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Abstract. The stochastic dynamic damage location vector (SDDLV) method has previously 

proved to facilitate effective damage localization in truss- and plate-like structures. The method 

is based on interrogating damage-induced changes in transfer function matrices in cases where 

these matrices cannot be derived explicitly due to unknown input. Instead, vectors from the 

kernel of the transfer function matrix change are utilized; vectors which are derived on the 

basis of the system and state-to-output mapping matrices from output-only state-space 

realizations. The idea is then to convert the kernel vectors associated with the lowest singular 

values into static pseudo-loads and apply these alternately to an undamaged reference model 

with known stiffness matrix. By doing so, the stresses in the potentially damaged elements 

will, theoretically, approach zero. The present paper demonstrates an application of the 

SDDLV method for localization of structural damages in a cantilevered residential-sized wind 

turbine blade. The blade was excited by an unmeasured multi-impulse load and the resulting 

dynamic response was captured through accelerometers mounted along the blade. The static 

pseudo-loads were applied to a finite element (FE) blade model, which was tuned against the 

modal parameters of the actual blade. In the experiments, an undamaged blade configuration 

was analysed along with different damage scenarios, hereby testing the applicability of the 

SDDLV method. 

1. Introduction 

Research activities on vibration-based structural health monitoring (SHM) systems for wind turbine 

blades have been growing rapidly over the last two decades, see, e.g., [1]. The most common approach 

is to compare collected data from a reference state, which is typically a healthy one, and the current 

state. The current state is potentially damaged if it differs significantly from the reference state. A 

typical partition of the damage identification process was suggested in [2] and contains the following 

four steps: 1) detection, 2) localization, 3) assessment and 4) consequence. There are plenty of well-

documented methods for damage detection, see, e.g., [3], thus the present paper concentrates only on 

the damage localization process. 

     In [4], Bernal presented the damage location vector (DLV) method, which utilizes the null space of 

the changes in the flexibility matrix from a pre- and post-damaged structure to locate the damage. The 

method assumes that the system behaves linearly in both the pre- and post-damaged states. The vectors 

that form the basis of the null space are designated as DLVs, and they contain usable information 

about the location of the damage. It is proved in [4] that by applying a DLV as loads to the undamaged 

structure, the stresses in the damaged elements approach zero.  
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     The DLV method only includes static properties of the system. However, it was lately extended to 

include the dynamics of the system, namely the dynamic damage location vector (DDLV) method [5]. 

Here, the dynamics of the system is included by applying the changes in transfer function matrix, 

instead of changes in flexibility matrix, to obtain the static pseudo-loads [4]. 

     The dynamic version is further extended to an output-only measurements scenario, which is 

designated as the stochastic dynamic damage location vector (SDDLV) method [6]. Thus far, the 

SDDLV method has primarily been tested in the context of numerical models of simple truss and 

frame structures, see, e.g., [6].  

     In the present paper, the SDDLV method is applied to locate damages in a residential-sized wind 

turbine blade tested experimentally.  

2. Test setup 

To demonstrate the applicability of the SDDLV method, experiments are performed on a cantilevered 

residential-sized wind turbine blade, see figure 1. Specifically, the structural vibration responses are 

measured for an undamaged and two damaged cases subjected to unmeasured multi-impulse loading 

conducted by tapping the blade with a pencil. For each case, a state space model, which forms the 

basis for determination of the pseudo-loads, i.e., SDDLVs, is estimated from the collected acceleration 

data.   

     The blade depicted in figure 1 is about 800 mm long and constructed from a composite material, 

namely carbon-fibre-reinforced polymer. The blade was originally constructed for another project [7], 

and later modified for the purpose of testing different SHM methods. The blade is separable into two 

shells, which are assembled by means of 25 bolts along the leading and the trailing edges. Different 

damage conditions can be examined by untightening one or more bolt(s).  

      

 
Figure 1. Experimental setup for test on the residential-sized wind turbine blade. 

     The blade is excited by hitting the structure randomly over the surface in order to simulate 

operational conditions, i.e., only the output vibrations are collected. The vibrations are captured by use 

of 14 equally spaced Brüel & Kjær Type 4507-B-004 uniaxial accelerometers along each edge of the 

blade, as illustrated in figure 1 and figure 2. The accelerometers are mounted, such that they measure 

perpendicularly to the surface: thus they do not measure in exactly the same direction.  

     For each experiment, the sampling frequency was set to 8192 Hz, since a sufficiently high sampling 

frequency is required to ensure that the dynamics of the system is captured properly. The recordings 

have duration of 200 seconds and are later divided into smaller partitions in order to obtain more than 

one experiment. 
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Figure 2. Dimensions of the blade and the locations of the two simulated damages. 

     The location and size of the two separately simulated areas of damages are shown in figure 2. Both 

of the damage areas are simulated with three bolts untightened, but kept in the blade to avoid mass 

changes between the experiments.  

3. System identification 

System identification techniques are used to mathematically describe the captured acceleration data. In 

this context, subspace identification is found to be applicable and the fundamental principle of this 

method is a state-space representation based on the output-only continuous time state-space model, 

see, e.g., [8]. 

 

where         is the state/system matrix for the system containing the dynamic properties, 

        is the output matrix, while  ( )     and  ( )     are the state vector and the output 

vector. The two last vectors,       and      , are unmeasured stationary noise/disturbances 

related to the process and the output, respectively. The sizes of the matrices and vectors depends on 

the order,  , of the state-space model and the number of outputs,  . The system identification is 

performed using MATLAB System Identification Toolbox, namely using N4SID. For each of the 

three system states, several state-space models are derived on the basis of different segments of the 

data. A total of 25 models are derived for each of the two areas of damage and used for estimating a 

corresponding SDDLV. 

4. SDDLV method 

The SDDLV method is, as previously declared, based on the change in transfer function matrix for 

systems where the input is unknown and, as such, the transfer function matrix is inaccessible. Instead, 

the estimated state matrix and the output matrix are applied to estimate vectors from the kernel of the 

change in transfer function matrix The transfer function is basically the relation between the output, 

 ( ), and input,  ( ), in the Laplace domain, i.e., 

The input matrix,   , and the direct transmission matrix,   , are not directly used for the estimation of 

the SDDLVs, as clarified in the following.  

     This basic form of the transfer function (4) is not applicable for stochastic systems with output 

only. In [5], an approach to estimate a fictive input from the state matrix and the output matrix is 

 
 ̇( )     ( )     , (1) 

 
 ( )     ( )     , (2) 

 
 ( )   ( ) ( ) (3) 

where  

 
 ( )    (     )

          (4) 
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documented. The idea is to use the fact that there should always be a correlation between the input and 

the output. The approach ends up in the following: 

 

with the value of the exponent        , depending on whether the measurements are displacements, 

velocities or accelerations. The terms estimating a fictive input to the system are defined by 

 

where the dagger sign in equation (6) designates, that the Moore-Penrose pseudo-inverse is applied to 

  . The direct transmission term    is assumed to be a constant, since the ‘feedthrough’ is assumed to 

be non-changing and thus not affected from the system properties if damage occurs. The change in 

transfer function is then proportional to the change in  ( ), i.e.,  

 

The SDDLVs are found from the quasi-null space of   ( )  by singular value decomposition (SVD), 

hence yielding 

 

in which each of the singular values contained in   has a corresponding left singular vector in   and a 

right singular vector in  . The right singular vector associated with the smallest singular value is used 

as pseudo-loads.   

     The damage localization is not efficient for all  -values of the quasi-null space of   ( ). Proper 

ones are selected on the basis of the response characteristics of the system. This information is 

available when solving an eigenvalue problem of the state matrix. Only the  -value(s) near the poles of 

the system are selected for the   ( ), hereby introducing a modal truncation of the system. The 

applied  -values are increased by 1% since studies in context of this paper confirm that the value must 

be slightly different from the poles of the system, as stated in [5]. A more robust selection may exist 

and the selection is further discussed by the authors in [9].  

5. Finite element model 

The pseudo-loads obtained in section 4 are applied to the finite element (FE) model of the blade, in 

which elements containing stresses approaching zero are potentially damaged according to the (-)DLV 

approach. The model is based on an approximated 3D CAD geometry and is discretized by equally 

sized first order shell elements. The FE model is fixed at the blade root, i.e., all displacements and 

rotations are equal to zero, in order to simulate the clamping mechanism from the experimental setup 

shown in figure 1. It is calibrated against the first four experimental natural eigenfrequencies and 

mode shapes obtained from operational modal analysis (OMA) of the undamaged structure, see table 

1. The bolts and accelerometers are not included in the model; however, the increased mass is taken 

into consideration by calibrating the density of the material.  

 

 
 ( )    ( )    (5) 

where  

 
 ( )      

  (     )
    

         (6) 

 
   [

    
(   )

    
(  )

]    (7) 

and  

 
  [

 
 
]     (8) 

 
  ( )    ( )    ( )    ( )   (9) 

 
  ( )         (10) 
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Table 1. Comparison of eigenfrequencies between OMA and calibrated FE model 

 Description   OMA      Calibrated FE model      

Mode 1  1
st
  flapwise bending 15.9 16.0 

Mode 2 1
st
  edgewise bending none 

a 
 48.3 

Mode 3 2
nd

  flapwise bending 87.9 88.2 

Mode 4 1
st
  torsional 109.0 109.2 

Mode 5 3
rd

  flapwise bending 183.3 182.8 
a
 was not found during the experiment. 

 

     As previously mentioned, the accelerations are measured perpendicular to the surface, which 

consequently defines the direction of the applied pseudo-loads. The local coordinate systems depicted 

in figure 3 illustrate the perpendicular direction, namely the z-axis, for each of the 14 accelerometer 

positions. The pseudo-loads are applied over an area corresponding to the size of the accelerometers in 

order to avoid stress disturbance at the specific positions.  

 

 
Figure 3. Discretized FE model of the blade and local coordinate systems corresponding to the 

orientation of the 14 accelerometers. 

 

     In the post-processing, the elemental mean von Mises stresses are chosen for locating the damaged 

area, since this particular stress type contains information from all stress components and is thereby 

applicable for different load cases, e.g., shearing and bending. 

6. Summary of methodological process 

A summary of the steps in the damage localization process presented in this paper is outlined in order 

to make a clear overview of the method before presenting the results.  

 

 Preparation: 

 

o Collect reference measurements from a healthy state. 

o Perform a system identification of the reference measurements in order to estimate 

  ( )  
o Calibrate an FE model based on experimental modal parameters obtained using OMA. 
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 Damage localization: 

 

o Perform system identification of the current measurements in order to estimate   ( ). 

o Perform SVD on   ( )  for a proper  -value in order to estimate the SDDLV. 

o Apply the SDDLV as static pseudo-loads to the calibrated FE model and compute 

stresses, e.g., von Mises stresses. 

o The stresses approaching zero are identifying damaged location(s). 

7. Results 

By examining the SDDLV-induced stress fields for the two analysed cases, it is generally found that 

the global x-directional location of the areas of damage are estimated accurately and consistently, 

whereas the y-directional location can vary depending on the specific SDDLV applied.  

     The system identification of the experiments reveals that the poles corresponding to the 2
nd

 and 3
rd

 

flapwise bending modes are the most excited and consequently only poles associated with these modes 

are used to estimate the SDDLV. The  -value used for determination of the SDDLV is taken as the 

value of the current pole increased by 1 %, as described in section 4. 

     In figure 4, the stress field from one SDDLV is presented for Damage 1. Here, the damage is 

located between 560-680 mm from the root at the leading edge, see figure 2. The stress field in figure 

4 approaches zero stress in the damaged area, but also at the root and at the tip. 

 

 
Figure 4. Stress field illustrating the normalized elemental mean von Mises stress for one SDDLV 

showing the appearance of Damage 1. 

These disturbances and lack of precision for localization in the y-direction would most likely 

disappear if more sensors were used for monitoring the vibrations. The amount and location of this 

noise are varying for all SDDLVs, but the noise often appears at the tip and root of the blade. The 

disturbance at the root is understandable, as the geometry is varying more in this area and the number 

of sensors is small. At the tip, it is clear that noise will appear since the area from sensor 1 and 2 to the 

end of the blade is only affected a little by the loads applied to the structure. 

     Examination of SDDLVs for Damage 2 has confirmed many of the observations from Damage 1. 

Some SDDLVs locate the damage clearly, while others contain mostly noise. Damage 2 is located 

180-300 mm from the root at the trailing edge, which defines the maximum damage size based on the 

same conditions as described for Damage 1. One stress field for Damage 2 is illustrated in figure 5, 

where the damage is clearly localized, albeit with disturbances at the root and at the tip. In some 

situations it is hard to distinguish between actual damage and disturbances when observing the stress 

field for a single SDDLV. However, examination of several SDDLVs has revealed that the damaged 

location is the only area in which the stresses always approach zero. An informative overview of 

examined SDDLVs from different operational experiments is listed in table 2. The table, which is 
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based on 25 experiments for each of the two damage scenarios, shows consistency in localization of 

the damage, even when the disturbance is changing. 

Figure 5. Stress field illustrating the normalized elemental mean von Mises stress for one SDDLV 

showing the appearance of Damage 2. 

 

Table 2.  SDDLV-based damage localization results for two damage types.  

 Experiments   Localized Noise root Noise tip 

  Yes No High Low None High Low None 

Damage 1 25 23 2 10 8 7 10 3 12 

Damage 2 25 25 0 8 10 7 13 0 12 

 

     A clear explanation of the varying precision of the SDDLVs throughout the examination of the two 

areas of damage has not been observed. However, it has been observed that SDDLVs based on  -

values corresponding to the second flapwise bending mode and the third flapwise bending mode yield 

less stress disturbance than those for the remaining identified blade modes for Damage 1 and Damage 

2, respectively. It has been noticed during OMA, that these two modes are excited significantly better 

than other higher modes. 

     From the experiments visualized in figure 4 and figure 5 and the results listed in table 2, it is clear 

that the stresses in the damaged areas approach zero, while the zero stresses elsewhere occur rather 

randomly. This observation suggests that one way of reducing the level of disturbance, in order to 

separate damages from noise, is to apply a statistical evaluation on a large set of stress fields obtained 

from different SDDLVs. This is treated in [9]. 

8. Conclusion 

The presented paper deals with localization of damage in a residential-sized wind turbine blade by use 

of the SDDLV method. The method employs the vectors from the quasi-null space of the damage-

induced change in transfer function matrix as static pseudo-loads, which are applied to a known model 

of the undamaged system. The damage is then, suggestively, found at locations where the stresses are 

approaching zero.  

     The SDDLV method is demonstrated as capable of locating different areas of damage on both the 

leading and trailing edges of the blade. The stress field generally approaches zero in the location of the 

damage. However, noise is, in most cases, present, making it difficult to obtain unambiguous 

localization. The disturbances primarily appear at the tip and at the root of the blade; thus a way to 

reduce these noise contributions could be to apply a statistical approach in which several SDDLV-

induced stress fields are evaluated in a combined manner. This is a part of future research activities. 
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     Further future research activities will deal with the selection of  -value(s). In the present study, it 

has been set to be a 1 % increment of the  -value corresponding to the consistently identified pole. 

This procedure has been chosen somewhat randomly, and it could therefore be an interesting study to 

apply different  -values around the pole of interest in order to see, if any general approach can be 

established for the choice of  -values, hereby increasing the reliability and robustness of the SDDLV 

method.   
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