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Nomenclature 

 
x  State vector 

Ad  State matrix 

y  Measurement vector 

f  Unknown force vector 

υ  Measurement noise vector 

λi   i
th

 pole of the system 

Ts  Sampling Period 

Φ  Mode shapes of the system 

Ryy  Correlation matrix of the measurements 

τ  Time lag 
a

yyR   Augmented correlation matrix 

L
a
, R

a
  Left and Right factors of augmented correlation matrix, containing information about mode 

  shape. 

D  Diagonal matrix such that 
aaa

yy RDLR ][τ= , contains information about system poles. 

 

 

 
ABSTRACT 

 
In a former paper (“Second Order Blind Identification (SOBI) and its relation to Stochastic Subspace Identification (SSI) 

algorithm”, 28th IMAC, 2010), the authors established the link between the popular SSI algorithm used in output-only modal 

analysis and the Second Order Blind Identification (SOBI) algorithm  developed for blind source separation in the field of 

signal processing. It was concluded that the two algorithms, although seemingly very different, are actually jointly 

diagonalizing the same covariance matrix over a range of time-lags. This is explicit in SOBI and implicit in SSI. One main 

difference, however, is that SOBI focuses on estimating the (real) modal matrix as a joint diagonalizer, but without taking 

advantage of the specific structure of the covariance matrix formed by the Markov coefficients and by incorrectly assuming 

no-damping or very low damping. On the other hand, SSI specifically exploits the covariance matrix structure so as to 

estimate complex modes, but puts less emphasis on the “joint diagonalizing” property of the modal matrix. The aim of this 

communication is to introduce a new algorithm based on Alternating Least Squares (ALS) approach that combines 

advantages of both SOBI and SSI in order to return improved estimates of modal parameters. It is shown in this work that 

this algorithm is capable of identifying complex modes, closely spaced modes and heavily damped and can also be expanded 



XXIX International Modal Anaylsis Conference (2011), Jacksonville, FL 

 
2 

to deal with the cases where there are less number of sensors available than the number modes to be estimated. The suggested 

approach therefore is a step towards expanding the applicability of BSS based approaches to Operational Modal Analysis 

applications. 

 
1. Introduction 

 
Several recent works have shown how second order blind source separation (SO-BSS) techniques, such as Second Order 

Blind Identification (SOBI) [1, 2], can be utilized for the purpose of output-only modal analysis [3-7]. However, in spite of 

encouraging results shown by these algorithms, applicability of BSS based algorithms for OMA purposes has been quite 

limited. This can be attributed to certain limitations associated with BSS based algorithms for OMA. Mathematical 

formulation of SO-BSS based OMA algorithms suggest that they are more suitable for lightly damped systems having real 

normal modal vectors. The fact that SO-BSS algorithms only estimate real modal vectors is a serious issue as this is seldom a 

case in real life. A methodology based on Hilbert transform is suggested in [8] to estimate complex mode shapes. However, 

the robustness of the method is yet to be ascertained. Yet another issue which restricts applicability of these algorithms is that 

they can only estimate as many modes as the number of output responses being measured. 

Despite these limitations SO-BSS techniques present an interesting outlook with regards to operational modal analysis, as 

they differ from traditional OMA algorithms in terms of estimating the modal parameters of a system. In [9], the authors 

showed how SO-BSS algorithms, such as SOBI, are related to well known Stochastic Subspace Identification (SSI) algorithm 

[10, 11]. In this work it was shown that whereas SSI estimate the modes of a system by putting a constraint on the poles of 

the system, SO-BSS based algorithms use a joint diagonalization procedure to obtain the modal parameters by estimating 

orthogonal vectors that diagonalize the correlation matrices of observed responses. These orthogonal vectors are estimates of 

the modal vectors which are then used to obtain modal frequencies and damping by means of modal expansion theorem [12]. 

Since the two algorithms, SSI and SO-BSS, that share similar mathematical foundations, estimate modal parameters using 

different approaches, it is intriguing to pursue an algorithm that can combine the advantages of both the algorithms.  

In this paper, an Alternative Least Squares (ALS)  [13] based algorithm is proposed that combines the advantages of SO-BSS 

and SSI algorithms in order to overcome the limitations SO-BSS algorithms suffer from in terms of their application for 

OMA purposes. This algorithm can be explained within the framework of Parallel Factor (PARAFAC) theory  [14]. 

Mathematical development of this algorithm is presented in the next section and preliminary results of this algorithm are 

shown in Section 3 by means of studies conducted on an analytical system. Finally, conclusions are made, in light of the 

results obtained and performance of the algorithm in general, with regards to its further development and suitability for OMA 

applications. 

 

2. A PARAFAC based BSS Algorithm for OMA 

 

2.1 General Background 
 

This section recalls the main results and notations used in [8] as these results serve as the background and main motivation 

for the ALS based PARAFAC algorithm suggested in this paper. 

Consider the following n degree of freedom (DOF) discrete-time state-space system, 
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where x[k] is the 12 ×n  state vector, y[k] the 1×m  measurement vector, f[k] the unknown force vector, νννν[k] the 

measurement noise vector, and Ad the nn 22 ×  state matrix. Let  

1−
Σ= ΨΨA dd      (2) 

be the eigenvalue decomposition of the state-matrix where the nn 22 ×  diagonal matrix, where 
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   (3) 

(Ts = sampling period and 
*
= conjugate operator) contains the modal parameters of interest, ( )ndiag λλ ,...,1=Λ  with λi 

the i-th pole of the system, and  
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contains the mode shapes of the structure in the columns of Φ . 

It has been shown in [8] that the correlation matrix of the measurements y[k] takes the following simple form under the 

assumption of white noise excitation. 

0    ,][ >Σ= ττ τ RLR dyy     (5) 

where the left and right factors read 

mnt
qq

nm
d CC

×× ∈=∈= 22 ]0[               , LRRΨCL   (6) 

respectively, with ]0[qqR  the (unknown) correlation matrix of the modal coordinate ][][ 1
kk xΨq −= . Such factorization of 

the correlation matrix, if it can be performed, returns all information about global parameters (modal frequency and damping) 

in the diagonal entries of
τ
dΣ , and the information about (unscaled) mode shapes through the left factor L .  

Since only m modes are recoverable in theory, one obvious shortcoming of the above approach is in cases where the number 

of measurements is less than twice the number of dof’s of the system, i.e. nm 2< . This can however be dealt by considering 

the augmented correlation matrix as shown below 
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This augmented correlation matrix can be factorized as 
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where aL  and aR  are now nmK 21 ×  and 22 mKn ×  matrices which contain all information about the m modes of the 

system provided that nmK 21 ≥  and nmK 22 ≥ , with 1K  and 2K  set arbitrarily large by the user.  

The next subsection describes an Alternating Least Squares (ALS) based PARAFAC algorithm that can achieve the proposed 

factorization on the empirical correlation matrix (or the augmented correlation matrix (Eqn. 7)) estimated from the measured 

data. 

 

2.2 PARAFAC factorization 

Let ][ˆ τa
yyR be the empirical correlation matrix estimated from the (finite-length) measurement vector y[k]. The objective is 

then to find three matrices aL , aR  and ττ dΣ=][D  such that the product aa RDL ][τ is as close as possible to ][ˆ τa
yyR  for a set 

of time-lags { } 0... ,,..., 00 >>>=∈ τττττ KKT . Note that matrix ][τD  is diagonal, but not semi-positive definite in general 

because its diagonal elements will contain an imaginary part as soon as damping is present in the system. For the same reason, 

the right factor aR  is in general different from the transpose of the left factor aL  and allowed to be complex-valued. This 

precludes the factorization to be solved by a joint diagonalization procedure, as done in SO-BSS and revisited in Ref.  [9]. 

Clearly, this is a difficult non-linear problem, yet hopefully with a unique solution, provided that the set of considered time-

lags T is large enough. 

This type of problem has been studied in the statistical literature as parallel factor analysis or PARAFAC. In short, 

PARAFAC generalizes the eigenvalue decomposition of a matrix to a similar decomposition of a cube. The three dimensions 

of concern in operational modal analysis are the two spatial directions of the correlation matrix ][ˆ τa
yyR  (column and raw 

indices corresponding to sensor labels) and the time-lag direction. 
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The investigation of efficient algorithms to solve the PARAFAC problem is a current and active topic of research  [15] [16]. 

For the sake of simplicity, the simplest algorithm is described here, based on alternative least squares (ALS)  [13]. ALS 

consists in iteratively estimating one of the three matrices entering in the factorization assuming that the other two are fixed. 

This way, the minimization problem turns out linear in the parameters and is easily solved by least-squares. The algorithm is 

described in a step-by-step manner as follows: 
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where, in the last line,  
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3) Stop iterating if the relative errors aa
ii )()1( LL −= , aa

ii )()1( RR −+  and aa

ii )()1(
DD −

+
are all smaller than a predefined 

value. 

 

At this point, it is important to mention a few remarks about the convergence of the ALS algorithm, which also happens to be 

one the limitations of the suggested approach.  

• First it is clear that there is no guarantee of convergence to a global minimum. Hence, the final estimates will 

strongly depend on the quality of the starting values. It has been observed by the authors that reasonable estimates 

are returned after initializing matrix D with the resonance frequencies obtained from a simple peak-picking method, 

with assumed zero damping ratios. Matrices 
aL  and 

aR  have been initialized randomly, although better strategies 

could perhaps be investigated such as using results from SO-BSS.  
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• Second, ALS is known to exhibit a low convergence speed, which is the price to pay for its simplicity. Accelerating 

strategies have recently been proposed in the literature, but this is outside the scope of this paper. Indeed, it is 

underlined that ALS is only one possible technique to solve the PARAFAC problem, and that more efficient 

algorithms are expected to come in the near future. Hence, this should not lower the interest of the proposed 

approach.  

One apparent weakness of the proposed PARAFAC approach, however, is that it places no constraint on the estimated D 

matrix to be an actual correlation matrix, i.e. with elements in the form { }si Tτλexp  or conjugate of. But this is also where the 

limit lays between a fully BSS approach and an ad hoc approach such as SSI purposely designed for operational modal 

analysis. Based on this work, the authors are of the opinion that involving further efforts into forcing such a constraint would 

quickly drive the analysis into the realm of SSI algorithms, where the simplicity of BSS approaches would be lost. 

 

3. Results and Discussions 

 
A simple 3 degree of freedom (DOF) system with following [M], [C] and [K] matrices is used in this study. It should be 

noted that the damping matrix [C] is chosen randomly. 

















=

100

010

001

M      

















−

−−

−

=

50500

5010050

050100

K   

















=

2751.10529.02376.0

2806.02215.11846.0

1217.02764.01334.1

C  

 

Table 1 shows the theoretical eigen frequencies and corresponding modal shapes of the system. Note that the mode shapes 

are normalized with respect to the first DOF. 

Table 1: Theoretical System Parameters (Frequency, Damping and Mode Shapes) 

Eigen Freq Freq (Hz) Damping (%) DOF 1 DOF 2 DOF 3 

-0.1244 + 0.4852i 0.4852 24.83 1 + 0i 1.7959 + 0.0205i 2.2325 + 0.0488i 

-0.0861 + 1.4005i 1.4005 6.14 1 + 0i 0.4438 + 0.0133i -0.8033 + 0.0096 

-0.0784 + 2.0265i 2.0265 3.86 1 + 0i -1.2454 - 0.0327i 0.5512 + 0.0521i 

 

The system is excited by means of a random uncorrelated set of input at all 3 degrees of freedom. The response time history 

and corresponding auto spectra is shown in Figure 1. 
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Figure 1: Response time histories and corresponding autospectra 

As mentioned in Section 2.2, ALS based PARAFAC algorithm requires initial estimates of L, D and R matrices. For this 

study L and R and initialized by means of random complex matrices and D is initialized by means of peak picking the 

frequencies from the summation of the three autospectra. It should be noted that regular joint diagonalization as in SOBI can 

be used as a preprocessing step to get the initial estimates of D, however this step is not performed in present study. 

Table 2 compares results obtained from ALS algorithm with theoretical values of modal parameters. 

Table 2: Comparison of Estimated (A) and Theoretical (T) Modal Parameters (Frequency, Damping, Mode Shapes) 

Mode #  Freq (Hz) Damping (%) DOF 1 DOF 2 DOF 3 

T 0.4852 24.83 1 + 0i 1.7959 + 0.0205i 2.2325 + 0.0488i 
Mode 1 

A 0.4883 25.50 1 + 0i 1.7955 + 0.0226i 2.2231 + 0.0499i 

T 1.4005 6.14 1 + 0i 0.4438 + 0.0133i -0.8033 + 0.0096i 
Mode 2 

A 1.4060 6.28 1 + 0i 0.4443 + 0.0257i -0.8041 + 0.0192i 

T 2.0265 3.86 1 + 0i -1.2454 - 0.0327i 0.5512 + 0.0521i 
Mode 3 

A 2.0310 4.01 1 + 0i -1.2392 - 0.0312i 0.5505 + 0.0414i 

 

Mode shape comparison is also shown by means of Figure 2, which shows very good agreement with theoretical mode 

shapes. 
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Figure 2: Mode Shape Comparison 

The performance of ALS algorithm with regards to estimation of modal frequency and damping can also be evaluated by 

comparing the estimated D matrix with theoretical solution. This is shown in Figure 3.  

 

Figure 3: Comparison of D matrices 
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Modal parameters estimated using the proposed algorithm are in very good agreement with the theoretical modal parameters. 

These simulations show that the algorithm handles the heavily damped modes very well and is also able to estimate complex 

mode shapes. This is a definite improvement over SO-BSS algorithms such as SOBI whose performance is not satisfactory 

while dealing with cases of heavy damping or complex mode shapes. Based on these results it can be said that the 

performance of the suggested algorithm is very encouraging and augurs well for further development of the algorithm.  

Further development of this algorithm needs to address the limitations which this algorithm suffers in its current formulation. 

These limitations are on account of the simple ALS based approach used for factorizing the covariance matrices using 

PARAFAC framework. First major concern is convergence of this algorithm. The fact that since the ALS algorithm requires 

initial estimates of L, D and R, it is possible that if these initial estimates are not chosen carefully, the algorithm might not 

converge or converge to a local minimum. To avoid this scenario, it is suggested that SOBI can be performed as a pre-

processing step and its results can be used as initial estimates of L, D and R. In the current simulation, even when only D is 

initialized with intelligent estimates based on peak-picking the frequencies (L and R are initialized randomly), the results are 

very satisfactory. However, it needs to be verified if this procedure can be generalized to work for all kind of systems and 

situations. The performance of the algorithm is also required to be evaluated in presence of noisy data and for some real 

world cases, to have a more definite word regarding its suitability for OMA. As mentioned before, ALS is a very simple 

algorithm for performing PARAFAC based factorization. A more robust algorithm with better convergence properties might 

be another step in this research. 

 

4. Conclusions 

 

This paper proposes a Parallel Factor based Alternating Least Squares Blind Source Separation algorithm for Operational 

Modal Analysis applications. Development of this algorithm follows from the previous work by the authors that establishes 

and explores the fundamental relationship between second order BSS algorithms and Stochastic Subspace Iteration algorithm.  

It is shown by means of a simulated system that this algorithm is capable of estimating heavily damped modes and complex 

mode shapes. These results are very encouraging and serve as great motivation to further improve and optimize the proposed 

algorithm and test it on more realistic scenarios in order to use it for OMA purposes. 
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