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Abstract 
The dynamic response of mechanical systems with rotating elements (for example, operating wind turbines) 

cannot be described using a classical linear time-invariant (LTI) formulation because the mass and stiffness 

matrices can be periodically varying while the rotor rotates. Such systems belong to the class of linear 

periodic time variant (LPTV) systems, which require special treatment for their experimental identification. 

For instance, the Harmonic Power Spectra (HPS) method, which is based on Floquet theory, can be applied. 

Following this method, the experimentally obtained responses are exponentially modulated using the 

rotational frequency, the HPS matrix is computed between the modulated responses and is used as the input 

to Operational Modal Analysis (OMA). The latter provides frequencies of the modes and the Fourier 

coefficients for reconstructing the time periodic mode shapes. In authors’ prior works the HPS method has 

been applied in the frequency domain. The presented study extends the HPS method to the time domain, 

which makes it possible to use the powerful stochastic subspace identification (SSI) techniques for modal 

identification, which lead to more accurate parameter estimates and can treat modes with close frequencies. 

The advantage of the suggested approach is that it allows the use of existing implementations of SSI, thus 

providing a simple tool for modal identification of periodic systems.  

1 Introduction 

Operational modal analysis (OMA) [1], a method of extracting the modes and hence a linear dynamic model 

of a structure from operational measurements, has become a mainstream technology in the past few decades.  

Often the structures of interest involve rotating machinery (e.g., operating wind turbines), which makes the 

application of well-established OMA techniques invalid since the structure under test is not time invariant, 

and this violates the main assumption of modal analysis. If the structural properties change periodically, the 

structure can be modelled as a linear periodic time variant (LPTV) system. Currently the number of studies 

on identification of LPTV systems remains limited. Study [2] suggested using so-called Coleman (also 

known as multiblade coordinate, MBC) transformation as a preprocessing step to OMA. By changing 

variables to a rotational frame, Coleman transformation converts the LPTV system to LTI, which then 

allows application of wide range of classical modal identification techniques. However, this method can 

only be applied to isotropic rotors, i.e. when all blades have identical mass and structural properties. In 

addition, for rotors rotating in vertical plane, as in a case of horizontal axis wind turbines (HAWT), the 

gravity introduces forces that break symmetry and can cause the system to exhibit liner time periodic 



behavior. This prevents using the transformation for in-plane modes. Jhinaoui [3] suggested a subspace 

identification method specially developed for rotating systems. The method identifies the underlying 

Floquet eigenstructure of the rotating system and uses the samples obtained at the same position of the rotor 

at consecutive revolutions. Allen suggested using harmonic power spectra (HPS) for structures identification 

and extended experimental modal analysis to LPTV systems [4] and later to OMA in [5].  This framework 

has been used quite extensively to extract the mode shapes from continuous-scan laser vibrometer 

measurements [6-9] and the authors recently applied it to measurements from an operating wind turbine in 

[10].  

The first step when computing HPS is to modulate the measured time histories by multiplying them by 

����Ω� where Ω is the rotation frequency of the turbine and m is some integer. Then, the theory shows that 

the augmented set of measurements can be processed using standard curve fitting techniques or peak picking 

to extract the natural frequencies and damping ratios. The theory also explains how to relate the amplitudes 

of the harmonics in the response to the time-varying mode shapes. The method described in [5] uses 

frequency domain modal algorithms to extract modal parameters; in this paper, we refer to this method as 

H-OMA-FD. The presented paper extends this technique to time domain OMA; the suggested approach is 

referred as H-OMA-TD.  

The consequence of the harmonic modulation process is that it causes the modulated time series to be 

complex and hence not amenable to analysis by conventional OMA SSI routines. This work proposes an 

approach that circumvent this difficulty so that powerful and robust OMA subspace identification (SSI) 

algorithms can be used to extract the structure’s modal parameters. 

2 Theoretical background 

The state space model of an N degrees of freedom linear time periodic system can be written as, 
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where A(t) is the system matrix, B(t) is the input matrix, C(t) is the output matrix, and D(t) is the direct 

input matrix.  All these matrices are periodic with time.  For example, the classical system with mass, 

damping and stiffness matrices M, Cd and K with the following equation of motion, 
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can be written in this form using ���	 = ����	
 ����	
�
 see [6] for further details.  For any initial state 

and input pair �����	, ����		, a unique solution y(t) exists and can be written in terms of the state transition 

matrix ���, ��	 [12]. 
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The general solution (with the direct input matrix D(t) equals zero) is the basis of the Floquet analysis and 

was used in [13] and [5] to derive the harmonic transfer function and HPS used in operational modal analysis.   

2.1  Floquet Analysis  

The state transition matrix 	���, ��	 is the key to obtain the general solution in Eq.(3).  When the system is 

linear time invariant, i.e., A(t)=A and other coefficient matrices are constant, the state transition matrix is 

��×��,��	, which can be further decomposed as,  

 0 0( ) ( ) 1
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where P is the matrix of eigenvectors of the system matrix A and Λ is a diagonal matrix of eigenvalues.  



On the other hand, when the system is periodic, i.e., ���	 = ��� + �	, where � = 2�/Ω is the fundamental 

period, the dynamics of the periodic system has to be studied using Floquet theory [12,14-16] because 

���, ��	 ≠ ����	×��,��	   The Floquet theory introduces a coordinate change to the system matrix A(t) and 

transforms the LPTV system to an LTI system.  As a result, the state transition matrix becomes, 
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Here ����	 is a periodic matrix. The eigenvalues of L are called the Floquet exponents [15,16] and it is 

important to note that they are still constant even though A(t) is time periodic.  If all Floquet exponents are 

non-zero and non-repeated, i.e., L is nonsingular, then there exists a nonsingular matrix R that diagonalizes 

L with  = !"!�#.  Then, the state transition matrix in Eq.(5) becomes,  

 0 1

0 0

( )
( , ) ( ) ( )−× −= t t
t t t e t

Λ
Φ P P . (6) 

where ���	 = ����	! is a matrix of time periodic eigenvectors for the LPTV system [17]. The state transition 

matrix can be further decomposed into the following modal summation form,  
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where $%��	 is the rth column of  ���	, and  %��	 is the rth row of ���	�#.  λr is the rth Floquet exponent 

that is analogous to the rth eigenvalue of an LTI system.  The rth Floquet exponent can be written in terms 

of the damping ratio ζr and natural frequency ωr as &% = −(%)% + i)%+1 − (%- for an underdamped mode. 

Thus the steady state response y(t) in Eq.(3) becomes,   

 
,

1

, 0 0

0( )
( ) ( )

( ) ( ) ( ) ( ) ( )

=

−
=

=

∑
n

y r

r

y r r r

r t t
t t e

t t t t t

λ
y R

R C ψ L x

 (8) 

The residue matrix !.,/��	 is periodic and can be expanded in a Fourier series.  Here we shall presume that 

the residue matrix can be adequately represented using a fixed number 2NB+1 of terms,  
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where 01,/ is the nth Fourier coefficient matrix of the rth mode. So, the output y(t) becomes, 
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This equation reveals that the response of each mode of the system is a sum of damped sinusoids, with 

several sideband harmonics around each natural frequency. 

2.2  Harmonic Transfer Function 

Similar to what was shown above for the transient response, when an LPTV system is excited by a sinusoidal 

force at some frequency, the response will be at the same frequency and at an infinite number of its 

harmonics, each separated by the fundamental frequency Ω.  At first glance it seems that it would be 

impossible to use a linear transfer function for a system such as this.  However, Wereley overcame this 

difficulty by  augmenting the input and output signals with frequency shifted copies of each and then the 

couplings between the frequencies can be accounted for in the augmented version [18].  Specifically, the 

mth modulated signal is given by 

 -i( ) ( ) Ω= m t

m t t ey y  (11) 



for 2 ∈ ℕ,2 = −5…5. The Fourier transform of each signal is denoted 7��)	. The frequency shifted 

copies are then collected as 8�)	 = 9…		7�#
 �)					7�
�)					7#
�)			… :



, then the harmonic transfer 

function (HTF) can be established for the LPTV system.  The HTF is completely analogous to the commonly 

known transfer function for LTI systems.  

The harmonic transfer function is derived by inserting this modulated signal into the general solution in Eq. 

(3), and using the modal solution from in Eq. (7).  The harmonic balance approach is taken to match the 

terms with the same frequency in the exponent ���;<��Ω	� .  After much algebra and organization, a 

harmonic transfer function is obtained in terms of the modal parameters of the state transition matrix, 
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where =�)	 = 9…		��#
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�)					�#
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is the exponentially modulated input in the frequency 

domain.  And,  
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The mth term in the vector >̅%,@  is A%̅,@ , which is the (m-l)th Fourier coefficient (or vector of Fourier 

coefficients) of C(t)ψψψψr(t).  Note that the mode vectors >̅%,@ acquired at different peaks describe the same 

shape but the elements are shifted in position in each vector.  For example, supposing the mode vector at 

frequency &%  is >̅%,� = �0		C		D		A			0�
 , the mode vector at &% + Ω	 should be >̅%,�# = �C		D		A		0		0�
  

multiplied with an unknown constant, and the mode vector at &% − Ω	 should be proportional to >̅%,# =
�0		0		C		D		A�
.  A least squares approach can be used to extract the best estimate of the mode vector >̅%,@  
from the multiple estimations.  Similarly, F̅%,@�� is the (l-m)th Fourier coefficient of Lr(t)TB(t).   

2.3  Harmonic Power Spectrum 

In practice one has presumably measured the response of an LPTV system to an excitation that satisfies 

OMA assumptions, and the measured responses are a collection of time histories recorded at No DOFs: 

7��	 ∈ ℝHI, sampled with sampling frequency FS. These time histories are then exponentially modulated by 

multiplying by ����Ω�, m = –M...M to obtain a collection of responses 7���	 ∈ ℂHI�-K<#	 and hence the 

harmonic power spectrum (HPS) matrix found in the conventional manner as in the LTI case: 
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where E() is the expectation, and ()H denotes the Hermitian transpose.  Retaining only the dominant terms, 

the HPS can be written in the following form in terms of the modes of the LPTV system,  
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The terms �&% − LMΩ	 cause the HPS to have a peak near the system’s eigenvalues or Floquet exponents, 

&%, and also at the eigenvalue plus some integer multiple of the fundamental frequency l.  Here N�)	% 
 
is 

related to the auto-spectrum of modulated input signal.  In output-only modal analysis of LTI systems, the 

input is assumed to be uncorrelated random white noise and the auto spectrum of input signal becomes 

constant.  The same assumption is used for LPTV systems.   

The HPS has the same modal summation form as the power spectrum of an LTI system,  
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This function produces a peak in the spectrum when the excitation frequency ) is near the natural frequency 

Im�&%	, and the peak can be curve-fitted to identify the natural frequencies, damping ratios and mode shapes 

of the system.  Hence, the same algorithms for LTI systems can be used to identify modal parameters of an 

LPTV system, and the same intuition that is used to interpret frequency response functions can also be used 

to interpret the harmonic transfer function.  However, there are a few differences that must be noted in signal 

processing: 

• An LPTV system theoretically has an infinite number of peaks for each mode.  The peaks occur at 

the frequencies ) = Im�&% − iMΩ	 .  If the observed mode shapes C(t)ψψψψr(t) are constant in time, 

>̅%,@ and F̅%,@ contain only one nonzero term, i.e., A%̅,� and DQ%,�.  Then, Eq. (13) and Eq. (15) reduce 

to the familiar relationship for an LTI system. 

• The mode vectors of an LTI system describe the spatial pattern of deformation of a mode.  For an 

LPTV system, the vectors >̅%,@  consist of the Fourier coefficients that describe the time periodic 

spatial deformation pattern.    

2.4  Complex Time Series: Rigorous Approach 

In the approach outlined above the measured signal y(t) is multiplied by ����Ω�, which could also be written 

as ����Ω� = cos�2Ω�	 − i	sin�2Ω�	. Hence, one could obtain the same result by multiplying the signals 

by a sine and cosine to form the real and imaginary parts separately.  Eq. (15) shows that the HPS is simply 

a sum of damped exponential terms.  One can show that each term leads to an exponential term in the time 

domain of the form �%,@��VW��@X	�. 

The residue matrix at the lth harmonic of the rth mode is defined as follows: 
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Hence, if the signal is modulated with a real sine and cosine rather than with ����Ω�, and the residues 

obtained are �%,@
Y   and �%,@

Z  for the sine and cosine cases respectively, then the desired residues should simply 

be 
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The disadvantage of this approach, is that the signals become twice as large (twice as many outputs) 

compared to the case where complex time series are allowed.  Also note that the sine and cosine terms 

should be treated simultaneously in a global curve fitting algorithm, to assure that the residues obtained 

correspond to precisely the same poles. 

2.5 Simplified approach 

This algorithm takes a different approach, seeking to produce a time series that is real and yet has the same 

spectrum for all positive frequencies.  To explain it, it is helpful to first recall that when using the 

conventional approach, one forms the HPS matrix [\\�)	 as (14), [\\�)	 ∈ ℂHI�-K<#	×HI�-K<#	. Then 

several rows of the matrix are selected, and peak-picking is used to determine modal parameters. It is 

important to note that for peak-picking one uses only the frequencies  0 < ) < � _̂ −5Ω , i.e. those lying 

in the positive part of the frequency axis.   

The presented study suggests replacing the frequency domain peak-picking method by more robust OMA-

SSI algorithms, which are available in some commercial software packages (for example, Bruel and Kjaer 



Type 7780). Thus, its combination with the exponential modulation will allow the traditional OMA-SSI to 

be readily applied to LPTV systems.  

The problem, however, is that the commercial OMA-SSI does not accept complex time histories. In order 

to circumvent this limitation, the following is suggested: Assume there is a procedure that converts the 

exponentially modulated time histories 7���	 ∈ ℂ  to new time histories 7̀���	  with the following 

properties: 

 7̀�
�a	��	 ∈ ℝ (19) 

 ℱ�7̀���		 = ℱ�7���		 for ) ∈ �0, � _̂�, (20) 

where ℱ�. . 		denotes the Fourier transform. The first property ensures the new signals are usable in the 

available implementations of the SSI-OMA algorithms, while the second means that  

 [d\\�)	 = [\\�)	 for ) ∈ �0, � _̂�, (21) 

i.e. the new time histories  7̀���	 have the same frequency content and phase relations as the positive half 

of the harmonic power spectra which is being utilized in the HPS method. 

From properties (19) and (20), one can readily derive the algorithm converting 7���	 to 7̀���	: 

1. For given exponentially modulated signals 7���	 compute their periodogram ℱ�7���		 using a 

fast Fourier transform. The periodogram of complex 7���	 is not a Hermitian function, i.e. its 

negative frequencies part is not a complex conjugate of the positive frequencies part; 

2. Replace the negative frequencies part of the periodogram by the complex conjugate of the positive 

part; 

3. Using inverse FFT, generate the new time signals 7̀���	, which satisfy (19) and (20).  

3 Results 

To demonstrate the algorithm, let us consider a simple three-bladed rotor system, which is a rough model 

of a horizontal axis wind turbine (Figure 1). Each blade is modelled as a two-beams assembly; the beams 

are connected by a hinge with a linear angular spring with stiffness kj, j=1…3, (here and below j is the blade 

index). A lumped mass mj is attached to the end of the outer beam.  The azimuth angles of the blades are: 

ef��	 =Ω� + 2��g − 1	/3, where the rotor angular speed Ω is assumed constant. The rotor is attached to 

the “nacelle” C with mass 2H supported by the “tower” modelled by two springs with stiffnesses kH and kV. 

The rotor is linked to the “drivetrain” with moment of inertia ID and stiffness kD.  

For examination of the rotor modal behaviour, the following parameters were chosen, same as in [18]: 2H =
446	10k	lm , 2# = 2- = 2k = 41.7	10k	lm , l# = l- = lk = 2.006	10o	p ∙ 2 , lr = 10o	p ∙ 2 , ls =
2.6	10t	p/2 , lu = 5.2	10o	p/2 , wr = 2.6	10x	lm ∙ 2- , C = D = 13.1	2 , Ω = 2�	0.16	/Cy/z . These 

parameters approximate a generic 10 MW wind turbine model. 

The identical system was considered in [18], where the equations of motion were set up and the Floquet 

analysis was applied to investigate the influence of rotor’s anisotropy to whirling components of the mode 

shapes.  

Since this is a six degree-of-freedom system, one shall expect six modes, which are named as follows:  

• the vertical and horizontal modes, dominated by vertical and horizontal motion of the mass C;  

• three rotor modes: one symmetric (also called collective), where all blades deflect in-phase, and two 

anti-symmetric, also called whirling; 

• a “drivetrain” mode, where the most of potential energy is being stored in the stiffness kD.  

One must not expect pure modes, there is always some degree of interaction; the names are only given to 

reflect the dominating motion of the mode. The presented study focuses on the rotor modes since they have 

the most pronounced periodic behavior.  



The presented study applies three methods to the system. First, we assume the equations of motion are 

known. This allows application of Floquet analysis and generates an (almost) exact solution; this solution 

serves as a baseline for comparison with two other methods. Next, we simulate an experimental scenario: 

we assume the equations of motion are unknown but we can observe the response of the system to excitation, 

which satisfies OMA assumptions: all DOFs are excited by uncorrelated broadband noise with a flat 

spectrum. Then both the conventional frequency domain HPS method and the suggested time-domain 

method are applied to the observed response, and the results are compared. 

3.1 Floquet analysis 

An overview and a detailed description of Floquet analysis can be found e.g. in [19]. Floquet analysis was 

applied to the system in Figure 1; the details are given in [18] and omitted here. As was mentioned in the 

theoretical section, Floquet analysis provides a modal decomposition, but for an LPTV system, the modes 

are periodic. Following the conventional approach, each periodic mode is Fourier expanded to harmonic 

(Fourier) components. The LTI system can then be thought as a special case of LPTV, where each mode 

has only one non-zero Fourier component. It can be shown that for an isotropic three-bladed rotor in the 

absence of gravity, each mode has three non-zero Fourier components. The Coleman transformation [20] 

utilizes this phenomena and allows conversion of the LPTV system to LTI system. A stronger periodicity 

of the system matrix in Eq. (1) requires more Fourier components to be included into consideration. For 

almost isotropic rotors, only few Fourier components have significant magnitude, and the smaller 

components can be neglected.  

Figure 6a,c shows the magnitudes of the harmonic components obtained via Floquet analysis for isotropic 

rotor in the absence of gravity. Two modes are shown: forward whirling (FW) mode (which is dominated 

by xC but named after its significant whirling component), and collective mode. The backward whirling 

(BW) is explained in details in Figure 7. As it was mentioned before, the modes of a (three-bladed) isotropic 

rotor in the absence of gravity can be fully described by only three Fourier components.  

Figure 7 focuses on the BW mode. Figure 7c shows the magnitude of its three non-zero Fourier components: 

FW component (A), motion of the center mass (B) and BW component (C). The latter is about one order of 

magnitude higher than the FW component, it dominates the rotor dynamics, and the mode is named after 

this component. Figure 7a is a complexity plot showing the phase relation between the three blades. The left 

plot is for the FW component (A), where the phase between the consecutive blades is +1200. The right plot 

is for the dominating BW component (C) with –1200 phase. 

Figure 8a,c,f shows the BW, FW and collective modes for anisotropic rotor in the presence of gravity. 

Compared to the isotropic rotor, the system matrix of the anisotropic rotor demonstrates higher and more 

complex variation with time, and, as a result, it requires more Fourier components to describe the periodic 

mode shapes (cf. Figure 6a,c and Figure 7b).  

Table 2 provides the values of the Floquet exponents for both isotropic and anisotropic rotors.  

 

Figure 1. Considered system. 



3.2 Numerical experiment 

As an input to the numerical experiment, we simulated the response of the rotor to uncorrelated broadband 

excitation. This excitation satisfies OMA assumptions, but we acknowledge that the aeroelastic forces acting 

on the wind turbine rotor in reality are different [21]. The equations of motion were numerically integrated 

using 4th order Runge-Kutta method, for 7200s (which correspond to 1152 rotor revolutions).  

3.2.1 Results from H-OMA-FD 

The simulated turbine rotates at 0.16Hz. The responses in the edgewise direction on all three blades (ϕ1, ϕ2, 

ϕ3) and the responses of the nacelle in the lateral (Xc) and vertical (Yc) directions were collected into a 

response vector of 5 outputs.  The responses were then exponentially modulated with m= −3…3 according 

to Eq. (11).  Then, the modulated signals were split into 575 sub-blocks with a block size of 119s (19 

revolutions) with 85% overlap. A Hanning window was applied to each block to reduce the leakage. The 

cross power spectra between the modulated signals and the original signals ϕ1, ϕ2,  ϕ3 were computed 

respectively in each sub-block and averaged over the whole time history.  The resulting harmonic power 

spectrum matrix had 35 outputs (5 outputs with 7 harmonics for each output) by 3 references.  The complex 

mode indicator function (CMIF) of this HPS matrix is shown in Figure 2 for two cases, (a) isotropic rotor 

with no gravity, and (b) anisotropic rotor with kC=0.97 and with gravity. There are two dominant singular 

values peaks in the CMIF, with very close natural frequencies centered around 0.88Hz. All of the other 

peaks except for the peak at 1.8 Hz were spaced by n×0.16 Hz from the peaks at 0.88 Hz, indicating that the 

system has three modes dominating this frequency range, and two of which have noticeable periodic 

behavior. 

Initially, a simple output-only extension of the Algorithm of Mode Isolation (AMI) algorithm that was used 

to curve fit the measurements.  This gave a reasonable fit at all of the peaks, but this algorithm does not 

a)

 

b) 

 

Figure 2. Complex Mode Indicator Function of the HPS Matrix for the 5 outputs using ϕ1, ϕ2, ϕ3 as references. 

 a) Isotropic rotor without gravity; b) Anisotropic rotor with gravity and kC = 0.97. 

 

Figure 3. Spatially condensed MIMO measurements. 
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include the MIMO, hybrid approach described in [22, 23] which is necessary to separate modes with close 

natural frequencies.  Hence, the only mode retained from AMI was the mode at 1.801 Hz, which was found 

to be the first collective mode of the rotor. The two close modes were estimated using frequency domain 

decomposition (FDD) [24]. Specifically, the spectra near the peak were collected and an SVD used to extract 

the first three dominant singular vectors. These were then used to condense the measurements to a set of 

three spectra, shown in Figure 3.  This spatial condensation of the measurements effectively separated the 

two close modes, so that a simple single-mode fit could be applied to each curve to estimate the modal 

parameters.  The natural frequencies and damping for the three rotor modes are given in Table 2. The 

magnitude of the Fourier components are shown in Figure 10a,c.   

The next case considered is the case with gravity and with 3% anisotropy in one of the blades.  Again, AMI 

identified the collective mode at 1.79 Hz, while the FDD was used to identify the other two modes. The 

modal parameters obtained are given in Table 2, and the mode shapes are in Figure 10e,g. 

These results illustrate what can be done with a basic system identification method based on the HPS, and 

focus on the time-periodic blade modes.  More sophisticated frequency-domain methods would be advisable 

to use, such as the AFPoly algorithm [25] or pLSCF [26]. 

3.2.2 Results from H-OMA-TD 

The obtained response time histories became an input to the H-OMA-TD algorithm. Figure 4 sketches how 

the method is applied using B&K OMA software Type 7760. First, the dataset of time histories for all six 

DOFs obtained from the simulation (or from measurements) is harmonically modulated (using m = −3..+3 

in the present study), thus generating six new datasets. The new (complex) time histories are converted to 

real time using the algorithm described in section 2.2. In OMA software, we construct 6 copies of the rotor 

geometry and assign the modulated datasets to the copies (Figure 4). The not modulated signals (m=0) are 

selected as projection channels (shown in pink). Then a standard OMA procedure is run (in the presented 

study, we used data driven OMA-SSI with un-weighted principal components, UPC), which extracts the 

modes.  

A CMIF and the fragment of the stabilization diagram for the isotropic rotor in the absence of gravity are 

shown in Figure 5. In the range 0-1.5 Hz, OMA finds nine modes, however they are ±Ω shifted realizations 

of the three structural periodic modes: Horizontal, BW and FW. This can be clearly seen when examining 

the mode shapes: those corresponding to the BW mode are shown in the insets.  

Table 1 explains the interpretation of the mode shapes using the BW mode as an example. The rows in the 

table corresponds to the modes found by OMA-SSI (see Figure 5). Examining the middle row BW n=0, one 

can realize that the periodic mode consists of three Fourier components oscillating at different frequencies: 

the horizontal component at 0.72Hz, backward whirling component at 0.88Hz and very weak forward 

 

Figure 4. Flow of the suggested method 



whirling component at 0.56Hz. While inspecting the top and bottom rows, one finds the same components 

at the same frequencies.  

Note that the phase relations between DOFs are only valid inside each Fourier component and do not make 

sense between the components. 

The values of the Fourier exponents are given in Table 2 and the magnitude of the Fourier components are 

shown in Figure 6bd and Figure 7d,e,f and compared with the results of analytical Floquet analysis. Both 

frequencies, damping and mode shapes are in a quite good agreement with the analytical values. 

Figure 7 explains the results of H-OMA-TD in details using the BW mode as an example. The simulation 

was conducted for five different realizations of the excitation input, and the system identification was 

performed for each realization. Figures 7b,d,f show the mean magnitudes of the obtained Fourier 

components; the confidence bounds on the results based on the five observations are also shown. Though 

the H-OMA-TD algorithm produces many Fourier components, it can be seen that the confidence of the 

noise components is significantly lower (the confidence band is wider), and the false ones can be readily 

identified and filtered out. The true ones are shown inside the dotted region (Figure 7b,d,f), and coincide 

 

Figure 5. Fragment of the stabilization diagram (B&K Type 7760 OMA software) showing horizontal, BW and 

FW modes of the isotropic rotor with no gravity. 

Name Frequency, 

Hz 

Mode shape 

m=−3 m=−2 m=−1 m=0 m=+1 m=+2 m=+3 

BW 

n=−1 

0.56 

 

0.56−3Ω=

0.08Hz 

0.56−2Ω=

0.24Hz 

0.56−Ω= 

0.40Hz 

 

0.56Hz 

0.56+Ω= 

0.72Hz 

0.56+2Ω=

0.88Hz 

0.56+3Ω=

1.04Hz 

BW 

n=0 

0.72 

 

0.72−3Ω=

0.24Hz 

0.72−2Ω=

0.40Hz 

0.72−Ω= 

0.56Hz 

 

0.72Hz 

0.72+Ω= 

0.88Hz 

0.72+2Ω=

1.04Hz 

0.72+3Ω=

1.20Hz 

BW 

n=+1 

0.88 

 

0.88−3Ω=

0.40Hz 

0.88−2Ω=

0.56Hz 

0.88−Ω= 

0.72Hz 

 

0.88Hz 

0.88+Ω= 

1.04Hz 

0.88+2Ω=

1.20Hz 

0.88+3Ω=

1.36Hz 

Table 1. Isotropic rotor with no gravity. Shapes of the Fourier components for BW mode for different n. 



with the analytical results obtained via Floquet analysis. Figure 7e shows the scatter of the shape of the BW 

and FW Fourier components (cf. analytical plots in Figure 7a). 

Figure 8 compares the results of Floquet analysis with the results of H-OMA-TD for anisotropic rotor in the 

presence of gravity. The dashed lines surround the regions where the H-OMA-TD methods catches the 

Fourier components pretty well. These components dominate the dynamics of the mode, while the others 

are significantly lower in magnitude. The dotted line in Figure 8b shows the erroneous components which 

do not present in the analytical solution (Figure 8a). These components can be explained by the strong 

influence of the rotor harmonics present nearby the component frequencies (see the strong peaks in Figure 

2b). Table 2 provides the Floquet exponents and compares them with the analytically ones; both agree quite 

well.  

The complexity plots in Figure 9 compare the dominating Fourier components for the two whirling modes. 

The rotor anisotropy causes the asymmetry of the shapes. Despite the scatter, this observed asymmetry can 

be used as an indicator of a damage (here, the stiffness of blade #3 is reduced by 3%). This may also be used 

to localize the damage [18]. 

3.2.3 Result comparison 

Table 2 provides Floquet exponents obtained analytically and compares them with the frequencies found  

by time- and frequency domain H-OMA methods. Regarding damping, one can notice that, if it is defined 

with a damping ratio, then it depends on chosen the natural frequency. The latter is not invariant since a 

shift by an integer multiplier of Ω is also a natural frequency (e.g. Table 1). However, the real part of the 

Floquet multipliers is invariant, and can be used to characterize the damping and system stability.   

Figure 10 compares the magnitudes of modal components of BW and FW modes obtained by frequency and 

time domain methods for the isotropic rotor in the absence of gravity (Figure 10a-d) and anisotropic rotor 

when the gravity is present (Figure 10e-h). The dominant components of the modes are outlined by a dashed 

line. As one can observe, the two methods provide similar results, though the frequency domain method 

gets slightly wrong results reporting the different magnitudes of ϕ1, ϕ2,  ϕ3 for the isotropic case (outlined by 

the dotted lines). This might be possibly improved by using a multi-reference technique. The same can be 

a)  

 

b)  

 
c)  

 

d)  

 

Figure 6.  Isotropic rotor with no gravity. (a,b): FW mode; (c,d): collective mode. (a,c): Results of the Floquet analysis; 

(b,d): Results of H-OMA-TD for the simulated experiment. 
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said regarding the phase. The natural frequencies reported by the two methods differ by Ω, which is natural 

for periodic systems. Actually, the mode shown in Figure 10a is fully comparable with the representation 

“BW n=+1” found in Table 1. 

It is also interesting to compare the results of H-OMA-TD with the results of direct application of OMA to 

the measured data, thus ignoring the fact that the system is LPTV. This approach was used for example, in 

[18]. In the framework of the H-OMA-TD method, it means narrowing the range of m in (11) to 0. As it 

follows from Table 1, it will still be possible to extract the Fourier components (each found mode will be a 

Fourier component). If the LPTV nature of the system is recognized, one has to manually assemble the mode 

from the found Fourier components, knowing that they are separated by integer multipliers of Ω. It is also 

important to note that the mutual scaling of the Fourier components will be lost in this case.  

4 Conclusion and future research 

The study suggests a simple method of extending existing implementations of time domain OMA SSI 

algorithms to time periodic systems. The method consists of two steps: (i) harmonic modulation of the 

experimentally obtained time histories (by multiplication by ����Ω�); (ii) making the obtained complex 

a) 

  

d)  

 

b)  

 

e) 

 
c) 

  

f) 

 

Figure 7. The BW mode of isotropic rotor with no gravity. a) Shapes of the FW (left) and BW (right) components 

(via Floquet analysis); b) Magnitude of Fourier components (via Floquet analysis); c) Same as (a) via H-OMA-

TD; d-f) Magnitudes of Fourier components for: d) n = −1, e) n = 0, f) n = +1, as in Table 1. The per-cent values 

in the boxes are a half-width of the pointwise 95% confidence bands computed based on five analysis, using 

Student’s t-distribution.  
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time histories real. The preprocessed data becomes an input to standard OMA algorithm. In addition, the 

authors give some advice on how to prepare the data for OMA, to more easily interpret the results.    

The method is demonstrated on synthesized data obtained via simulation of a simple 3-bladed rotor 

subjected to random noise excitation. The results of this simulated experiment are validated against the 

analytical results from Floquet analysis and the results provided by the conventional HPS method 

implemented in the frequency domain. The suggested algorithm avoids the manual peak picking and allows 

automation, which could be useful, for example, in structure health monitoring systems. 

The suggested method is originated from engineering practice, and requires a better mathematical 

foundation. Mode shape normalization and scaling when using acceleration measurements and estimation 

of damping ratio need to be addressed. Application of the method to real measurements from a wind turbine 

would be a natural next step.  
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e) 

 

f) 

 

Figure 8. Magnitudes of the Fourier components for anisotropic rotor: BW (top row), FW (middle row) and 

collective (bottom). Left column: results of the Floquet analysis; right column: H-OMA-TD for simulated 

experiment. Dashed lines show the significant components, dotted line shows the erroneous results due to vicinity 

to strong rotor harmonics. 
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a)  b) 

  

c)  d) 

  

Figure 9. Complexity plots: anisotropic rotor. Blade #3 has a 3% reduction in stiffness. a) BW mode, the BW 

(dominating) component, exact solution; b) same, the H-OMA-TD results for five simulated experiments; c) FW 

mode, the FW (dominating) component, exact solution, d) same, the H-OMA-TD results for five experiments.  

 

 

Mode Name 

Floquet 

exponent 

&/�2�	 
n 

Un-aliased 

Floquet exponent 

 �& + 1Ω	/�2�	 

H-OMA-TD (n=0) 

(in Hz) 

H-OMA-FD 

(in Hz) 

Isotropic rotor, no gravity 

BW  −0.0112 + 

0.0764i 

4 −0.0112 +  

0.7164i 

−0.0116(±0.0013) + 

0.7162(±0.0008)i 

−0.0140+ 

0.7159i 

FW −0.0117 - 

0.0610i 

7 −0.0117 −  

1.0590i 

−0.0113(±0.0007) + 

1.0587(±0.0025)i 

−0.0102+ 

1.0540i 

Collective −0.0348 + 

0.0464i 

11 −0.0348 +  

1.8064i 

−0.0353(±0.0014) + 

1.8064(±0.0032)i 

−0.0360+ 

1.8006 

Anisotropic rotor, with gravity 

BW  −0.0111 + 

0.0716i 

4 −0.0111 +  

0.7116i 

 −0.0122(±0.0018) + 

0.7121(±0.0006)i 

−0.0118+ 

0.7129i 

FW  −0.0116 − 

0.0648i 

7 −0.0116 −  

1.0552i 

 −0.0113(±0.0008) + 

1.0547(±0.0011)i 

−0.0105+ 

1.0549i 

Collective −0.0345 + 

0.0378i 

11 −0.0345 +  

1.7985i 

 −0.0353(±0.0019) + 

1.7985(±0.0032)i 

−0.0286+ 

1.7858i 

Table 2. Floquet exponents obtained analytically, by H-OMA-TD and H-OMA-FD.  
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