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Using the unified matrix polynomial
approach (UMPA) for the development
of the stochastic subspace identification
(SSI) algorithm
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Abstract

The unified matrix polynomial approach (UMPA) was developed in order to understand and derive various experimental
modal analysis algorithms (which have been developed in isolation) using a common mathematical formulation. Various
commercially available algorithms — such as the polyreference time domain, least squares complex exponential, and
eigensystem realization algorithm etc. — can be explained using UMPA methodology, which makes it easier to understand
both the advantages and limitations of such algorithms. In view of this fundamental characteristic of the UMPA, this paper
aims at using the approach to understand, explain and develop the stochastic subspace identification (SSI) algorithm -a
popular time domain operational modal analysis (OMA) algorithm. The roots of SSI algorithm lie in the identification of
linear dynamic systems, traditionally a communications and controls engineering area. By means of the UMPA, the SSI
algorithm’s similarity to a high order time domain OMA algorithm can be shown. It can also be shown that state
transition matrices identified using the SSI algorithm and UMPA formulation are related to each other through a similarity
transformation, thus characterizing the same system.
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mathematical concept that places a variety of modal

l. Introduction R : o )
parameter estimation algorithms within a consistent

Modal parameter estimation is an important step in
experimental modal analysis (EMA), the goal of
which is to identify modal parameters of the
structure-i.e. the modal frequency, damping and
mode shape that characterize it. Over the years,
modal parameter estimation has been an area of con-
siderable research, and several parameter estimation
algorithms which can assist in executing this task are
now available. Historically, most of these algorithms
have been developed independently to each other,
making it difficult to understand the similarities they
share. The wunified matrix polynomial approach
(UMPA) (Allemang et al., 1994; Allemang and
Brown, 1998; Allemang and Phillips, 2004) is a

framework. Thus, the UMPA makes it easier to under-
stand and compare these algorithms and evaluate their
advantages and limitations. Furthermore, the UMPA
aids in formulating these algorithms using a common
mathematical framework.

The last 15 years or so have seen the emergence of a
new methodology that aims at identifying dynamic
characteristics of a structure solely on the basis of
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measured responses; this is in contrast to the traditional
modal analysis, which requires knowledge of both input
forces and output responses (Maia and Silva, 1997;
Ewins, 2000). This methodology is referred to as
output-only modal analysis or, more commonly, oper-
ational modal analysis (OMA) (Zhang et al., 2005).
Due to its usefulness in understanding and developing
modal parameter estimation algorithms, the concept of
the UMPA was recently extended to OMA in Chauhan
et al. (2007). This work has come to illustrate how fun-
damental data (power spectra and correlation func-
tions) should be used by means of the UMPA model
to develop various time, frequency and spatial domain
OMA algorithms.

The work presented in this paper aims at using
higher order time domain UMPA formulation for
OMA to derive the stochastic subspace identification
(SSI) algorithm.

The SSI is a popular time domain OMA algorithm
based on a parametric state-space model (Van
Overschee and De Moor, 1996; Peeters and De
Roeck, 2001; Brincker and Andersen, 2006). It is
worth noting that the use of state-space models for
modal parameter estimation is not new. In fact, such
models have also been used in traditional modal ana-
lysis. The eigensystem realization algorithm (ERA)
(Juang and Pappa, 1985; Longman and Juang, 1989)
and Ibrahim time domain (ITD) algorithm (Ibrahim
and Mikulcik, 1977; Pappa, 1982) are examples of
such algorithms in the EMA domain which utilize
state-space models. Equivalent UMPA formulation of
these algorithms can be found in Allemang and Brown
(1998) and Allemang and Phillips (2004).

This paper has three main objectives:

a. To derive the SSI algorithm by using UMPA for-
mulation for OMA in the time domain.

b. To explain the relationship between state
transition matrix obtained using conventional SSI
formulation and that obtained using UMPA
formulation.

c. To explain the fundamental similarities (and differ-
ences) between higher order and state-space formu-
lations for modal parameter estimation algorithm.

The paper will first introduce the UMPA model in
the OMA domain and then the covariance based SSI
(SSI-COV) algorithm. This will be followed by an
explanation of the theoretical relation between higher
order differential equations and corresponding state
equations. Based on this knowledge, the UMPA
model will be modified and utilized for developing
the SSI-COV algorithm. Finally, theoretical con-
cepts will be illustrated by means of a simple five
degrees-of-freedom (d.f.) system.

2. Theoretical background

2.1. Revisiting the unified matrix polynomial
approach (UMPA) model

In order to understand the UMPA, a matrix equa-
tion of motion for a general multi d.f. system is
considered

MX(1) + Cx(1) + Kx(1) = (1) (1)

where:

M is the mass matrix,

C is the damping matrix,

K is the stiffness matrix,
x(#) 1is the response vector
f(r) 1is the force vector.

This is a second order differential equation that can
be solved either in the time, frequency or Laplace
domain. The characteristic equation for the system
can be obtained by Laplace transforming equation
(1). Thus

[Ms® + Cs + K]x(s) = f(s) ®)

Under free vibration conditions, the characteristic
equation becomes

IMs* + Cs + K| =0 3)

The partitioned form of the above equation can be
written as follows

TMi My - My, TCii Cio - Cip T
My My - My, Cy Cn - Cyy
sz+ S
—Mml Mm2 Mmm— —le Cm2 Cmm—
TKi Koo Ky 7
Ky Ky - Ky,
+ =0
—Kml KmZ Kmm—

4)

This second order model can be converted into a
higher order model in order to handle spatial informa-
tion being truncated to a size smaller than the number
of eigenvalues in the measured data. Thus equation (4)
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can be expanded to a higher order matrix polynomial
and noted in a more generic form as

d2mS2m + aZm_ISZ'"*l O +opg=0 %)

Note that the size of a is same as the size of the par-
tioned sub-matrices, and that each o matrix involves a
matrix product and summation of several Mj;, C;; and Kj;
sub-matrices. The higher order equation, equation (5),
has the same eigenvalues as the original second order
differential equation, equation (1). In other words, irre-
spective of the representation, the obtained dynamic
characteristics of the system will remain the same.

The general equation of motion in equation (1) can
also be expressed as higher order differential equations
in frequency and Laplace domains using matrix poly-
nomial formulations. Generally these equations are
represented in terms of frequency response functions
(FRF) H(w) and

Transfer functions H(s) as

Frequency domain

| ot (o) "+t (jeo) " - + ap | x(w)

= [Bulj) " +Bpr(jeo)" 4+~ + By (@)
or (6)
[otm (o) "+t —1 (o)™ -+ -+ + ot JH(w)

= [Bali) " +By_y ()"~ - + B

Laplace domain

[Um(s)m'i_amfl(S)m_1 LR + aO]X(S)
= [Ba(®)" +Bat ()" - + BoJf(s)
or ™
[Um(s)m'i_amfl(S)m_l LR + do]H(S)

= [Buls)" +By_y ()" - + BoJI

In the above equations, m usually represents the
model order (theoretically related to d.f. of the
system) and is the order of denominator polynomial
whereas n represents the order of numerator polyno-
mial (related to the nature of input excitation).

The equivalent relation in the time domain is
given as

Time domain

d"x(1) d"'x(0)
P R A +otox(?)
d™(1) d"1(7)
=p — - - f
ﬁn df” +ﬁn71 dln_l +B0 (t)
(8a)

which can be written in the discrete time domain in
terms of the impulse response function (IRF), A(f), for
sampled data as

amh(,) + omth(ty ) + -+ +aph(19) =0 (8b)
where h represents IRF matrices at various time lags
and a represents coefficient matrices.

To understand the model further, the polynomial
model for FRF-as described in equation (6)-is con-
sidered. For a particular FRF H,,(®), where p and ¢

are response and excitation d.f. respectively, equation
(6) can be written as

H () = X0(@) _ Bulio) +m (o) 4 === = = +hoCjw)”
P F@) (o) "o (joo) " = — — — — +ao(jo)
)
This can be rewritten as
Y ; n_ .~k

Fy(w) Y0 an(jow)r

Or, for a general multiple input, multiple output case

> (o) ouH(w) =Y (jo) (11
k=0 k=0

Note that the size of the coefficient matrices is nor-
mally N; X' N, for oy and N; X N, for Py where N, and
N, are the number of input and output d.f. respectively.
(In other words, N; is the number of d.f. where force is
applied to the structure and N, is the number of d.f.
where the response to these forces is measured.)

As shown previously in equation (8b), the equivalent
model of equation (11) in the time domain is given in
terms of IRFs h(7). This can be written in a more con-
cise form as shown below (with 0 being a null matrix).

m

deh(l):(] (12)
k=0

The general matrix polynomial model concept, as
shown in equations (11) and (12), recognizes that
both time and frequency domain models generate func-
tionally similar matrix polynomial models. This model,
which describes both domains, is thus termed the
UMPA. Further details of the UMPA and its effective-
ness in understanding and developing various modal
parameter estimation algorithms can be found in
Allemang et al. (1994), Allemang and Brown (1998)
and Allemang and Phillips (2004).

To realize the obvious potential that the UMPA has
with regard to overall understanding of the modal
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parameter estimation procedure, it is extended to OMA
in Chauhan et al. (2007), where it is shown how funda-
mental data (correlation functions and power spectra,
instead of IRF and FRF), should be used within the
UMPA framework for developing various OMA algo-
rithms. The UMPA equivalent equations, correspond-
ing to equations (11) and (12), in the OMA domain, are
presented in terms of positive power spectra G,
(Cauberghe, 2004) in the frequency domain (for any
given frequency w;) and correlation function Ryy in
the time domain (for any given time lag ¢,) as [7]

> (o) ouGix (@) = ) (jo) By (13)
k=0 k=0
> ouRxx(tipx) = 0 (14)

k=0

It is worth noting that the use of positive power
spectra is necessary for accurate modal parameter esti-
mation within the OMA domain. This can be explained
by means of the partial fraction model of power spec-
tra, which reveals that the power spectra contains infor-
mation about the system modes twice - both as actual
system modes as well as corresponding modes with
negative damping. In other words, the power spectra
formulation contains the same system-related informa-
tion twice, resulting in complications in the parameter
estimation procedure. This issue of negatively damped
modes is avoided by using positive power spectra
instead of power spectra. For a further explanation
related to the application of positive power spectra
(Chauhan et al., 2007; Cauberghe, 2004).

Unlike EMA, in equations (13) and (14) N; is the
number of outputs being considered as references and
thus it is not exactly inputs as is the case with equations
(11) and (12). It should be further noted that only posi-
tive lags of the correlation function are used for the
above formulation.

An important aspect of the UMPA formulation
(both in EMA and OMA forms), as shown in equations
(11) to (14), is to understand the relationship between
the number of roots (or modal parameters) of the
system and the model order m and size of the coefficient
matrices a. The total number of roots is equal to either
mN; or mN, depending on whether the equations are
formed on the basis of the number of references (or
inputs in case of EMA) or number of outputs.

2.2. The covariance based stochastic subspace
identification (SSI-COV) algorithm

The SSI algorithm is a well-known and commonly used
OMA algorithm that utilizes a state-space formulation

based approach to modal parameter identification
using output-only data. The SSI algorithm stems
from usage within the area of controls engineering,
where state-space models have been used for designing
optimal control systems and defining the controllability
and observability of linear systems. As mentioned ear-
lier, state-space models have also been utilized for
system identification purposes and have been known
to the modal analysis community in both the EMA
and OMA domain (the ERA, ITD and SSI are some
of the algorithms based on the state-space model).

There are several good resources that describe the
SSI algorithm in detail (Peeters and De Roeck, 2001;
Van Overschee and De Moor, 1996; Brincker and
Andersen, 2006). This Section presents the algorithm
briefly, laying down the fundamentals for its subse-
quent development and understanding using the
UMPA.

The SSI-COV algorithm is based on the formulation
of the stochastic state-space model using measured
output responses. In the discrete time domain, this
model is represented by the following equations (not
taking into account the process and measurement
noise)

Yip1 = AYx

(15)
vk = Cxg

where x is the vector of measured responses, y is the
vector of state variables, matrix A is the state transition
matrix (which contains all necessary information about
the dynamic characteristics of the system), and C is the
output matrix. The covariance matrix of output
response signals x can now be expressed as

R; = E[xxx[_;] = CA™'G (16)
where G = E[y,, X/ ] is the state-output covariance
matrix. As mentioned earlier, the state transition
matrix contains necessary information regarding
system dynamics and this information is described by
the eigenvalues and eigenvectors of the state transition
matrix A, eigenvalues A, being the diagonal values of A
and eigenvectors ¥, being given by ¥, = Ce,, where @,
is the ™ column of ® corresponding to the r” eigen-
value A, obtained after eigenvalue decomposition of the
state transition matrix A.

A= QAD! (17)

The procedure of estimating a system’s modal par-
ameters from measured output responses in an output-
only framework requires an estimation of the state

transition matrix A and output matrix C. This is typic-
ally achieved by the decomposition of the block Hankel
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matrix of output correlation functions into observabil-
ity and controllability matrices based on the following
relation

C
CA

Hyo=E[xx! ]=| CA’ | x[G AG A%G ---A"'G]

car
=0,C,
(18)

Equation (19) shows the block Hankel matrix of cor-
relation matrices R;, where 7 indicates the time lag.

R, R, --- R,
R, R; Ryi1

Hy = : : (19)
Rp Rp+1 Rp+q71

The block Toeplitz form can also be used, as shown
in Peeters and De Roeck (1999), instead of the block
Hankel matrix to achieve the same goal. The block
Hankel matrix can be decomposed into observability
and controllability matrices, O, and C,, by performing
singular value decomposition of H, 4

H,, = USV’"
0, = US'? (20)
Cq — S]/2VT

The procedure for estimating the state transition
matrix A after calculating the observability and con-
trollability matrices is straightforward. The output
matrix C is given by

C = First block row of O, (21)
and the state transition matrix is obtained using
+
A=0],0] (22)

where O,_; is obtained by deleting the last block row of
0O,, O;_l is the upper-shifted matrix by one block row
and T represents pseudo-inverse.

In the context of this work, it is important to under-
stand that the state transition matrix A, which contains
information about dynamic characteristics of the
system, can also be estimated using the block shifted
Hankel matrix. This formulation is explained in terms
of the block shifted Toeplitz matrix in Peeters and De
Roeck (1999). The block shifted Hankel matrix can be

expressed in terms of observability, controllability and
state transition matrices as

H= E[xks1 Xy | = OpAC, (23)

and thus A can be estimated as
A=O/H C/ (24)

P.q

The above formulation of the SSI is well-known and
the state transition matrix A is typically estimated
using either of the two equations; equation (22) or
equation (24).

However, from a modal parameter estimation per-
spective, since the ultimate aim is to identify modal
parameters, it is mathematically possible to estimate
the state transition matrix A directly from the Hankel
matrix of correlations without needing to first obtain
the observability and controllability matrices. This is
explained in the following discussion.

From equation (18), it is easy to understand that
decomposition of H,, into O,Cq is not unique.
Substituting Oy, as the identity matrix I in equation
(18) results in C4 being equivalent to Hpg4 i.e.
Cq=H,, . The block shifted Hankel matrix of equation
(23) can now be written as

Hpq = E[xkr1 X.{_l] = 0,AC, =1AH, ,

by substituting O, =1 and Cy=H, 4. In such a case, the
state transition matrix A can be expressed as

Ay =A=H' H,, (25)

Note that A, represents an estimation of the state
transition matrix using the Hankel matrix directly, as
shown in equation (25). The importance of this result
will be clear later, when the UMPA is utilized for deriv-
ing the SSI algorithm and it is shown that A, is the
companion matrix (Horn and Charles, 1985). For the
sake of simplicity, A, will continue to be referred to as
the state transition matrix - albeit after a direct estima-
tion from the Hankel matrix.

The fact that the state transition matrix A (as esti-
mated using the observability matrix) and A, (as esti-
mated from the Hankel matrix) are related by a
similarity transformation means that they will have
the same eigenvalues and eigenvectors. At this point
then it is good to review the concept of similarity trans-
formation and properties of similar matrices.
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2.2.1. Similarity transformation and properties
of similar matrices

It is a well-known fact that two similar matrices (those
related through a similarity transformation) have the
same eigenstructure, thus having the same eigenvalues
and eigenvectors. This also applies to characteristic
equations (and transfer functions) (Kuo, 1995). It is
now shown how matrices A and A,, estimated using
the observability matrix and directly from the Hankel
matrix respectively, are related to each other through a
similarity transformation, thus vyielding essentially
the same system characteristics (eigenvalues and
eigenvectors).
Consider equation (23)

«

H,, = 0,AC,

In equation (23), H 4 can be substituted in terms of
A, and Hj, 4 using equation (24) to form a relationship
between A and A,

A:H,, = 0,AC,

This can be further expanded through singular value
decomposition based definitions of O, Cq and H,, 4, as
described in equation (20), in the following manner

A,USVT = US!2AS!/2yT
AzUsl/Zsl/2vT — Usl/ZAsl/ZVT
A, = US!2AS~1/2yT

(26)

This shows that the matrix P = US!?, relating A
and A,, is a similarity transformation -thus implying
that A and A, have the same eigenvalues and eigenvec-
tors or, in other words, that both matrices characterize
dynamics of the same system.

Along similar lines, it can also be shown that simi-
larity transformation preserves the characteristic equa-
tion of A-i.e. the transformed system A, also has the
same characteristic equation as A. The characteristic
equation for the transformed system can be written as
|sT — Ay| = 0, which can be expressed in terms of simi-
larity transformation matrix P and A as

|sT — Aq|
= [sI — PAP™'|
= [sPP~! — PAP| (27)
= [P| |sI— Al [P

= |s[ — A

Since the characteristic equation is preserved, the
two matrices will have the same eigenvalues and eigen-
vectors; in other words, A and A, represent the same
dynamic system and will thus yield the same modal
parameters.

3. Deriving the covariance based
stochastic subspace identification
(SSI-COV) algorithm using the unified
matrix polynomial approach (UMPA)

3.1. Relationship between higher order
differential equations and state equations

Having understood the theoretical aspects of the SSI algo-
rithm, the focus of this section is on understanding its
relationship with higher order modal parameter estima-
tion algorithms such as the polyreference time domain
(PTD) (Vold and Rocklin, 1982; Vold et al., 1982) algo-
rithm. The key to understanding this connection lies in the
basic concept of representing a higher order differential
equation in terms of equivalent state equations.

In general, a differential equation of m'™ order can be
decomposed into m first-order differential equations.
Consider such an m” order differential equation as
the one underneath in equation (28), analogous to the
left hand side of equation (8a) and representing a gen-
eral m d.f., MIMO system.

d"x(1)

dm— 1 X([)
A drm -1~ —7

dtmfl

+—-————- +apx(1) =0
(28)
The above equation can be rearranged as follows

(note that division by e, is incorporated in the defin-
ition of &)

d’x(t)  _ d"'x(1) d"2x(1)
dgm A1 dgm—1 Om—2 dgm—2

...... —ox ()

(29)
To represent the above equation in its equivalent

state-space form, a set of variables can be defined,
such that

Y1 (1) = x(7)
_dx(p)
Yo(0) = d
(30)
dm—l (l)
V(D) = Tz‘
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The variables yi, y,......... Yy, are called state vari-
ables. These can be utilized to form a set of m first order
differential equations which are known as the state
equations.

The state equations are written as

dy, () _

a ¥2(?)
d
%(t) =y3(1)
(3D
dy(’;[(t) = _&mflym([) - &mnym—] (t) e - &Oyl ([)

It is important to note that although equations (31)
and (28) appear to be very different representations, in
essence they represent the same system (characterized
by the same scalar polynomial coefficients).

Typically, equation (31) is written in the condensed
form

YO _ v

T (32)

where the state vector Y(7) and matrix A are defined as

0 1 0 0
yi(0)
0 0 1 0
y2(0)
Y() = , A=
0 0 0 1
Y1) _ i _ _
L—% —o —o —Oy—1 |

(33)

It is clear that matrix A is the companion matrix of
the high order differential equation equation (28), its
eigenvalues being roots of the equation. The formula-
tion of the companion matrix using polynomial coeffi-
cients is a standard way of finding the roots of a
polynomial equation.

This discussion forms the basis of an important
inference with regards to understanding the relation-
ship between a typical higher order modal parameter
estimation algorithm (e.g the PTD algorithm) and a
state-space approach-based algorithm (e.g the SSI algo-
rithm). A higher order algorithm is used to estimate
polynomial coefficients which are then assembled in a

companion matrix form; eigenvalue decomposition of
this companion matrix yields the system poles. On the
other hand, state-space algorithms estimate companion
matrix directly. (Though typically they estimate state
transition matrix, but state transition matrix is related
to companion matrix through a similarity transform-
ation. As mentioned in Section 2.2., SSI algorithm
can be formulated directly from Hankel matrix of cor-
relations to directly yield the companion matrix).

The knowledge gained from this section will be uti-
lized in the upcoming section, where the UMPA equa-
tion for the higher order modal parameter estimation
algorithm in the time domain, analogous to the PTD
algorithm, is modified for the development of the
SSI algorithm.

3.2. Using the unified matrix polynomial
approach (UMPA) for deriving the covariance
based stochastic subspace identification
(SSI-COV) algorithm

Consider the time domain UMPA equation in the
OMA domain, equation (14), with model order m

m
D ouRxx(tirk) = 0
=0

This equation can be expanded for a high order
(using higher order coefficient normalization analogous
to equation (29)) and can be written as underneath in
equation (34), which represents the UMPA equation
for the PTD, modified for the OMA domain
(Chauhan et al., 2007).

Rux(Zi10)
Ryx(Zi41)
[do o1 - Om-1 ] Ny xmNyy
Rxx(lH—m—I) MmN,y x N,y
= —Rux(lism)n,, xN,
(34)

The number of system modes (N) that can be
obtained using this equation is N=m x N,,; where
N, is the number of output responses considered as
references.

Equation (34) can be repeated for other time lags
and the matrix polynomial coefficients can be identified
in a least square manner. This formulation is shown in



0 I 0 0
0 0 1 0
0 0 0 I
—0y —O0 —0O - —Om_q N, o XN, of
[ Rux(fir0) |
Rux(ti+1)
x

Rxx(ti+m*2)

L Rxx(ti-‘rm—l) A mN,,yx N,
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Comparing equations (39) and (25), and using the
definition of the Hankel matrix from equation (19)
(with p=gq), it is clear that

B i+0 i+1 i+m—1
RXX RXX RXX
i+1 i+2 i+m
RXX RXX RXX
Hp,q -
i+m—1 i+m i+2m—1
_Rxx Rxx Rxx — MmN,y xmN,
- pit+l i+2 i+m
RXX RXX RXX
i+2 i+3 i+m+1
<« Rxx Rxx Rxx
Hpq=
i+m i+m+1 i+2m—1
_Rxx Rxx Rxx — MmN,y xmN,

Thus, the state transition matrix [4], obtained in
equation (25) using the Hankel matrix-based SSI for-
mulation, is essentially the companion matrix obtained
using UMPA methodology. In this way, starting from
the UMPA equivalent equation in the time domain for
the OMA, it is possible to derive the SSI-COV algo-
rithm. This process also helps in understanding the
underlying relationship between a typical higher order
identification algorithm and a state-space identification
algorithm.

4. Numerical example

The purpose of this numerical example is not to com-
ment on the accuracy of various algorithms but to
facilitate understanding of their commonalities by
demonstrating how they can be applied to numerically
simulated data. It should be further emphasized that
although minute differences between them exist, the
algorithms are not separate ones but are different

forms of the same algorithm. Thus it is expected that,
due to the various signal processing steps involved, the
estimated parameters will differ slightly from the theor-
etical solution and also from each other.

A simple five d.f. system is considered with the fol-
lowing mass (M), damping (C) and stiffness (K)
matrices.

(250 0 0 0 0
0 350 0 0 0
M=| 0 0 3 0 0],
0 0 0 45 0
L0 0 0 0 50
(3250 =250 0 0 0
—250 450 —200 0 0
C=| 0 —200 320 —120 0
0 0 —120 190 —70
L0 0 0 -7 270
9000 —5000 0 0 0
~5000 11000 —6000 0 0
K=1000x| 0 —6000 12500 —6500 0
0 0 —6500 14500 —8000
0 0 0 0 15000

The analytical modal frequency and damping of the
system are shown in Table 1.

Response data is generated by exciting the system
with a white random uncorrelated set of inputs at all
d.f. The generated response is then processed using the
Welch Periodogram approach (Stoica and Moses, 1997;
Kay, 1988) in order to obtain auto and cross response
power spectra. A 1024 block-size rectangular window is
used along with a 66.67% overlap for data processing
and a total of 300 averages are taken. Correlation

Table |. Comparison of modal frequency and damping obtained using various algorithms

Analytical SSI-Cov

UMPA-SSI/UMPA-PTD

Mode number Frequency (Hz) Damping (%)

Frequency (Hz)

Damping (%) Frequency (Hz) Frequency (Hz)

| 12.526 1.149 12.541
2 22.083 1.059 22.102
3 34.864 2,172 34913
4 88.524 0.487 88.506
5 104.78 0.847 104.72

1.217 12.535 1.185
1.086 22.097 1.066
2.206 34.891 2.145
0.506 88.526 0.479
0.821 104.76 0.780

SSI-COV: Covariance based stochastic subspace identification.

UMPA-SSI/UMPA-PTD: Unified matrix polynomial approach- stochastic subspace identification/unified matrix polynomial approach-polyreference time

domain.
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functions are then obtained by inverse Fourier trans-
formation of averaged power spectra.

The SSI algorithm - the classic form of equation (22)
and the UMPA form of equation (25)-and the UMPA
based higher order algorithm (analogous to PTD equa-
tion (36)) are applied to correlation functions. To com-
pare the performance of these algorithms consistently,
the model order is kept constant at two and all five d.f.
are considered as references. For the sake of simplicity,
from here on the algorithms are referred to as SSI-COV

(the classic form of the SSI algorithm), SSI-UMPA
(SST algorithm formulated using the UMPA) and
UMPA-PTD (PTD algorithm formulated using the
UMPA).

Table 1 and Figure 1 show a comparison of modal
frequency and damping obtained using the three algo-
rithms with the analytical solution. To compare the
modal vector estimates, their values are presented
in Table 2 along with the analytical modal vectors.
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Figure |. Comparison of analytical and estimated modal
frequencies and damping.

Table 2. Comparison of modal vectors.*

S3I-COV Modes

Analytical Modes

Figure 2. Cross modal assurance criterion (MAC) plot
between analytical and covariance based stochastic subspace
identification (SSI-COV) modal vectors.

Degrees-of- Degrees-of- Degrees-of- Degrees-of- Degrees-of-
freedom | freedom 2 freedom 3 freedom 4 freedom 5
Mode | A | 1.490 +0.038i 1.360 + 0.046i 1.201 4+ 0.051i 0.654 +0.027i
U | 1.491 —0.038i 1.361 —0.053i 1.204 — 0.050i 0.656 — 0.029i
S | 1.491 —0.038i 1.361 —0.053i 1.203 —0.051i 0.655 —0.029i
Mode 2 A | 0.837 4 0.064i —0.237 +0.029i —1.209 — 0.006i —0.689 — 0.004i
U | 0.841 —0.050i —0.242 — 0.025i —1.219 —0.008i —0.694 +0.007i
S | 0.840 — 0.050i —0.242 — 0.026i —1.221 —0.009i —0.695 + 0.006i
Mode 3 A | —0.601 + 0.045i —0.249+0.013i 0.132—-0.016i 0.084 — 0.009i
U | —0.608 — 0.029i —0.252 +0.007i 0.135+0.002i 0.084 — 0.004i
S | —0.609 — 0.029i —0.251 +0.008i 0.134 4 0.002i 0.083 — 0.005i
Mode 4 A | —13.65+0.591i 220.4 — 11.86i 121.9 — 4.46i —2080 + 68.45i
U | —12.96 —4.214i 205.5 + 75.45i 113.0+43.17i —1917 —758.5i
S | —12.75 — 4.298i 201.7 +76.99i 111.0+44.13i —1881 —75.01i
Mode 5 A | —19.86 +0.717i 464.7 —19.56i —17.66 +0.872i 21.14—1.517i
U | —19.57 — 1.312i 455.5+47.77i —17.38 — 1.306i 20.80 + 1.050i
S | —19.29 — 1.527i 448.1 +53.18i —17.14 — 1.496i 20.56 + 1.301i

*A- Analytical, U — UMPA-SSI (and UMPA-PTD), S — SSI-COV.
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SSI-COV Modes
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UMPA-SS1 Modes

Figure 3. Cross modal assurance criterion (MAC) plot
between unified matrix polynomial approach stochastic subspace
identification (UMPA-SSI) and covariance based stochastic
subspace identification (SSI-COV) modal vectors.

UMPA-SSI / UMPA-PTD Modes

Analytical Modes

Figure 4. Cross modal assurance criterion (MAC) plot
between analytical and unified matrix polynomial approach- sto-
chastic subspace identification/unified matrix polynomial
approach-polyreference time domain (UMPA-SSI/UMPA-PTD)
modal vectors.

It should be noted that in Table 2 the vectors for each
modes are normalized with respect to the first d.f.
Additionally, for various comparisons, the modal
assurance criterion (MAC) (Allemang, 2003) is calcu-
lated between the analytical and the estimated modal
vectors and the MAC plots are shown in Figures 2 to 4.

Theoretically, various algorithms should result in
modal parameters identical to each other as well as
the analytical solution. However, due to data

processing steps involving windowing, averaging and
singular value decomposition (SVD), the estimates
differ from the analytical solution and also from each
other. The same observation holds true for comparing
the modal vectors.

From the formulations of the UMPA-SSI and
UMPA-PTD, it is clear that the only difference between
the two algorithms is that UMPA-SSI estimates the
companion matrix directly, whereas UMPA-PTD esti-
mates matrix coefficients which need to be assembled
into the companion matrix for finding eigenvalues and
eigenvectors. Bearing this in mind, the expectation is
that the UMPA-SSI and UMPA-PTD should yield
similar modal parameters-a fact also observable by
means of this simple numerical example.

The difference in the modal parameter estimates of
the two variants of the SSI algorithm (classical and
UMPA-based) can be explained as follows. The SSI-
COV contains an extra signal processing step involving
SVD of the Hankel matrix and utilizes the observability
matrix to obtain the modal parameters. However, this
step is not a part of UMPA based formulation of the
SSI algorithm (UMPA-SSI). Theoretically the two
algorithms are still the same, although this extra
signal processing step results in a slight difference in
the estimates of the modal parameters.

It can be observed that cross MAC plots (as in
Figures 2 to 4) comparing analytical, UMPA-SSI and
SSI-COV vectors, are identical. A value of one in the
diagonal means that modal vectors estimated using
various algorithms are not only consistent (Allemang,
2003) in comparison to each other but also consistent
with the analytical modal vectors. However, it should
be noted (see Table 2) that the estimated modal vectors
are not completely identical to the analytical modal
vectors, though they are quite close to the theoretical
values.

5. Conclusion

There are several modal parameter estimation algo-
rithms and it is often difficult to understand the rela-
tionship between them. Although each algorithm has its
own characteristic, the expectation is that they share a
common thread; after all, they identify the same
dynamic system. In this regard, the UMPA has been
an attempt to demonstrate and develop various param-
eter estimation algorithms using a common mathemat-
ical framework. This work shows how the SSI
algorithm can be derived within the UMPA framework.
In its classical form, SSI algorithm seeks to identify the
state transition matrix by performing singular value
decomposition of the Hankel matrix of correlation
functions and estimating the observability matrix. In
this work it is shown that the state transition matrix
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can also be identified directly from the Hankel matrix
without estimating the observability matrix. The rela-
tionship of this state transition to the one obtained
using the classical approach can be proved by means
of a similarity transformation. This implies that both
will have the same eigenvalues and eigenvectors and
hence represent the same system.

Based on this understanding it is then shown how
the basic time domain UMPA equation for OMA can
be utilized to derive the SSI algorithm. It transpires that
the SSI algorithm derived using the UMPA utilizes the
alternative approach of obtaining the state transition
matrix -i.e. its identification directly from the Hankel
matrix. Furthermore, this formulation of the SSI algo-
rithm is similar to a typical high order time domain
OMA algorithm like the PTD algorithm; the only dif-
ference being that, while in the case of the PTD algo-
rithm one estimates the polynomial coefficients which
are then assembled in the form of a companion matrix
to obtain modal parameters, UMPA-based formulation
of the SSI algorithm results directly in the companion
matrix itself. In other words, the state transition matrix
obtained as a result of working on the Hankel matrix is
merely the companion matrix that one will form once
the polynomial coefficients are identified using PTD.

These results not only show the strength of the
UMPA as a powerful concept for developing a variety
of algorithms including the SSI algorithm, but also its
usefulness in explaining the similarities between algo-
rithms that otherwise seem very different from each
other.
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