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Nomenclature 

 

{X(s)}, {F(s)}  Response and Force vector in Laplace domain 

[M], [C] and [K] Mass, Damping and Stiffness matrices 

N  Degrees of freedom 

[H(s)]  Frequency response function matrix in Laplace domain 

[ ]
H
  Hermitian of a matrix 

����, ����  Polynomial coefficient matrices 

�ℎ(�)�  Impulse response function matrix 


   Estimate of a quantity 

[ ]
+
  Pseudo-inverse of a matrix 

���  Residual (Noise or Error) matrix 

ε̂Σ   Covariance matrix of noise or residuals 

Â
Σ   Covariance Matrix of polynomial coefficient matrices 

⊗   Kronecker product 

vec( )  Vectorization operator 

t  t-ratio 

σ   Standard deviation 

 



 

ABSTRACT 

Modal parameters (natural frequency, damping and mode shapes) play an important role in dynamic characterization of a 

structure. These parameters are estimated using advance parameter estimation algorithms. However, the estimated modal 

parameters are often quoted without much statistical evaluation of the estimation procedure. Since, modal parameters are 

estimated from measured data and the estimation procedure itself is often an error minimization procedure (like Least 

Squares approach), it is necessary to quantify the uncertainty associated with the parameter estimation procedure. One way to 

achieve this goal is by providing confidence intervals for the estimated modal parameters. 

This paper addresses the issue of uncertainty quantification for modal parameters estimated using high order time domain 

algorithms. A methodology for estimating confidence intervals for the estimated modal parameters is presented and its usage 

is illustrated by means of simulated and experimental examples. 

 

Keywords: Uncertainty quantification, confidence intervals, modal parameter estimation, Polyreference time domain, error 

estimation 

 

1. Introduction 

Goal of modal parameter estimation is to estimate modal parameters (natural frequency, damping and mode shape) of the 

system/structure being analyzed, given the measured data (input-output or output only). There are several algorithms 

available to carry out this task. The procedure of estimating modal parameters from measured data typically involves two 

stages; i) Preprocessing raw data, using signal processing techniques, into characteristic functions (for e.g. Frequency 

Response Functions or Impulse Response Functions for experimental modal analysis or covariances for operational modal 

analysis), and ii) Application of modal parameter estimation techniques to characteristic functions. The result of second stage 

is estimation of modal parameters characterizing the structure. The above mentioned two-stage procedure for estimating 

modal parameters can also be viewed within a statistical framework as most algorithms and techniques are based on solid 

statistical foundation. This applies to both signal processing techniques (for e.g. averaging techniques for reducing random 

errors [1]) and parameter estimation algorithms (for e.g. Least Squares approach is a key step in most algorithms). In spite of 

this, the estimates are often provided as it is without any statistical insight about the estimates or the estimation procedure.  

The statistical nature of modal parameter estimation procedure underlines the need for providing statistical evaluation of the 

procedure and the estimated quantities (modal parameters). This is important because raw data, which forms the starting 

point of the estimation procedure, has often associated with it the issues of accuracy and sufficiency. These issues, related to 

the raw data, affect the successive procedures and quantities that are estimated from it and hence the estimated quantities, 

such as modal parameters, have certain uncertainties associated with them. A true reflection, of how accurate and reliable the 

estimates are, can only be provided by including some measure of quantifying the associated uncertainty.  

Uncertainty quantification in modal parameter estimation has not received much attention in the past though there are some 

works that have explored this area in recent times. In [2], covariance matrices of estimates obtained from Maximum 

Likelihood and prediction error based parameter estimation methods are used to obtain the uncertainty bounds. [3] uses a 

similar approach but within OMA framework to obtain uncertainty bounds for modal parameters estimated using Stochastic 

subspace identification (SSI) algorithm [4]. The methodology described in [3] was developed for OMA data acquired in a 

single experiment. In [5] the method was extended to multi-setup scenario.  

One way of expressing the uncertainty associated with the estimated modal parameters is by means of confidence intervals 

[6]. This paper presents a theoretical framework for quantifying the uncertainty associated with modal parameters estimated 

using higher order time domain modal parameter estimation algorithms such as Polyreference Time Domain algorithm [7, 8].  

The paper is organized in the following manner. Section 2 presents the theoretical framework for obtaining the confidence 

intervals for the estimated modal parameters. It is divided in two subsections; section 2.1 presents the modal parameter 

estimation procedure from a statistical perspective, looking at it purely from the point of view of a least squares problem, a 

well-known statistical procedure. It establishes mathematical formulas for calculating the covariance matrix of residuals (or 

noise) and that of polynomial coefficient matrices. These covariance matrices are then used in Section 2.2, which explains the 

methodology to obtain confidence intervals of the estimated modal parameters i.e. modal frequency, modal damping and 

mode shape. In Section 3 the proposed methodology is validated and demonstrated by means of simulated studies carried out 

on a 5 DOF (degrees of freedom) analytical system. Finally  conclusions are provided in section 4. 

 



2. Theoretical Background 

2.1 Modal Parameter Estimation Procedure 

The characteristic equation for a general mechanical vibration system having N degrees of freedom (DOF) is given by 

following expression. 

 [H(s)] = {X(s)}/{F(s)} = 1/|[M]s
2
 + [C]s + [K]|    1) 

where [M], [C] and [K] are mass, damping and stiffness matrices of size NXN, {X} and {F} are N dimensional response and 

excitation force vectors and | | represents determinant of the quantity. [H] is an NxN matrix called frequency response 

function (FRF) matrix. The modal parameters (i.e. modal frequency, damping and mode shapes), representing the dynamic 

characteristics of the system, can be obtained from the 2N eigenvalues and eigenvectors of this equation. 

Since the mass, stiffness and damping matrices are not available in practice, typically measured data is utilized to first 

estimate FRFs and then modal parameter estimation algorithms are applied on estimated FRFs to estimate the modal 

parameters. H1 estimator [1] (represented by following formulation in Laplace domain) is a commonly used method for 

estimating FRFs from the measured data. Note that other signal processing techniques such as averaging and windowing are 

also used simultaneously. 

[H(s)] = [X(s)F(s)
H
][F(s)F(s)

H
]

-1
    2) 

Above Equation can be written in matrix coefficient model form in the following manner [1-3] 

[H(s)] = 
∑ �����������
∑ ���������

 

3) 

In the above equation, m is referred to as the modal order of the System. The total number of modes (or roots) of the system 

is related to the modal order and the size of the coefficient matrices α. It turns out that, theoretically, product of modal order 

and size of coefficient matrices α is equal to total number of modes, i.e. 2N. Please refer [2,3] for more details. 

Eq. 3) can also be represented in time domain by means of Impulse response functions (using inverse Fourier 

transformation). 

 �����
�

���
�ℎ(��)� = 0 

    4) 

The impulse response matrix [h] is also an NxN matrix though coefficient matrices α in case of Eq. 3) and Eq. 4) are 

different. 

Eq. 3) and 4) form the basis of most parameter estimation algorithms. The task is to first estimate the coefficient matrices and 

then obtain the roots, or the modal parameters of the system by using Eigenvalue decomposition of companion matrix formed 

from the estimated coefficient matrices [2-4]. 

As mentioned before, the goal of this paper is uncertainty quantification by means of establishing confidence intervals of the 

estimated modal parameters. High order time domain algorithms such as Polyreference Time Domain (PTD) algorithm [7, 8], 

are well known in the industry and are used extensively for modal parameter estimation. Thus, in this paper estimation of 

confidence intervals is demonstrated using PTD as the basis for modal parameter estimation. 

As a starting point for PTD, Eq. 4) can be expanded, for a particular order m, as follows: 

( )[ ][ ] ( )[ ][ ] ( )[ ][ ] ( )[ ][ ] [ ]0              221100 =+−−−−−+++ ++++ mmiiii thththth αααα  5) 

where [h(tk)] is a No x Ni impulse response matrix at time instant tk and [αk] is the Ni x Ni polynomial coefficient matrix. 

Above equation can be remodeled by normalizing it with [αm] and writing it as 
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or in a more compact way as  

[ ] [ ] [ ]i   qAp i =  7) 

Since polynomial coefficient matrices [αk] are constant for Linear Time Invariant system, several equations similar to Eq. 7) 

can be formed by changing the value of i and then the equations are solved in a Least Square (LS) [9, 10] manner to obtain 

the estimate of polynomial coefficients or matrix [A].  

[ ][ ] [ ]QAP    =  8) 

At this point it is important to note why the LS solution is required. It is well known that measured data is always 

contaminated with noise and irrespective of signal processing techniques used, functions (such as IRFs) estimated from the 

measured data are also subject to error due to noise present in the measured data. In other words, there is some uncertainty in 

the IRFs, which in turn creeps in to the modal parameter estimation procedure and also affects the modal parameters 

estimated from them. Least squares approach to solve Eq. 8, is one of the procedures to estimate the polynomial coefficient 

matrices such that the error is minimized. Hence, to quantify the uncertainty, which is representative of the error, it is critical 

to represent Eq. 8) by including the error term as shown below.  

[ ][ ] [ ] [ ]ε     += QAP  9) 

An estimate of polynomial coefficient matrices using the LS estimation is given by the following equation, where is [ Â ] used 

to denote the estimate of [ A ], [Qm] is defined as [ ] [ ] [ ]ε    += QQm and 
+
 represents the pseudoinverse.  

[ ] [ ] [ ]( ) [ ] [ ]

[ ] [ ] [ ]m

m
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=






=

 10) 

From the model ([ Â ]) estimated in Eq. 10), the target data [Qm] can be predicted. Thus, predicted data (represented by [ Q̂ ]) 

is a function of [ Â ] and [ P ]. 

[ ] ( ) [ ][ ]APAPfQ ˆ  ˆ, ˆ ==  11) 

The difference between target values (or actual values) [Qm] and predicted values [ Q̂ ] are called Residuals and can be 

looked upon as an estimate of the error term [ ]ε , defined in Eq. 9), and can be represented as  [ ]ε̂ .  

[ ] [ ] [ ] ˆ- ˆ QQm=ε     12) 

For calculating confidence intervals following two quantities are required.  

1. Covariance Matrix of Noise or Residuals ( ε̂Σ ) 

2. Covariance Matrix of polynomial coefficient matrices (
Â

Σ ) 

2.1.1 Covariance Matrix of Noise or Residuals ( ε̂Σ ) 

To calculate ε̂Σ , first the following moment matrices are defined 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]m
T

mQQ

m
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PQ

T
PP

QQG

QPG

PPG

=

=

=

 

 

 

 13) 

It is easy to follow that based on above definitions, Eq. 10) can be expressed as 

[ ] [ ] [ ]PQPP GGA   ˆ -1=  14) 



The residual covariance matrix ( ε̂Σ ) can be calculated as  

[ ] [ ] [ ] [ ]( ) [ ] [ ]( )QQQQ mm
T ˆ-  ˆ- ˆˆ

T

ˆ ==Σ εεε   15) 

By substituting [ Q̂ ] from Eq. 11) in Eq. 15) and simplifying using Eq. 13), ε̂Σ  is defined in terms of moment matrices as 

[ ] [ ] [ ] [ ]( )PQPP
T

PQQQ GGGG
1

ˆ -  
−

=Σε   16) 

 

2.1.2 Covariance Matrix of Polynomial Coefficient Matrices (
Â

Σ ) 

For calculating 
Â

Σ , Eq. 10) can be reframed using Eq. 9) and written as 

[ ] [ ] [ ] [ ] [ ]εT1
 ˆ PGAA PP

−=−  17) 

It is assumed that the error is distributed normally. This ensures the consistency and asymptotically normal distribution of 

polynomial coefficient estimates and that the estimation errors, i.e. difference between estimated polynomial coefficients ( [ ]Â  

or α̂ ) and true polynomial coefficients ( [ ]A  or α ), are distributed normally with zero mean and covariance matrix 
Â

Σ  [9, 

11, 12]. 

Â
Σ can be now calculated by using vector notation of [ ] [ ]AA − ˆ  and calculating 

[ ] [ ]( )( ) [ ] [ ]( )( )AAvecAAvec
T

A
−−=Σ  ˆ ˆ

ˆ   

which simplifies to [11] 

[ ] [ ]ε̂
1

ˆ    Σ⊗=Σ
−

PPA
G  18) 

 

2.2 Estimation of Confidence Intervals 

In statistics, confidence interval of an estimated quantity θ̂  is calculated from the distribution of t-ratio using the following 

equation [13] 

θ
σθ ˆˆ    ˆ ×=± t     19) 

where 
θ

σ ˆˆ  is the estimate of standard deviation or the standard error of θ̂  and t is t-ratio (also called Confidence 

coefficient) that depends on the distribution assumed and whose value can be obtained for the required confidence level (for 

e.g. 95% confidence level) from a standard table. Thus for estimating the confidence intervals of an estimated quantity one 

needs to know 

1. The standard deviation or variance of the estimated quantity, and 

2. The t-ratio, based on the assumed distribution, corresponding to the required confidence level. 

The challenge in calculating confidence intervals for the estimated modal parameters, using the above described approach, 

comes from the fact that estimating standard deviation of estimated modal parameters is not a straightforward task. This is 

due to the fact that modal parameters are indirect result of parameter estimation procedure. They are calculated from the 

estimated polynomial coefficient matrices and are nonlinear functions of the same. Thus in order to calculate standard 

deviation associated with estimated modal parameter, one needs to first understand the propagation of uncertainty through the 

functional relationship between the polynomial coefficient matrices and the modal parameters. 

If θ  is a quantity that is continuous function of another quantity β and θ̂  is the estimate of θ  evaluated at the estimate β̂ , 

then the covariance matrix of θ̂  (
θ̂

Σ ) in terms of covariance matrix 
β̂

Σ is given as [14] 
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Using this equation, one can estimate the covariance matrix (and subsequently standard deviation) associated with modal 

parameters from the knowledge of covariance matrix of polynomial coefficient matrices and their derivative functions with 

respect to polynomial coefficients. However, it is important to note that in case of modal parameters Eq. 20) is approximate 

and only holds up to higher terms, due to the nonlinear functional relationship.  

To reiterate, in order to estimate the confidence intervals associated with the estimated modal parameters, one requires: 

1. Covariance matrix of polynomial coefficients, i.e. 
Â

Σ  (which has already been derived in Eq. 18), 

2. Derivative functions (Gradients) of modal parameters (modal frequency, damping and mode shapes) with respect to 

polynomial coefficients, evaluated at the estimated polynomial coefficients, and 

3. The t-ratio: It is typically assumed that the t-ratio follows the Student’s t distribution [11]. This is also the approach 

taken in this work. However, it is also common to use Chi-Square distribution [3]. 

Once these quantities are estimated, Eq. 19) can be utilized for calculating the confidence intervals of the estimated modal 

parameters. 

 

3. Results 

In this section, the theory described in Section 2 is validated by means of studies conducted on a 5 DOF analytical system. 

The analytical 5 DOF system used in this study is constructed using the following [M], [C] and [K] matrices. 
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Modal parameters of the system (modal frequencies, damping and mode shapes) are listed in Table 1 and 2. 

 

Table 1: Modal frequencies and damping of the 5 DOF analytical system 

Frequency (Hz) Damping (%) 

12.5263 1.1486 

22.0830 1.0589 

34.8635 2.1720 

88.5238 0.4872 

104.779 0.8473 



 

Table 2: Mode Shapes of the 5 DOF analytical system 

Freq/DOF 12.52 Hz 22.08 Hz 34.86 Hz 88.52 Hz 104.77 Hz 

1 1 + 0i 1 + 0i 1 + 0i 1 + 0i 1 + 0i 

2 1.489 + 0.038i 0.837 + 0.064i -0.601 + 0.045i -13.66 + 0.591i -19.86 + 0.717i 

3 1.360 + 0.046i -0.238 + 0.029i -0.249 + 0.013i 220.4 - 11.86i 464.6 - 19.56i 

4 1.201 + 0.051i -1.209 - 0.006i 0.132 - 0.016i 121.9 - 4.464i -17.66 + 0.872i 

5 0.654 + 0.027i -0.689 - 0.004i 0.084 - 0.010i -2079.6 + 68.45i 21.14 - 1.517i 

 

The analytical system is analyzed using Monte Carlo simulations to validate the confidence intervals (of modal parameters) 

obtained using equations developed in Section 2. A total of 500 simulation runs are conducted. In each simulation, the system 

is excited at all DOFs by means of a different random force realization and response to this excitation force is collected at all 

DOFs. For each run, the Frequency Response Functions (FRFs) are calculated, from the simulated force and response time 

histories, using H1 estimator and Impulse Response Functions (IRFs) are generated by inverse Fourier transformation of 

FRFs. It should be noted that same number of time samples are generated for each run. The sampling frequency is 256 Hz 

and signal processing parameters such as windowing, blocksize, overlap, etc. are kept same from one simulation run to 

another. Finally Polyreference Time Domain  algorithm (PTD) is used to estimate the modal parameters from the IRFs. The 

algorithm is evaluated at order 8.  

The confidence intervals (CIs) of modal parameters are estimated for each of the 500 runs along with the estimates. The CIs 

obtained for each run, for modal frequencies and damping, are first converted to standard deviation (See Eq. 19). To validate 

the results, the mean of these standard deviations of modal frequency and damping are compared to sample standard 

deviation of these quantities based on the 500 samples from the Monte Carlo simulation runs. The results are listed in Table 3 

along with the mean estimates of modal frequency and damping for each of the five modes.  

Table 3: Result of Monte Carlo Simulation Studies 

 
Mean 

Frequency (Hz) 
σf (σf)mean 

Mean 

Damping (%) 
σd (σd)mean 

Mode 1 12.5304 0.0091 0.0108 1.2024 0.0610 0.0768 

Mode 2 22.0802 0.0090 0.0058 1.0902 0.0328 0.0263 

Mode 3 34.8628 0.0031 0.0024 2.1798 0.0085 0.0069 

Mode 4 88.5190 0.0084 0.0081 0.4966 0.0083 0.0092 

Mode 5 104.775 0.0046 0.0053 0.8495 0.0060 0.0063 

σf  and σd: Sample standard deviation of estimated frequency and damping, (σf)mean and (σd)mean: Mean of estimated standard 

deviation of frequency and damping at each simulation run. 

It can be seen from the results listed in Table 3 that standard deviations of modal frequency, (σf)mean and modal damping, 

(σd)mean estimated using the theory discussed in section 2 compare very well with the sample standard deviations (σf and σd) 

for each mode.  

Having validated the confidence interval estimation procedure, the focus is now shifted to observing the difference in 

confidence intervals of actual system modes and those of mathematical (or computational) modes. From statistical point of 

view, it is expected that confidence intervals of the actual system modes should be comparatively narrower than those for the 

mathematical modes. Fig. 1 shows the stabilization diagram [1] obtained by running PTD algorithm. The stabilization 

diagram also shows the confidence intervals, albeit only for the stabilized modes (indicated as blue diamonds ◊ in the 

stabilization diagram).  



It can be observed from the stabilization diagram in Fig. 1 that confidence intervals for the actual system poles (for e.g. 

modes at 34.86 Hz and 104.77 Hz) are expectedly much narrower in comparison to the confidence intervals of the 

mathematical poles (mode 120 Hz in iteration 21). This behavior can be observed more clearly by zooming around 12.53 Hz 

mode (See Fig. 2) where there are few mathematical modes (as indicated in Fig. 2) that stabilize in close vicinity of the actual 

system pole. It is easily observable that these mathematical poles have much wider confidence interval in comparison to the 

actual system mode. This provides an extra means for distinguishing mathematical poles from the actual structural modes. 

The confidence interval related information can also be used to clean the stabilization diagram as that can ease the process of 

mode selection (from the stabilization diagram) for the user. 

 

Figure 1: Stabilization Diagram with Confidence Intervals 

 

 

Figure 2: Section of Stabilization Diagram zoomed around 12.53 Hz mode 



4. Conclusions 

This paper presents a theoretical framework to quantify uncertainty associated with high order based modal parameter 

estimation procedure by calculating confidence intervals of the estimated modal parameters. The approach is validated by 

means of Monte Carlo simulations conducted on a 5 degrees-of-freedom analytical system. It is shown that confidence 

intervals obtained using the proposed theory matches well with those from the sample statistics based on the Monte Carlo 

simulations.  

It is also illustrated in the paper how the knowledge of confidence intervals of the modal parameters (in other words 

quantified uncertainty of parameter estimation procedure) can provide more insights regarding the quality of the estimated 

parameters and can act as a valuable tool that can help user to make a better choice of modal parameters representing the 

dynamics of the structure. 
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