIF) method [9], an extension to the complex mode indicator function 

(CMIF) is also applied to the measurements and its performance is evaluated. 

 The following section reviews the LTP-OMA identification methodology and shows how 

the advanced OMA methods can be adapted to measurements from the time periodic system.  In 

Section  3 the methods are applied to simulated measurements from two linear time periodic 

systems, a Mathieu oscillator and a 5MW wind turbine in operation.  Section  4 presents the 

conclusions. 

2. THEORY 

 The state space equations of motion of a linear time-periodic (LTP) system can be written 

as follows, 

 
( ) ( )

( ) ( )
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where A(t+TA) = A(t) and the other matrices are periodic as well with the same period.  The 

fundamental frequency of the time-periodic system is denoted ωA = 2π/TA.  The state transition 

matrix (STM) [10] gives the free response of such a system at time t via the relationship, 

 0 0( ) ( , ) ( )x t t t x t= Φ . (2) 

One can also write the forced response of the system in terms of the STM as follows. 
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In the absence of degenerate roots, the state transition matrix of an LTP system can be 

represented as a modal sum [11, 12], 
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where λr is the rth Floquet exponent of the state transition matrix, ψr is the rth time-periodic 

mode vector of the STM and Lr is the rth column of  [ ]1 2( ) ( ) ( )
T

t t tψ ψ
−

Ψ = L .  The Floquet 

exponents of an LTP system are analogous to the eigenvalues of a Linear Time Invariant (LTI) 

system, which can be written in terms of the damping ratio ζr and natural frequency ωr as 
2i 1r r r r rλ ζ ω ω ζ= − + −  for an underdamped mode. 

In a prior work [5, 6], the authors used this equation to derive an expression for the 

output auto spectrum of a linear time periodic system in terms of the modal parameters of the 

state transition matrix.  In order to achieve this, first an exponentially modulated version of the 

output signal is developed as follows, 
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is simply the Fourier transform of y(t), shifted in frequency by nωA where n is an integer.  Then, 

the harmonic autospectrum ( )( ) E ( ) ( )H

yyS ω ω ω= Y Y  is given by the following equation when 

D(t) = 0. 
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The matrix W(ω) is a function of the input spectrum and is assumed to be reasonably flat.  The 

dominant terms in the summation above are those for which i ( i )r Alω λ ω− −  and 

i ( i )s Akω λ ω− −  are both minimum at the same frequency.  If the sidebands for mode r do not 

overlap with those for mode s, then the largest terms occur when r=s and l=k and the expression 

becomes the following. 
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This is a summation of terms with ( )( )i i
H

ω λ ω λ− −  in the denominator, or squared modal 

contributions, so the harmonic autospectrum has the same mathematical form as the output 

autospectrum of a multi-output linear time invariant system.  However, there are a few important 

differences.  First, the expression contains a summation over both the modes, whose eigenvalues 

are λr, and also a summation over the harmonics of ωA using the integer index l.  As a result, the 

autospectrum of the LTP system will have peaks near each natural frequency, ωr, and also at the 

frequencies ωr ± lωA for any integer l.  Second, the mode vectors ,r lC  are actually the Fourier 

coefficients of the time-varying mode shapes of the LTP system as discussed in [5, 6].  These 

vectors could have infinite dimension, but in practice some finite number of terms Np is 
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sufficient to accurately describe the mode shape.  Hence, if the system as No outputs, then the 

vectors ,r lC  have length No×Np, where Np is the number of modulations used to form Y(ω) in eq. 

(5).  Many different vectors ,r lC  can be identified, but each contains the same Fourier 

coefficients of the observed mode vectors shifted by l.  Specifically, if the time varying mode 

shape at the output is 

 
,( ) ( ) Ajn t

r r n

n

C t t C e
ωψ

∞

=−∞

= ∑  (9) 

then ,r lC  is given by. 
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Additional details of this theory can be found in [5, 6]. 

 In a previous work [5], the authors used the peak picking method together with the 

expressions developed above to estimate the natural frequencies and the mode vectors ,r lC  of the 

LTP system.  This work explores other more advanced methods, including curve fitting and 

advance spatial domain tools, such as CMIF, based methods for the purpose of modal parameter 

estimation of LTP systems. 

2.1. Curve fitting autospectra 

Since the harmonic autospectrum, (or equivalently harmonic power spectral density, here 

denoted HPSD) of an LTP system was shown in eq. (8) to have same mathematical form as an 

LTI system (i.e. it is a summation of modal contributions squared), it can be put into a 

convenient form for curve fitting.  Assuming underdamped modes λr+(N/2) = λr
*, where ()* 

denotes complex conjugate, and contribution due to each underdamped mode can be collected 

and written as follows after a partial fraction expansion. 
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Alternatively, this could be written as a matrix polynomial model with complex coefficients in 

even powers of (iω).  Various algorithms can fit a model of this form to a set of measurements.  

For this work the Algorithm of Mode Isolation (AMI) [13] was modified to fit a model of the 

form described above and used to extract modes from the harmonic autospectrum. 

2.2. Positive Power Spectra 

The power spectrum of a signal possesses four quadrant symmetry, and hence it includes 

information of system poles twice. This can also be seen in eq. (11), which contains each of the 

poles, once having positive damping and other having negative damping (note that same is true 

for the complex conjugate pole as well). These extra negatively damped poles can lead to 

difficulty when estimating the modal parameters of the system. 

This problem can be dealt with by considering positive power spectra instead of power 

spectra.  The inverse FFT of the power spectrum is found, and then a rectangular window is used 

in the time domain to eliminate the negatively damped modes by retaining only the decaying part 

of the impulse response function.  Thus PPS functions have the same form as a typical frequency 

response function (FRF) has, making them more suitable for modal parameter estimation. The 

process of estimating PPS functions from power spectra is described in detail in [9]. 
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In this work, the same approach is used to convert a set of harmonic power spectra into 

positive harmonic power spectra.  Once this has been done, the negatively damped poles are no 

longer present and the positive harmonic power spectrum (pHPSD or ( )yyS ω+ ) can be written in 

the following mathematical form. 
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The pHSPD has the usual magnitude and phase relationship as a frequency response function, so 

it can often be more accurately curve fit.  In the following the AMI algorithm in [13, 14] was 

used to fit a model of the form above to the power spectra in order to construct the time periodic 

modes of the system.  Since the pHSPD has the same mathematical form as a frequency response 

function, no modification to the AMI algorithm was necessary when doing this. 

2.3. EMIF based Method 

The enhanced mode indicator function (EMIF) method was proposed for operational modal 

analysis in [9].  Here that approach is adapted to parameter estimation on harmonic power 

spectral measurements (HPSD).  OMA-EMIF method works on positive power spectra, which 

are defined in section 2.2. One begins by choosing a frequency range of interest and also the 

number of modes to be identified in the chosen frequency range.  The number of modes to be 

identified is typically equal to the number of dominant peaks in the CMIF plot over the chosen 

frequency range.  The positive power spectra in the chosen frequency range are then assembled 

in an augmented matrix form as shown below, where Ntot is the number of responses and Nf is 

number of frequency lines in chosen frequency range.  For an LTP system there are Np responses 

for each measurement point, so Ntot=NoNp. 
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 (13) 

 

This matrix now has all of the spatial information contained in the autospectrum, over all of the 

frequency lines that have been included in [A0].  A singular value decomposition of this 

augmented matrix yields left and right singular vectors along with the singular values.  

Supposing that Nb modes are to be indentified from the measurements, the first Nb dominant left 

singular vectors are chosen to create an enhanced positive power spectra in the chosen frequency 

range of interest. This is shown in below, where [U] is a matrix of left singular vectors of the 

augmented matrix. 

( ) ( )( ) [ ]
b tot

b tot tot tot

T

N NN N N N
ePPS S U Sω ω ω+

×× ×
  = =        (14) 

 

The ePPS functions can now be used to identify the Nb modes by applying a single degree-of-

freedom unified matrix polynomial [15] algorithm to each of the peaks in the ePPS.  The modal 

vectors obtained from ePPS functions are in a condensed set of coordinates and can be converted 

back into physical domain by pre-multiplying the obtained modal vectors with [ ]
b totN N

U
×

. 
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3. Simulated Application Examples 

3.1. Mathieu Oscillator 

This section applies the proposed methodologies to two different systems.  The first is the simple 

Mathieu oscillator, a spring mass-damper system with time-periodic spring stiffness.  The 

equation of motion for the oscillator is  

 ( )( )
m

tu
ytyy A

)(
cos2 2

1

2

00 =+++ ωωωζω &&&  (15) 

with mc /2 0 =ζω , mk /0

2

0 =ω , mk /1

2

1 =ω , and input u(t).  The parameters used in this work 

are the following, m=1, k0=1, k1=0.4, and ωA=0.8 rad/s, which are the same as those used in [5, 

6]. 

 

3.1.1. Curve Fitting HPSD 

 The response of the Mathieu oscillator to a broadband random input was simulated using 

time integration, and the harmonic autospectrum (HPSD) was then computed with p=2, so n = -

2…2 in eq. (6) so Np=5 and a 5x5 HPSD matrix was produced.  The primary column of this 

matrix (i.e. the (p+1)
th

 or 3
rd

 column in this case) contains all of the information needed to 

identify the parameters of the system, so only it will be considered in the curve fit.  The 

composite [13], or average, of this 5x1 matrix is shown in Figure 1 with a black line.  The 

composite of a curve fit is also shown as well as the difference between the two.  The curve fit 

can be seen to follow the measurements closely near each of the peaks in the spectrum, but the 

baseline level of the curve fit is too high so the highest frequency peak is almost obscured by the 

tails of the dominant modes.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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10
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Composite of Residual After Mode Isolation & Refinement

 

 

Data

Fit

Data-Fit

 

Figure 1:  Harmonic Autospectrum of Mathieu Oscillator response with: (black line) composite of 

actual autospectrum, (green dotted) curve fit to the HPSD and (red) composite of the difference 

between the curve fit and the measurements. 
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 The authors have seen this same phenomena occur when fitting conventional autospectra 

of structural systems.  For those systems the curve fitting routine seems to ascribe more 

complexity to the modes than is warranted.  Better results can sometimes be obtained if the curve 

fitting routine is forced to fit a real mode model to the measurements, but that is not possible for 

measurements from an LTP system since the HPSD must be fit to a complex mode model.  The 

authors also noted that the damping obtained for each of the modes seemed to be somewhat 

sensitive to the number of points around each peak that was used in the curve fit. 

3.1.2. Curve Fit to Positive HPSD (Syy
+
) 

 The positive power spectra of the measurements were formed as discussed in Section  2.2.  

Figure 2 shows a composite of the 5x1 positive power spectrum in the same format used in the 

previous figure, as well as a curve fit.  The positive power spectrum seems to be smoother than 

the full HSPD, and the fit agrees very well with the measurements.  The residual (red line) is 

small and seems to contain only noise, suggesting that the curve fit has extracted all of the 

meaningful information from the measurement.  The results of the curve fits shown in Figures 1 

and 2 are summarized in Table 1, which will be discussed later. 
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Data

Fit
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Im
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(
)}

 

Figure 2:  Positive Harmonic Autospectrum (Syy
+
) of Mathieu Oscillator response with: (black 

line) composite of actual autospectrum, (green dotted) curve fit to the HPSD and (red) composite 

of the difference between the curve fit and the measurements. 

3.1.3. Application of OMA-EMIF Method to HPSD 

 The OMA-EMIF method was also applied to the simulated measurements from the 

Mathieu oscillator.  In doing so, the full power spectrum matrix for p=2 was used (rather than the 

column used in the previous two subsections).  A CMIF plot was first created from the HPSD 

matrix, which is shown in Figure 3.  The CMIF plot is far more convenient to view than the 

individual elements of the harmonic power spectrum matrix, which were shown in [5, 6], yet it 

retains information regarding the mode shapes of the system that can be used to detect modes 

with close natural frequencies.  In this plot, the peak at 0.982 Hz is the Floquet exponent of the 
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system and other peaks of the same amplitude that appear in the plot are modulations of the 

Floquet exponent, λ+inωA, for n = -2,…2, where ωA=0.8 rad/s.  Other weaker peaks are also 

visible in the CMIF for other values of n. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

-6

10
-4

10
-2

10
0

10
2

10
4

CMIF of HPSD of Mathieu Oscillator Response

Freq (Hz)
 

Figure 3:  CMIF of the HPSD of the Mathieu oscillator response.  The individual curves 

correspond to different singular values of the HPSD matrix at each frequency.  

The EMIF methodology was then applied to the measurements, by creating the enhanced 

positive power spectrum and then fitting low-order modal models to them.  The modal paramters 

of each of the peaks were identified, but for brevity only the mode identified at the 0.982 Hz 

peak will be considered. 

 
3.1.4 Comparison of Numerical Results 

  Table 1 shows the result of parameter estimation using various methods. The column 

labeled “Peak Picking” shows the result obtained by peak picking, which was previously 

published in [6].    Each of the peaks in the HPSD, pHPSD and CMIF were fit by each method, 

and they all may contain useful information regarding the mode shapes and eigenvalues of the 

LTP system.  However, for brevity only the result obtained from the primary peak near 0.98 

rad/s is compared. 
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Fourier Coefficients of the Mathieu Oscillator Mode Shape 1,C n    
n 

Analytical Peak Picking  

Fit to Harmonic 

PSD 

Fit to Positive 

HPSD 

OMA-EMIF 

-2 0.067 0.0650 - 0.0090i 0.0667 + 0.00233i 0.0652 + 0.00095i 0.063 – 0.014i 

-1 -0.220 -0.220 + 0.0061i -0.217 -  0.00151i -0.219 - 0.00113i -0.219+0.009i 

0 1 1 1 1 1 

1 0.092 0.0906 + 0.0011i 0.0910 - 0.00126i 0.0902 - 0.00212i 0.094 + 0.001i 

2 0.00320 0.0028 - 0.0001i 0.00340 +0.00050i 0.00308 +0.00029i 0.003 + 0.0004i 

λλλλ  -0.0200 + 0.987i -0.0270 +0.986i -0.0169 +0.987i -0.0172 + 0.988i -0.0124 + 0.988i 

ωωωωn 0.987 0.986 0.987 0.988 0.988 

ζζζζ 0.0203 0.0274 0.0171 0.0174 0.0123 

Table 1:  Mode shape coefficients identified at the fundamental peak using various methods.  The 

analytical vector 1,0C  is shown in the first column. 

 The results obtained by each of these methods are quite similar.  The only large 

discrepancy between the methods occurs for the damping ratio, which is poorly estimated using 

the peak picking method as expected.  The results obtained using the HPSD and the positive 

HPSD seem to have similar quality, even though the curve fit on the positive power spectrum 

seemed to be far more satisfying.  The OMA-EMIF agrees well with the other two curve-fitting 

methods. 

 The result is somewhat surprising if the fit to one of the weak peaks is compared.  Table 

2 compares the Fourier coefficients obtained at the 2.6 rad/s peak in Figures 1 and 2.  This peak 

was very weakly represented in the measurements, and was seen to be almost buried in the 

residual in the HPSD curve fit in Figure 1.  The estimates of the Fourier coefficients produced by 

the peak picking method are up to four times larger than the true coefficients, but the curve 

fitting methods give results with even greater errors.  This anomaly is readily explained.  The 

measurements from which the coefficients 2, 3 and 4 were obtained were plotted (not shown 

here) and it was observed that none of those measurements showed any visual evidence of a 

mode near 2.6 rad/s.  The spurious values seen in the table seem to arise as the least squares 

procedure attempts to fit a mode to the shoulder of one of the more prominent peaks.  On the 

other hand, a weak peak was visible in the measurement from which the n=1 coefficient was 

estimated, but even there the peak picking method seems to have achieved a better estimate of 

the Fourier coefficient. 

 

Fourier Coefficients of the Mathieu Oscillator Mode Shape 1,C n  
n 

Analytical Peak Picking Fit Harmonic PSD Fit Positive HPSD 

0 1 1 1 1 

1 0.092 0.0918 + 0.00090i 0.0626 +   0.0246i -0.0701 +  0.00662i 

2 0.003197 0.0136 - 0.00054i -0.32764 +   0.055243i 0.940 +    0.184i 

3 0.000039 0.000824 - 0.000289i -0.0137 -   0.0133i -0.112 -   0.0409i 

4 -0.000015 0.000053 - 0.00021i -0.000688 + 0.00072i -0.0152 -  0.00348i 

λλλλ  -0.0200 + 2.587i - -0.0185 + 2.592i -0.0223 +     2.593i 

ωωωωn 2.587 2.588 2.592 2.593 

Table 2:  Mode shape coefficients identified at the 2.6 rad/s peak in the HPSD and pHPSD using 

various methods. 
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3.2. Simulated Measurements from a Wind Turbine 

 This section applies the proposed LTP system identification methods to a much more 

challenging problem, a 5MW wind turbine rotating at constant speed due to aerodynamic 

forcing.  Turbulence in the incoming wind provides a source of broadband random excitation.  

The system and conditions studied here are identical to those reported in the authors’ prior work 

[5, 6], where peak picking was used to identify the edgewise modes of the turbine.  In that work, 

some difficulty was reported in distinguishing the forward and backward whirling modes of the 

turbine since many of their harmonics overlap.  Here the advanced LTP system identification 

algorithms will be applied to that system in an effort to enhance the results.  The wind turbine is 

rotating at a constant rate of 0.201 Hz in these measurements, driven by a wind with logarithmic 

shear with 18 m/s velocity at hub height. 

 Measurement of the edgewise motion of each of the three blades was simulated, as well 

as lateral and fore-aft motion of the tip of the tower.  The harmonic autospectrum matrix was 

computed for these five measurements with n=-2…2.  The total measurement set is quite 

difficult to visualize, so two separate CMIFs were created, shown in Figures 4 and 5.  Figure 4 

shows a CMIF including the two measurement points on the tower and all of their harmonics.  

As with the results in the previous section, only the primary column of the HPSD matrix was 

used, so the CMIF is based on a 10x2 matrix.  The CMIF clearly shows the presence of the first 

two modes of the tower, both near 0.27 Hz.  The forward whirling mode of the rotor is also 

visible at 1.16 Hz, and there is a very small peak near 0.76 Hz, where the corresponding 

backward whirling mode should be.  A harmonic of the forward mode also seems to be visible 

near 1.36 Hz.  Finally, there is a large triangular shaped peak in the spectrum near the blade-pass 

frequency of 0.6 Hz.  This is due to the aerodynamic forcing function of the system and is not a 

mode of the structure, as discussed in [6, 16]. 
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Figure 4:  CMIF of the HPSD for tower motion of wind turbine.  
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Figure 5 shows the CMIF using the three edgewise blade measurements as references.  In 

this spectrum, contamination is clearly visible at the rotor speed and its harmonics: 0.2 Hz, 0.4 

Hz, 0.6 Hz and (diminished) at 0.8 Hz.  The dominant peaks in the spectrum are the edgewise 

modes of the turbine near 0.96 Hz. These are the same forward and backward whirling modes 

that were seen in Figure 4, but the blade measurements were taken in the rotating reference 

frame so those two modes appear at the same frequency in these measurements.  The second 

singular value seems to show a coherent peak at 0.96 Hz, indicating that two modes are present 

at this peak.  Each of these modes are expected to appear at modulations of this frequency: 0.96 

+ n0.201Hz as well.  Any modulations below 0.96 Hz would be obscured by the harmonics of 

the rotor frequency, but two harmonics are visible at 1.16 and 1.36 Hz.  However, only one 

singular vector is visible at each of those peaks, suggesting that one of the two modes is obscured 

by noise at those frequencies due to the non-ideal nature of the input spectrum. 

In order to quantify these modes, the OMA-EMIF algorithm was applied to the peaks at 

0.96 Hz and 1.36 Hz.   Two modes were identified at the former frequency and one at the latter 

with natural frequencies 0.9623, 0.9636, and 1.366 Hz.  The corresponding mode vectors are 

shown in Table 6.  The magnitude and phase (in degrees) of each Fourier coefficient is shown.  

The first mode (0.9323 Hz) shows significant harmonics at n=0 and n=2, the latter being about 6-

7% of the former in magnitude.  The other harmonics seem to be caused by noise in the 

measurements.  In contrast, the second mode (0.9636 Hz) only has significant Fourier 

coefficients for n=0; all of its other Fourier coefficients seem to be at the level of the noise.  The 

coefficients identified at 1.366 Hz are due to a modulation of one or both of the first two modes 

by twice the rotational frequency.  Their Fourier coefficients have been shifted (e.g. to account 

for l in eq. (10)) so that they can be compared with the other two modes.  The resulting 

harmonics agree very well with those for the first mode in both magnitude and phase.  This 

suggests that the mode identified at 1.366 Hz is merely a replicate of the 0.9323 Hz mode due to 

the modulation in eq. (7). 

These results agree very well with what would be expected for a turbine such as this.  The 

phases of the n=0 harmonics of the first mode decrease from blade 1 to 2 to 3, revealing that this 

is a forward whirling mode.  Its n=2 harmonics show phase angles that increase from blade 1 to 2 

to 3, indicating that the n=2 harmonics are a backward whirling component of this forward 

whirling mode.  This same behaviour was observed for a simulated turbine in [2] and arises due 

to the anisotropy of the tower.  The phases of the n=0 harmonic of the second mode reveal that 

this mode is a backward whirling mode.  None of the other harmonics for that mode show the 

expected phase relationship, so they are all most likely due to noise. 
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Figure 5:  CMIF of the HPSD for edgewise motion of the three blades of the wind turbine.  

 
0.9623 Hz, M1 0.9636 Hz, M2 1.366 Hz 

n Blade Mag Phs (
o
) Mag Phs (

o
) Mag Phs (

o
) 

-2 B1 0.023 -174 0.123 -158 - - 

-2 B2 0.024 -179 0.142 -165 - - 

-2 B3 0.024 -175 0.116 -171 - - 

-1 B1 0.017 -4 0.040 19 - - 

-1 B2 0.006 139 0.036 110 - - 

-1 B3 0.018 -78 0.028 -88 - - 

0 B1 1 0 1 0 1 0 

0 B2 0.957 -121 1.039 119 0.948 -122 

0 B3 0.964 122 1.045 -117 0.946 122 

1 B1 0.025 -117 0.015 -123 0.022 -117 

1 B2 0.022 -114 0.032 54 0.020 -108 

1 B3 0.015 -135 0.036 -29 0.016 -126 

2 B1 0.068 -102 0.006 50 0.072 -102 

2 B2 0.070 21 0.011 0 0.072 21 

2 B3 0.067 138 0.009 15 0.069 138 

3 B1 - - - - 0.002 -73 

3 B2 - - - - 0.003 125 

3 B3 - - - - 0.008 64 

Table 6:  Fourier coefficients identified from the HPSD using the OMA-EMIF method.  

4. CONCLUSIONS  

 This paper has extended several advanced methods for operational modal analysis to 

linear time periodic systems.  Curve fitting methods were demonstrated both on the harmonic 

autospectrum and the positive harmonic autospectrum.  The latter were found to be simpler to 

curve fit and to produce good agreement between the reconstructed and measured positive 
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autospectra.  Even then, both methods were found to identify natural frequencies, damping ratios 

and mode shapes of similar quality.  On the other hand, when the curve fitting methods were 

applied to very weak peaks in the harmonic autospectra, both methods gave overly large 

estimates for the Fourier coefficients that were buried in the noise.  In this respect, the peak 

picking method was preferred for these very weak peaks.  In any event, it seems advisable to 

question the accuracy of any Fourier coefficient that is not well represented in the spectrum. 

 The methods were also applied to simulated measurements from a 5MW wind turbine 

which was rotating at constant speed.  Complex Mode Indicator Functions were formed from the 

measurements and shown to reveal many of the modes of the turbine, including the first 

edgewise modes of the turbine, which are of special interest since they tend to be lightly damped 

and hence can limit the life of the turbine.  The OMA-EMIF method was also applied to the 

measurements and was successful in extracting the forward and backward whirling modes, both 

of which appeared at the same frequency in the blade measurements.  This method proved to a 

significant aide; in the authors previous work [5, 6] the shapes identified by peak picking were 

shown and with that method it was very difficult to separate those two modes. 
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