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ABSTRACT 

 

A local solve method will be presented for extracting modal parameters from inconsistent data. By 

definition global parameter estimation methods cannot handle inconsistent Frequency Response 

Function (FRF) data (frequency shifts, non-linearity’s, etc.) and in practice it is very difficult to select 

appropriate poles from the stability or consistency diagrams presented in commercially available modal 

parameter estimation methods. The typical way to resolve this issue is to employ measurement 

techniques that acquire all FRF’s simultaneously, requiring shakers, numerous accelerometers and a 

large channel count acquisition system; or performing a Roving hammer, Multiple Reference Impact 

Test (MRIT). The reality is that sometimes FRF data is not acquired in a consistent manner. This paper 

presents a “local solve” method that performs a global solve on individual or groups of consistent FRF’s 

and combines the end result into a set of global modal parameters. 

 

NOMENCLATURE 

 

mi = lumped mass 

ci = discrete damping value 

ki = discrete stiffness value 

ζ = percent damping 

H(f) = FRF matrix 

 

INTRODUCTION 

 

If anyone has spent time during their formal education studying experimental modal analysis, the 

instructor always harps on the necessity of acquiring a consistent set of data. In other words, the 

experimentalist is highly encouraged to control the environment that the testing occurs in. One of the 

best ways to acquire a consistent set of modal data is to acquire all the data simultaneously, using a 

Multiple-Input, Multiple-Output (MIMO) approach, using several shakers and placing accelerometers 

over the entire structure at the degrees of freedom (DOF’s) that are to be measured. Another alternative 

is to use the MRIT approach, but even using this methodology if care is not taken the structure under test 

can change during the data acquisition. One problem with MIMO testing is that it can be cost prohibitive 

for a small test lab to acquire all the hardware required to perform a large scale MIMO test. In these 

scenarios, it is not uncommon for the test lab to setup a system where they take the required data in 
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several measurements, by roving transducers across the structure or by using mono-axial transducers and 

acquiring tri-axial data in 3 passes by first acquiring a measurement with all transducers oriented in the 

x-direction then the y-direction and then the z-direction. Sometimes the analyst is stuck with a set of 

inconsistent data supplied by another party and the structure is no longer available for re-testing. 

 

THE PROBLEM WITH INCOSISTENT DATA - AN ANALYTICAL DATASET 

 

An analytical dataset is introduced to demonstrate how sensitive global parameter estimation methods 

are to inconsistent data. FRF’s were generated for a 6 degree-of-freedom (DOF) lumped parameter 

model shown in Figure 1. A 6x6 FRF matrix was generated from 0 to 16 Hz. Figure 2 illustrates the 

clean Complex Mode Indicator Function (CMIF) and clear stability diagram that would be expected. In 

order to replicate the situation where accelerometers are roved across a structure during measurement a 

very slight mass perturbation was introduced to each mass individually. The eigenvalue solution was 

recalculated and FRF’s were calculated for the row of the FRF matrix where the mass was added. The 

total mass of the structure is 45 kg, and a 0.0045 kg (0.01%) mass perturbation was applied. Even for 

this slight inconsistency in the dataset the results are apparent when a new stability diagram is 

calculated. Figures 3 and 4 illustrate how cluttered the stability diagrams can become when the data is 

inconsistent. When the data is inconsistent it is very difficult to select the proper modes from the 

stability diagram. 

 

m1 = 10 kg k1 = 10 kN/m
m2 = 7 kg k2 = 10 kN/m
m3 = 9 kg k3 = 10 kN/m
m4 = 9 kg k4 = 10 kN/m
m5 = 5 kg k5 = 8 kN/m
m6 = 5 kg k6 = 12 kN/m

k7 = 5 kN/m
k8 = 1 kN/m
k9 = 5 kN/m
k10 = 1 kN/m

Constant Modal Damping ζ = 0.01%

m1 = 10 kg k1 = 10 kN/m
m2 = 7 kg k2 = 10 kN/m
m3 = 9 kg k3 = 10 kN/m
m4 = 9 kg k4 = 10 kN/m
m5 = 5 kg k5 = 8 kN/m
m6 = 5 kg k6 = 12 kN/m

k7 = 5 kN/m
k8 = 1 kN/m
k9 = 5 kN/m
k10 = 1 kN/m

Constant Modal Damping ζ = 0.01%
 

Figure 1 – Lumped parameter model used to generate analytical dataset 
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Figure 2 - Stability diagram of global solve using analytical dataset without frequency shifts 

 

 

 
Figure 3 - Stability diagram of global solve using analytical dataset with 

mass perturbations, introducing frequency shifts 
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Figure 4 - Stability diagram of global solve using analytical dataset with 

mass perturbations, introducing frequency shifts (zoomed) 

 

APPROACH 

 

In this paper a method is presented where a global parameter estimation approach is applied to 

individual FRF’s or sets of FRF’s that were acquired during the same measurement in the acquisition 

system. For the MIMO case where accelerometers are roved across the structure, each individual 

placement of accelerometers would constitute a measurement. Each one of these local solves is then 

constructed into a global modal model, where the local pole (frequency and damping) estimate is used 

for the FRF synthesis, yet an averaged estimate of the pole is assigned to each mode shape. 

 

In order to collect an estimate of the average pole for each mode a cluster diagram of each of the local 

pole estimates is displayed. This plot illustrates the degree of scatter in the in the local estimates and 

allows the user to select a cluster of poles to collect for averaging into a global estimate. 

 

Figures 5 and 6 give an overview of the data flow and differences between the global parameter 

estimation and the local solve approach. 
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Figure 5 – Overview of the typical global parameter estimation approach 
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Figure 6– Overview of the local parameter estimation approach 
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RECTANGULAR PLATE EXAMPLE 

 

To demonstrate the local solve process two simple modal tests were executed on a rectangular aluminum 

plate (Figure 7). First, a consistent set of data was taken by roving a hammer across 36 DOF’s in the 

direction normal to the surface of the plate. Three reference DOF’s were placed on three of the four 

corners of the plate, points 1, 6 and 36 (Table 1). A second set of data was acquired by applying the 

hammer at two corners of the plate, points 1 and 36, and roving six accelerometers across the plate, 

resulting in twelve measurements (Table 2). 
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Figure 7 – Aluminum Plate: 290mm x 250mm x 8mm’s thick 

 

 

 

Measurement Reference/Excitation 

DOF 

Response DOF’s 

1 1 1, 6 and 36 

2 2 1, 6 and 36 

3 3 1, 6 and 36 

… … … 

… … … 

36 36 1, 6 and 36 
Table 1 – Consistent measurements: 3 fixed accelerometers, hammer roved across structure 

3 FRF’s per measurement 
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Measurement Reference/Excitation 

DOF 

Response DOF’s 

1 1 1 thru 6 

2 36 1 thru 6 

3 1 7 thru 12 

4 36 7 thru 12 

5 1 13 thru 18 

6 36 13 thru 18 

7 1 19 thru 24 

8 36 19 thru 24 

9 1 25 thru 30 

10 36 25 thru 30 

11 1 31 thru 36 

12 36 31 thru 36 
Table 2 – Inconsistent measurements: 6 accelerometers roved across structure 

6 FRF’s per measurement 

 

The modal model for the consistent FRF data was estimated with a global modal parameter estimation 

method and serves as the control. The parameter estimation method used was Rational Fraction 

Polynomial with the z-transform applied (RFP-z)
[1]

. The modes were selected from the stability diagram 

using an automatic selection procedure developed by Chauhan
[2]

. The mode shapes estimated had low 

complexity and the mode shapes compare well to what continuous vibration theory and Finite Element 

Analysis (FEA) would predict for a rectangular plate. The modes from this modal model will be referred 

to in the remainder of the paper as the “consistent modes”. 

 

For the inconsistent dataset, an attempt was made to make a global fit of the data following the 

procedure used for the consistent data set. The stability and cluster diagrams that were computed for this 

data set are shown in Figures 8 & 9. Several attempts were made to select modes from these diagrams. 

Chauhan’s automatic selection procedure resulted in several extra modes being selected and filtering 

down to six still proved poor fits of the measured FRF’s and poor and highly complex estimates of the 

mode shapes. A region selector was used in the cluster diagram to calculate the centroid of each cluster 

which still resulted in poor estimates of the shapes. 

 

Table 3 shows the cross Modal Assurance Criterion (MAC) between the consistent modes and the 

inconsistent modes fit with a global parameter estimation. The diagonals with MAC values ranging 

between 0.588 and 0.869 demonstrate poor correlation. Table 4 gives an overall summary of the 

correlation between the consistent modes and the global inconsistent modes. The highlights are that the 

frequency values are different due to mass loading, as expected, and the estimation of the shapes are 

poor. 
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Figure 8 - Stability diagram of global fit of inconsistent data 

 

 
Figure 9 - Cluster diagram of global fit of inconsistent data 
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 Inconsistent Data - Global Solve Modes 

Consistent 

Modes 

351.85 484.27 710.68 857.01 974.14 1423.39 

345.79 0.590 0.004 0.000 0.006 0.000 0.000 

490.08 0.001 0.588 0.005 0.000 0.000 0.001 

706.22 0.000 0.019 0.869 0.000 0.001 0.000 

857.74 0.001 0.000 0.002 0.714 0.003 0.000 

961.11 0.002 0.001 0.006 0.007 0.698 0.012 

1418.90 0.000 0.000 0.001 0.000 0.016 0.798 
Table 3 - MAC of consistent mode shapes vs. mode shapes obtained from inconsistent data and a global solve 

 

Consistent Modes Global Solve Modes     

Frequency 

(Hz) 

% Damping Frequency 

(Hz) 

% Damping Delta f 

(Hz) 

% diff Delta D MAC 

345.79 0.394 351.85 0.321 6.06 1.72 -0.073 0.590 

490.08 0.321 484.27 0.328 -5.81 -1.20 0.007 0.588 

706.22 0.439 710.68 0.295 4.46 0.63 -0.144 0.869 

857.74 0.277 857.01 0.333 -0.73 -0.09 0.056 0.714 

961.11 0.526 974.14 0.399 13.03 1.34 -0.127 0.698 

1418.90 0.545 1423.39 0.423 4.49 0.32 -0.122 0.798 
Table 4 – Frequency and damping comparison of correlated mode pairs 

consistent modes vs. global solve modes of inconsistent data 

 

A local solve was now attempted on the inconsistent dataset. For this method a cluster diagram as shown 

in Figure 10 is calculated. Each symbol in a cluster is the result of running a global solve on a locally 

consistent, individual measurement. A box was placed around each cluster and an averaged, exact 

centroid of each cluster is calculated, which is the frequency used to globally represent the modes. The 

cluster diagram also illustrates the variance in both frequency and damping estimates. The Complex 

Mode Indicator Function (CMIF) shows where the modes are expected and it also illustrates the extreme 

amount of frequency shift in the data. Table 5 shows that even with this amount of frequency shift, the 

MAC between the consistent modes and the local solve modes can be seen to be in good agreement. 

 

The residues are estimated using the frequency and damping estimates that were acquired in each 

measurement. In the situation where a local frequency and damping estimate is not available for the 

residue fit the global or averaged value is used. The residues for each measurement are then assembled 

into a global mode shape estimate. 

 

Table 5 shows the cross MAC between the consistent modes and the inconsistent modes fit with the 

local solve approach. The diagonals with MAC values ranging between 0.977 and 0.997 demonstrate 

very good correlation. Table 6 gives an overall summary of the correlation between the consistent modes 

and the “local solve modes”. The highlights are that the frequency values are different due to mass 

loading, as expected, with little variance in the damping and the estimation of the shapes are excellent 

compared to the consistent modes. The local solve modes also exhibited low complexity. 
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Figure 10 – Cluster diagram showing frequency and damping scatter and exact centroid pole estimate 

 

 

 Local Solve Modes 

Consistent 

Modes 

350.58 486.61 711.27 867.35 967.80 1419.47 

345.79 0.996 0.000 0.000 0.000 0.001 0.000 

490.08 0.001 0.993 0.000 0.001 0.000 0.000 

706.22 0.000 0.001 0.997 0.001 0.000 0.000 

857.74 0.002 0.001 0.002 0.990 0.002 0.000 

961.11 0.006 0.000 0.002 0.006 0.989 0.004 

1418.90 0.001 0.002 0.000 0.000 0.001 0.977 
Table 5 - MAC of consistent mode shapes vs. mode shapes obtained from inconsistent data and a local solve 

 

Consistent Modes Local Solve Modes     

Frequency 

(Hz) 

% Damping Frequency 

(Hz) 

% Damping Delta f 

(Hz) 

% diff Delta D MAC 

345.79 0.394 350.58 0.342 4.79 1.39 -0.052 0.996 

490.08 0.321 486.61 0.388 -3.47 -0.71 0.067 0.993 

706.22 0.439 711.27 0.387 5.05 0.72 -0.052 0.997 

857.74 0.277 867.35 0.207 9.61 1.12 -0.070 0.990 

961.11 0.526 967.80 0.421 6.69 0.70 -0.105 0.989 

1418.90 0.545 1419.47 0.488 0.57 0.04 -0.057 0.977 
Table 6 – Frequency and damping comparison of correlated mode pairs 

consistent modes vs. local solve modes of inconsistent data 
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LIMITATIONS 

 

The current approach does not address the closely coupled modes/repeated root issue. If the clusters of 

the closely coupled modes or repeated roots overlap the modes cannot be properly separated and 

extracted. The authors do believe that if the individual measurements contain enough reference and 

response DOF’s equivalent to the order of the repeated roots it may be possible to extract the modes 

from separate clusters by also evaluating the participation vectors.  

 

FUTURE WORK 

 

Only a simple example was presented to support the work presented. More difficult examples need to be 

presented. As more difficult test articles are attempted the future work outlined below will become more 

evident. 

 

Support for more iterations: when the measurement numbers are few, but inconsistent, more iterations 

can be included. Managing more iterations could be problematic, but this is probably more a 

bookkeeping issue, than a technical one. Adding more iterations also adds to the processing time. 

 

The automated approach outlined by Phillips
[3]

 may help in automating the local solve process to 

support closely coupled modes and should also be investigated as a way to sort the use of more iterations 

that could be generated using the process presented. 

 

Support for measurement grouping. This occurs when the user knows that certain groups of 

measurements are consistent, as in the rectangular plate example where measurements 1 and 2, 3 and 4, 

etc., can be considered consistent since only the impact location is changed. 

 

CONCLUSION 

 

While the authors advocate always trying to acquire the most consistent data possible, a method has 

been shown that can extract modal parameters from inconsistent data. This method works when the 

spread of the modes is such that the clusters of modes can be easily identified. When the modes are 

closely coupled or repeated and the clusters overlap this method should not be used. 
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