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Nomenclature 

 
x  State vector 

Ad  State matrix 

y  Measurement vector 

f  Unknown force vector 

υ  Measurement noise vector 

λi   i
th

 pole of the system 

Ts  Sampling Period 

Φ  Mode shapes of the system 

Ryy  Correlation matrix of the measurements 

τ  Time lag 

yyH   Hankel matrix of corrleations 

L̂ , R̂   Left and Right factors of Hankel matrix, containing information about mode shape. 
τ
Σ   Diagonal matrix such that RΣLH ˆˆ ][ ττ =yy , contains information about system poles. 

 

 
ABSTRACT 

 
Second Order Blind Source Separation (SO-BSS) techniques possess several mathematical characteristics making them a 

viable option for Operational Modal Analysis (OMA). However, on closer scrutiny it is revealed that there are certain 

subtleties that limit their direct application to OMA applications. This paper continues from past work of the authors, which 

focussed on understanding SO-BSS techniques from a perspective of OMA applicability and developing SO-BSS based 

algorithm for OMA. In this paper, a new algorithm is proposed that overcomes the inherent limitations of SO-BSS algorithms 

with regards to their applicability to OMA. These limitations include applicability to heavily damped systems, identification 

of complex modes, and applicability to scenarios where number of available sensors is lesser than the number of modes to be 

estimated, etc. The algorithm’s advantage over original form of SO-BSS is demonstrated by means of an analytical example. 

 

 

 



1. Introduction 

This paper is continuation of authors’ effort towards understanding and utilizing second order blind source separation 

(SOBSS) techniques for operational modal analysis (OMA) [1, 2]. SOBSS algorithms have obvious appeal in OMA domain 

since both of them share fundamental mathematical similarities. Several recent works [3-9] have explored the possibility of 

utilizing SOBSS algorithms for OMA to varying degrees of success. The success of SOBSS algorithms in context of OMA 

has been limited by several factors including the inability of SOBSS algorithms to estimate complex modes, heavily damped 

systems, estimate more modes than number of sensors etc., in their original form. In [1] authors have explained mathematical 

theory behind SOBSS algorithms in terms of OMA framework and showed how they are related to Stochastic Subspace 

Identification (SSI) algorithm [10, 11]. Based on this knowledge, authors proposed an Alternating Least Squares (ALS) based 

Parallel Factorization (PFA) algorithm in [2]. It was shown by means of a simulated system that this algorithm is capable of 

estimating heavily damped modes and complex mode shapes. However, one of the concerns regarding this proposed 

algorithm was its convergence and developing a more robust algorithm with better convergence properties was suggested as a 

future step in this research. 

This paper proposes a new SOBSS based OMA algorithm that overcomes the aforementioned inherent limitations of SOBSS 

techniques. Proposed algorithm generalizes SOBSS to estimate complex mode shapes, and to handle more active modes than 

the number of available sensors, as is often encountered in practice. This algorithm is based on Non-Hermitian factorization 

of the covariance matrices and is termed Non-Hermitian Joint Approximate Diagonalization (NoHeJAD).  

The paper is organized in following manner: Section 2 briefly recalls the previous work carried out in [1]. Firstly, 

mathematical fundamentals of SOBSS techniques are understood within OMA framework and then, in the light of this 

knowledge, various limitations regarding their application to OMA are discussed. NoHeJAD algorithm is proposed in Section 

3. This section also explains how NoHeJAD algorithm overcomes the limitations discussed in section 2. Application of 

NoHeJAD algorithm is illustrated by means of a simple analytical system in Section 4, followed by discussions and 

conclusions. 

2. Understanding SOBSS within OMA Framework 

The matrix differential equation of motion of an n-degree-of-freedom system is given by 

 

)( )( )( )( tttt fxKxCxM =++ &&&     (01) 

with mass matrix [ ] nn×∈M , stiffness matrix [ ] nn×∈C , damping matrix [ ] nn×∈K  ,  and forcing vector { }n
t ∈)(f   which 

entails the displacement vector { }n
t ∈)(x . In practice, the dynamics of the system is observed through measurements,  

 { }mii ttt ∈+= ),( )( )( )( νxCy ,  (02) 

where i = 0,1,2 depends on whether response is represented in terms of displacement, velocity or acceleration, [ ] nmi ×∈C  is 

the measurement matrix, and )(tν is a vector of measurement noise.  

The objective of OMA is to recover the modal parameters of the system, i.e. the poles iλ  and the eigenvectors iφ , from the 

observations y(t) only. Specifically, for an n-degree-of-freedom system, the unknowns of the problem are the diagonal matrix 
nm

ndiag ×∈= C),,( 1 λλ LLΛ  of poles (for simplicity it will be assumed that all poles are distinct, i.e. jiji ≠≠ ,λλ ) and the 

modal matrix [ ] nn
n

×∈= C,,1 φφ LLΦ  of eigenvectors such that 0 )( 2 =++ iii φλλ KCM , for any i.  

There are certain key assumptions which are made while applying OMA techniques. These assumptions are listed below. 



• H1: )(tf and )(tν  are two zero-mean random stationary processes, 

• H2: )(tf and )(tν   are mutually uncorrelated, 

• H3: )(tf and )(tν  have flat spectra in comparison to the resonances of the system in the frequency range of interest. 

• H4: Forces )(tf  are randomly distributed at all n degrees-of-freedom.  

 

The last assumption does not have any direct implication with respect to the work presented, but is significant in context of 

OMA as it ensures that all the modes in the frequency range of interest are sufficiently excited. 

It is now well established that the key to applying SOBSS techniques for OMA lies in the ability of these algorithms to 

decompose the measured output responses to corresponding modal coordinates and modal filters according to the expansion 

theorem [12] in the following manner. 

)()( tt Φηx = ,    (03) 

where { }n
t ∈)(η  denote the vector of modal coordinates related to the set of active mode filters {φi}, i =1,...,n. Once this 

decomposition is achieved, modal frequencies and damping information is obtained from modal coordinates and modal filters 

are nothing but mode shapes. Similarity of Eqn. (03) to mathematical form of a typical BSS model makes it easier to 

understand the obvious application of SOBSS algorithms for OMA purposes. In practice, vector x(t) must also be replaced by 

measurement vector y(t) of Eqn. (02); the resemblance with the BSS mixture model then still holds, provided that  

• H5: there are as many measurements as sources, mn ≤ ,  

• H6: the additive noise )(tν is negligible or can be filtered out, for instance by subspace techniques [13]. 

Under these assumptions, the correlation matrix of the (discrete-time) measurements is given by  

 τττ any at  , ][ ][ H
yyyy ΦRΦR = , (04) 

The identification of the modal matrix Φ and then separate modal coordinates )(tiη using SOBSS algorithms, such as 

AMUSE [14] and SOBI [15], typically involves joint diagonalization of the response correlation matrices. As mentioned 

earlier, feasibility of SOBSS for OMA has been reported and illustrated in several recent publications. In [1] it was shown 

that the correlation matrix of the measurements has expression 

0 ],[ ][ ][
1 >++= − ττττ νν

ττ
RDRBLΣRLΣR

iH
dffdddyy   (05) 

with 

 ΨCL i
d=  and H

qq LRR ]0[= , (06) 

and with ]0[qqR , ][τffR  and ][τννR the correlation matrices of the state-space modal coordinates, the force and the noise, 

respectively, dΣ  is diagonal matrix of eigenvalues having modal frequency and damping information and Ψ is state-space 

modal matrix. This expression, under assumptions H1, H2 and H3 reduces to  

 0 ,][ τττ τ ≥= RLΣR dyy , (07) 

for some 00 >τ . Using the fact that ]0[][ qqqq RΣR ττ = , where ]0[qqR  is the (unknown) correlation matrix of the modal 

coordinate ][][ 1 kk xΨq −= , Eq. (07) can finally be rearranged as 



 

 0 ,][][ ττττ ≥= H
qqyy LLRR , (08) 

which is the usual form, symmetrical in the left and right factors, that enters SOBSS algorithms. Indeed, this is similar to Eqn. 

(04). Therefore, for SOBSS to correctly estimate factor L as the joint diagonaliser of the correlation matrix ][τyyR  at time 

lags ][  ,0 τττ qqR≥  must be a diagonal matrix. For this to happen, the modal coordinates should have nearly disjoint spectra 

in the frequency domain (uncoupled resonances) or, in other words, are approximately uncorrelated in the time domain [4, 5]. 

Physically for an arbitrary loading, this is the case when, and only when, the damping of the system is light and the system 

does not have closely spaced modes. Thus, due to the mathematical formulation expressed by Eqn. (08), SOBI and AMUSE 

typically estimate real mode shapes, approximating those of the underlying undamped system. This mathematical 

formulation also puts a constraint that there should be at least as many sensors as the number of modes to be identified.  

3. Non-Hermitian Joint Approximate Diagonalization (NoHeJAD) Algorithm 

As described in previous section, SOBSS algorithms suffer from various shortcomings when being utilized in their inherent 

form for OMA. Thus they need to be modified in order to make them compliable with OMA requirements. This section first 

lays down mathematical foundations of NoHeJAD algorithm; explains how it mathematically overcomes the shortcomings of 

SOBSS algorithms; and then describes the implementation of NoHeJAD. 

The basis of NoHeJAD algorithm is that it searches for the left and right factors of the correlation matrix of measurements, 

][τyyR , in the non-Hermitian form as given by Eqn. (07) instead of the usual form in Eqn. (08), which is typical to most 

SOBSS algorithms. For the sake of simplicity, it is assumed that m = 2n, i.e. number of sensors are equal to twice the number 

of degrees of freedom or in other words the number of modes of the system. In such a case, there exist unique inverses, 

[ ] nn 22 ×+ ∈L  and [ ] nn 22 ×+ ∈R , to matrices L and R in Eqn. (07), such that after pre and post-multiplication of Eqn. (07) 

with +L  and +R , one obtains 

 { 0 ,][

22

τττ ττ ≥== ++++
ddyy

nn

ΣRRΣLLRRL

II
321  (09) 

Keeping in mind that Σ  is in general a diagonal matrix this means that +L  and +R  are joint diagonalisers of the set of 

matrices { }
0

][
ττ

τ
≥yyR . Therefore, an immediate generalisation of AMUSE/SOBI for OMA is to seek for a couple of factors, 

+L  and +R , which minimise the cost function 

 ∑
∈

++++ =
T

2

Off )][(Off.) ,(

τ

τ τ RRLRL yywJ  (10) 

for a given set of weights { }
T∈ττw  and subject to some constraint that prevents the trivial solutions 0=+L  or 0=+R . 

Specifically, it is proposed herein to minimise the magnitude of off-diagonal elements whilst at the same time forcing non-

zero diagonal elements, that is minimise Eqn. (10) subject to constraint 

 0)][(Diag.) ,(

T

2

Diag >==∑
∈

++++ CwJ yy

τ

τ τ RRLRL , (11) 

for some constant C, where )(Diag •  zeroes the off-diagonal elements of a matrix. Once the joint diagonalisers are estimated, 

the modal matrix L is simply returned by the inverse of +L . Additionally,  )][(Diag ++ RRL τyy  returns an estimate of τ
Σ  

which contains the poles of the system that can be estimated using any standard SDOF method. 



It is important to notice that in this formulation left and right diagonalisers of the correlation matrix ][τyyR are not 

constrained to be Hermitian transforms of each other, i.e. H++ ≠ RL . This allows more flexibility in trying to jointly 

diagonalise ][τyyR , which is the key property that makes possible the recovery of complex mode shapes as this approach 

guarantees that a solution exists in the most general sense, independently of the degree of damping. Further since the 

whitening step (computation of and division by the square-root of ]0[yyR ), is avoided, the suggested approach is more robust 

against additive noise (see [1] for more discussion on the influence of additive noise on ]0[yyR ). 

The Non-Hermitian Joint Approximate Diagonalization (NoHeJAD) algorithm proposed in this paper solves the 

minimization problem in Eqn. (11). However, before describing the algorithm, the interesting case of having less sensors than 

the number of modes of interest is discussed. In these regard, a simple approach can be the one suggested in [9].  

As explained earlier, the suggested approach of estimating +L  and +R  eliminates the pre-whitening step thus making it 

possible for the algorithm to operate directly on correlation functions estimated after processing the acquired output time 

histories. This serves two purposes: firstly, signal processing techniques such as windowing and averaging can be used to 

calculate the correlation functions through power spectra and improve the performance of the algorithm in situations when 

output time histories are contaminated with noise and don’t have a high SNR. Additionally, since the algorithm operates on 

correlation functions, one can now select a specific frequency range to apply this algorithm. As a consequence the problem of 

having more modes than number of sensors available can be tackled effectively by dividing the entire frequency range of 

interest into smaller ranges (such that number of modes in the selected range are less than the number of sensors) and then 

apply NoHeJAD one by one to them. This is different in comparison to typical SOBSS algorithms, like SOBI, that are 

applied in the entire frequency range. These aspects are covered in more details in [9], where authors modified original SOBI 

formulation so that it can operate on correlation functions, making it possible to incorporate signal processing techniques and 

extracting modal parameters within specified frequency ranges. 

Although one can take the above mentioned approach to deal with the case when one has less sensors than the number of 

modes and utilize the NoHeJAD in its basic form, it is also possible to generalize NoHeJAD such that it can take care of this 

scenario by itself. The key lies in utilizing the Hankel matrix of correlations.  
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with dimension  mK mK× , where {βi > 0; i = 1,2,….. K - 1} is a sequence of user-defined weights.  From Eqn. (07), the 

Hankel correlation matrix factorises as 

 
[ ] 0

1
11

1
1

1
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β
τ ττ ≥=
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yy L
M  (13) 

with [ ] nmK 2ˆ ×∈L  and [ ] mKn×∈ 2
R̂ . This is exactly the same form as in Eqn. (07), with the so-called observability matrix L̂  

substituted for L, and controllability matrix R̂  for R. Therefore, provided that K is set large enough so that mK > 2n, the 

same algorithm can be used to find the couple of left and right pseudo inverses, +L̂  and +R̂ , which jointly diagonalises the 

Hankel correlation matrices ][τyyH  for a set of time-lags. The mode shape information is contained within first (m × 2n) 

block of L̂  and modal frequencies and damping can be obtained in the similar manner as described for (m = 2n) case. 



Based on this understanding, a simple algorithm, with good convergence properties, is presented here to solve the 

minimization problem in Eqn. (11). This algorithm is coined Non-Hermitian Joint Approximate Diagonalization (NoHeJAD) 

algorithm and is partly inspired by the recent work reported in [16]. The goal of the algorithm is to minimise Eqns (10) and 

(11). One Key aspect with regards to implementing this algorithm is that matrices L
+ 

and R
+
 have specific polarities that are 

to be preserved right from the onset. Indeed, it is seen that i) ∗
+= nnn 2:1:,:1:, LL , where n:1:,L and nn 2:1:, +L are the left and right 

blocks in matrix L, and ii) ∗
+= :,2:1:,:1 nnn RR , where :,:1 nR  and :,2:1 nn+R  are the top and bottom blocks in the Hankel matrix 

formed using output covariances ][τyyR . Therefore, one must similarly have iii) ∗+
+

+ = :,2:1:,:1 nnn LL  and iv) ∗+
+

+ = nnn 2:1::1:, RR . 

If il  and ir  are i
th

 row and column of matrices +L  and +R  respectively, then Eqn. (10) can be expanded either as  
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or equivalently as 
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where Hii )(M)(M OffOff •=• is a Hermitian matrix.  

Eqn. (11) can also be expanded on similar lines as following,  
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or  
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where Hii
)(M)(M DiagDiag •=•  is another Hermitian matrix. These equations suggest the alternate minimisation of Eqns. (10) 

and (11) with respect to i
l   with +

R  fixed and with respect to i
r with +

L  fixed. Eqns. (12-15) can be reformulated as local 

optimization problem as  
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where 1,iµ and 2,iµ  are Lagrange multipliers. 



It is important while initializing this optimization procedure that +
)0(R is initialized with complex values fulfilling the polarity 

structure (iv). From standard optimization theory, the solutions to Eqn. (16) are eigenvectors associated with the least 

eigenvalues of the generalized eigenvalue problems 
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Note that because )(M  ),(M DiagOff •• ii are Hemitian matrices, the associated eigenvalues are necessarily non-negative. 

Moreover, a necessary condition for the eigenvalue problems in Eqn. (17) to have a unique solution is to enforce )(MOff •i  

and )(MDiag •i  with full rank. This can only be achieved if the number of summed time-lags in Eqs. (12)-(15) is not less than 

the dimension of the correlation matrix, i.e. if m≥T . Finally, it should be recognised that the polarity properties (iii) and (iv) 

imply that ∗+= )( ini ll and ∗+= )( ini rr for i = 1,...,n, so that Eqn. (17) has to be solved for n≤i  only. 

4. Example: 15 DOF Analytical System 

An analytical 15 degrees of freedom system is considered in this section to demonstrate the applicability of NoHeJAD. This 

system simulates complex, heavily damped, and strongly coupled modes and is typical of system possessing characteristics 

that have been found to push SOBSS algorithms to their limits. The system is excited by white Gaussian forces having unity 

magnitude and random phase and its acceleration responses are available at all degrees of freedom (m = 15). All signals are 

sampled at 1024 Hz and the correlation matrix is computed on 163840-sample-long records.  

Fig. 1 shows the power spectra of the output response at all 15 DOFs along with modal coordinates separated by NoHeJAD, 

which was run for 100 iterations. 

 

Fig. 1: Power spectra of a) the system responses and b) the separated modal coordinates by NoHeJAD (frequency resolution 

∆f = 0.4Hz) 

 



Fig. 2 displays the evolution of ) ,() ,( DiagOff
++++ RLRL JJ  as a function of iterations, which shows quite a fast 

convergence (a tenth of iterations) of the algorithm. The resulting joint approximation diagonalisation is appraised by means 

of the ratio 
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2

)][(Diag

)][(Off

++

++

RRL

RRL

τ

τ

yy

yy
 (12) 

as a function of τ in Fig. 3. This function also reflects the signal-to-noise ratio in the correlation matrix which slightly 

increases with time-lags as a collateral effect of the exponential decrease of the system impulse response. 

 

Fig. 2: Convergence of the NoHeJAD algorithm 

 

Fig. 3: Joint diagonalisation assessment as a function of time-lags 

The estimated modal parameters and related estimation errors are reported in Tables 1 and 2, together with a comparison of 

the estimates returned by SOBI. It is seen that SOBI and NoHeJAD perform similarly well to estimate the natural frequencies 

and damping of the system in this case; this reflects the robustness of SOBI to operate even when the assumption of a 

conservative system is not perfectly fulfilled. Table 3 displays the modal assurance criteria (MAC) on the real and imaginary 

parts of estimated mode shapes from. It is observed here that SOBI is unable to estimate the imaginary parts of the mode 

shapes, as explained in section 2. It is worth pointing here that the smaller the imaginary parts of the mode shapes relatively 

of their real parts, the more difficult their estimation; this explains some of the low MAC values in Table 3. Finally, Fig. 1(b) 

displays the power spectra of separated modal coordinates computed by taking the Fourier transforms of the elements in 

)][(Diag ++ RRL τyy . This visually proves the excellent separation capability of the proposed algorithm. The power spectrum 

of the i-th separated modal coordinate may also be obtained from the cross-spectrum between signals )(;L tai y+  and 



)(;R ta
H

i y
+ , where [ ]Tmma KtyKtytytyt )(,),(,),(,),()( 11 ++= LLLLLLy , that is after application of two different 

modal filters on the measured responses. 

Table 1: Estimated natural frequencies 

Natural frequencies fn (Hz) 

True SOBI NoHeJAD 

15.99 15.99 15.99 

30.86 30.82 30.82 

43.60 43.62 43.62 

46.44 46.49 46.49 

53.32 53.32 53.32 

53.39 53.50 53.51 

59.41 59.46 59.44 

61.62 61.73 61.73 

68.81 68.86 68.88 

73.63 73.61 73.64 

128.84 128.87 128.87 

136.55 136.59 136.59 

143.86 143.90 143.90 

150.83 150.87 150.88 

157.47 157.51 157.51  

 

Relative errors on natural frequencies (%) 

SOBI NoHeJAD 

-0.01 -0.01 

0.13 0.13 

-0.05 -0.05 

-0.10 -0.11 

-0.01 0.00 

-0.20 -0.22 

-0.08 -0.05 

-0.16 -0.17 

-0.08 -0.09 

0.03 -0.01 

-0.03 -0.03 

-0.03 -0.03 

-0.03 -0.03 

-0.03 -0.03 

-0.03 -0.03 

Averaged (absolute) relative errors (%) 

0.07 0.07  

Table 2: Estimated damping ratios 

 

Damping ratios ζζζζn (%) 

True SOBI NoHeJAD 

1.00 1.18 1.18 

1.94 1.92 1.93 

2.74 2.67 2.68 

2.91 2.96 2.96 

3.34 3.42 3.40 

3.35 3.16 3.17 

3.72 3.75 3.77 

3.86 3.97 3.97 

4.30 4.09 4.10 

4.59 4.58 4.60 

2.61 2.62 2.62 

2.46 2.45 2.45 

2.33 2.32 2.32 

2.22 2.21 2.21 

2.12 2.13 2.13 

 

 

 

Relative errors on damping ratios (%) 

SOBI NoHeJAD 

-17.53 -17.80 

0.70 0.42 

2.23 2.13 

-1.71 -1.64 

-2.58 -1.87 

5.57 5.19 

-0.86 -1.36 

-2.78 -2.85 

4.79 4.58 

0.31 -0.13 

-0.37 -0.39 

0.32 0.34 

0.21 0.20 

0.29 0.33 

-0.17 -0.17 

Averaged (absolute) relative errors (%) 

2.69 2.63  

 



Table 3: MACs on real and imaginary parts of estimated mode shapes 

 

MAC on real parts (%) 

SOBI NoHeJAD 

100.00 100.00 

100.00 100.00 

100.00 99.98 

99.99 99.95 

94.09 90.99 

92.04 99.63 

99.96 99.96 

99.98 99.81 

99.92 99.99 

99.86 99.97 

100.00 99.87 

100.00 99.99 

99.98 99.96 

99.96 99.85 

99.97 99.96 

Averaged MACs 

99.05 99.33  

 

MAC on imaginary parts (%) 

SOBI NoHeJAD 

NA 42.22 

NA 27.18 

NA 17.14 

NA 53.74 

NA 94.52 

NA 84.43 

NA 55.34 

NA 69.93 

NA 42.98 

NA 25.44 

NA 99.99 

NA 99.37 

NA 53.57 

NA 99.86 

NA 100.00 

Averaged MACs 

NA 64.38  

 

4. Conclusions 

A new algorithm is suggested in this paper that enables utilization of second order blind source separation (SOBSS) 

techniques for operational modal analysis. This algorithm is coined Non-Hermitian Joint Approximate Diagonalization 

algorithm and as the name suggests involves joint diagonalization of correlation matrices at various time lags such that the 

factorization is Non-Hermitian. The Non-Hermitian factorization step makes this algorithm different from usual form of 

SOBSS algorithms, in the process enabling one to estimate systems having complex mode shapes and heavily damped modes; 

issues which have limited use of SOBSS algorithms in OMA domain. It is further shown in this work, that the Hankel matrix 

based general form of NoHeJAD is also capable of dealing with situations where the number of sensors available are less 

than the number of modes of interest; yet another issue where SOBSS algorithms have been found wanting. The algorithm 

has good convergence and has been shown to outperform Second Order Blind Identification (SOBI) algorithm. These 

encouraging results serve as motivation to apply and test NoHeJAD on practical real world OMA problem. 
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