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ABSTRACT 

Though Blind Source Separation (BSS) techniques have typically been applied within Operational Modal Analysis (OMA) 

framework, there joint diagonalization property can also be utilized within traditional input-output Experimental Modal 

Analysis (EMA) for the purpose of modal parameter estimation. This paper explores this possibility and suggests an approach 

to achieve the same. The paper presents the mathematical concepts that make it possible for Second Order Blind Identification 

(SOBI), a blind source separation algorithm to be applied to impulse response functions for the purpose of modal parameter 

estimation. It is also shown in the paper that, in its current form, the approach provides real mode shapes, irrespective of the 

nature of the system under investigation. In addition to demonstrating the approach by means of studies conducted on an 

analytical 5 degrees-of-freedom system, the real mode shapes extracted using the suggested approach are also used for model 

updating purposes.  

 

Keywords: Blind Source Separation, modal parameter estimation, Second Order Blind Identification, joint-diagonalization, 
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1. Introduction 

Blind Source separation (BSS) [1, 2] techniques aim at solving the problem of mixed source signals. Goal is to identify the 

source signals, and the mixing matrix, solely on the basis of observed mixed signals. The procedure applied to achieve this goal 

often involves exploitation of higher order statistics, as many techniques use mutual independence [1] as the guiding principle 

for source separation. However, there are several applications where second order statistics suffice. Application of BSS in the 

field of modal analysis is one such example. 

In last few years, there has been tremendous interest in utilizing BSS techniques for modal analysis purposes [3-7]. Most of 

these works are oriented towards application of BSS techniques to Operational Modal Analysis (OMA). In OMA, one aims at 

identifying the modal parameters of a dynamic system based on only measured output responses. This is in contrast to 

traditional modal analysis, where knowledge of input force excitation is also available, and utilized, for modal parameter 

estimation. OMA lines up well with BSS and both are seemingly analogous. However, mathematically BSS can be looked 

upon as a decomposition, whose central idea is joint diagonalization. Thus, there is no reason why it cannot be applied to cases 

that are not ‘blind’ per se. 

This paper develops this idea and explores the possibility of applying BSS to traditional modal analysis. The paper utilizes a 

second order BSS technique, Second Order Blind Identification (SOBI) for this purpose. This technique is described in section 

2.1. The mathematical basis of application of SOBI to traditional modal analysis is presented in section 2.2. It is shown in this 

section how joint diagonalization of measured impulse response functions can be utilized for estimating modal parameters.  



One of the salient features of the procedure explained in this paper is that irrespective of the actual system characteristics, 

suggested method always estimates real mode shapes. This apparent limitation of the proposed method, can however be 

exploited effectively by noting that one typically needs real mode shapes for finite element model updating purposes. Thus, 

even though the true mode shape is complex in nature, for model updating purposes it is first normalized such that it becomes 

real. This paper looks into these possibilities as well, beginning with section 3 where a recap of natural frequency and mode 

shape based model-updating procedure is provided. 

The ideas put forth in this paper are validated by means of studies conducted on a numerical 5 degrees-of-freedom (DOF) 

system, as presented in section 4. The properties of this system are changed to investigate variety of cases and evaluate the 

performance of proposed technique. The section ends with the results of model updating procedure for two separate cases in 

which different stiffness values of the lumped mass system are updated.  

2. BSS and Modal Analysis 

Most Blind Source Separation (BSS) based Operational Modal Analysis (OMA) techniques have modal expansion theorem [8] 

as their foundation. Modal expansion theorem states that response of a structure can be expressed as a linear combination of 

the modal vectors. Mathematically, this is represented as 

( ) ( )t  t ηΦx =
 

1) 

where, ( )tx  is the response of the structure, Φ  is matrix of modal vectors and ( )tη are modal coordinates or principal 

coordinates. This mathematical relationship also forms the basis of modal coordinate transformation, which uncouples the 

equations of motion of a multiple degrees-of-freedom system into several simpler single degrees-of-freedom equations.  

As has been noted in several works [1, 2], BSS algorithms aim at finding the original source signals and the corresponding 

mixing matrix that generated the output response signals. The mathematical relation that BSS algorithms exploit is similar to 

Eq. 1 and is given as 

( ) ( )t  t sAx =
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Under certain conditions, such as when source signals have a temporal structure with different autocorrelation functions and 

are mutually uncorrelated, it is possible to extract the source signals s(t) and the mixing matrix A, which is assumed to be real. 

In general, BSS techniques require source signals to be statistically mutually independent (not just mutually uncorrelated). This 

is what enables higher order statistics based BSS algorithms to operate on response signals, x(t). However, from the point of 

view of OMA, it suffices that they are mutually uncorrelated as this is the case with modal coordinates (which are analogous 

to source signals in Eq. 2). Thus, most BSS based OMA algorithms are based on second order statistics. 

2.1 Second Order Blind Identification (SOBI) Algorithm 

Second Order Blind Identification (SOBI) [9] is a BSS algorithm that lends itself very well to the cause of modal parameter 

estimation task in OMA. This algorithm jointly diagonalizes the output response covariance matrices at various time lags in 

order to obtain modal vectors Φ  and modal coordinates ( )tη , which provide the estimate of the modal frequency and damping. 

SOBI algorithm is briefly explained below, 

1. Estimate the covariance matrix of the output observations x 
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where ( )0ˆ
xR  is the covariance matrix at zero time lag and N is the total number of time samples taken. 

2. Compute EVD (or SVD) of ( )0ˆ
xR  
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where sV  is m X n matrix of eigenvectors associated with n principal eigenvalues of ),......,,( 21 ns diag λλλ=Λ in descending 

order. nV  is m X (m-n) matrix containing the (m-n) noise eigenvectors associated with noise eigenvalues 

),......,,( 21 mnnn diag λλλ ++=Λ . The number of sources n are thus estimated based on the n most significant eigenvalues (or 

singular values in case of SVD). 

3. Perform pre-whitening transformation 
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4. Estimate the covariance matrix of the vector ( )kx  for preselected time lags other than p=0. Perform SVD on the estimated 

covariance matrix. 
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5. Perform Joint Approximate Diagonalization on the above set of covariance matrices to estimate the orthogonal matrix U 

that diagonalizes a set of covariance matrices. 
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6. The mixing matrix and source signals can be estimated as  
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2.2 Extension of SOBI to Experimental Modal Analysis 

The joint diagonalization procedure employed by SOBI, as explained above, can also be employed within the framework of 

traditional experimental modal analysis, where one also measures the excitation forces in addition to the output responses. In 

this section, SOBI is extended to traditional modal analysis.  

The impulse response function, for a MDOF system, at a particular output degree of freedom (dof) p, due to excitation force 

applied at dof q, is expressed in terms of modal parameters, i.e. modal frequency rλ  and residue pqrA  as 
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This can be further written in the following manner [10] (residue
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where rω is the damped natural frequency of the system and rσ  is the associated damping. For the undamped/proportionally 

damped case, the above equation reduces to the same form as Eq. 1. This is also analogous to the modal expansion theorem 

expressed in Eq. 2. It is worth noting at this point that the modal expansion theorem is only applicable for undamped or 

proportionally damped systems. This similarity between Eq. 1 (and Eq. 2) and Eq. 11 presents a possibility of applying SOBI 

to impulse response functions and obtain corresponding modal parameters, as long as the assumption regarding the damping 

are true. 

For the single input multiple output (SIMO) case, the impulse response functions can be mathematically expressed as 



( ) ( )t  t ηRh =
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where ( )th  is a vector of impulse response functions at various output dofs due to force applied at a specific input dof. R  is 

then a matrix of residues, whose columns can be expressed in terms of modal vector rφ  and participation vector. For SIMO 

case, participation vector is essentially a scalar given as irrir qL φ= , where rq  is the scaling factor associated with the rth mode 

and irφ  is the modal coefficient associated with that mode at the input excitation dof i. The mode shape information can thus 

be extracted from the residue vector estimated using SOBI. Frequency and damping information can be estimated from ( )tη  

using simple SDOF methods.  

3. Utilizing BSS mode shapes for model updating 

Eqs. 1 and 11 are key to utilizing SO-BSS algorithms for modal analysis purposes. They are analogous to the BSS mixing 

model shown in Eq. 2. However, the issue with this model is that it assumes the mixing matrix to be real. In terms of modal 

analysis, it means that the dynamic system under investigation is assumed to be undamped or proportionally damped, meaning 

that the modes are real normal. However, in real world, dynamic structures do not always adhere to these assumptions. Real 

world structures often exhibit dynamic characteristics with complex modes. This is one major limitation of the approach 

suggested in section 2.2. However, this limitation can turn out to be an advantage in case of model updating. Model updating 

techniques often require experimentally estimated mode shapes (often complex) to be first normalized such that they are real. 

It is these normalized real mode shapes that are utilized for model updating purposes. Since the procedure suggested in section 

2.2 provides real mode shapes directly, one can immediately use them for model updating. In this context, it is apt to recall 

model updating theory. 

It is well known that finite element predictions are often called into question when they are in conflict with test results [11]. 

Inaccuracies in finite element model, and errors in results predicted by them, can arise due to use of incorrect modeling of 

boundary conditions, incorrect modeling of joints, and difficulties in modeling of damping etc. This has led to the development 

of model updating techniques, which aim at reducing the inaccuracies present in finite element model in the light of measured 

dynamic test data.  A number of model updating methods have been proposed in recent years, as shown in the surveys [12, 13], 

most of which use modal data, i.e. natural frequencies and mode shapes for the purpose of updating the finite element model.  

Collins et al. [14] use the natural frequency and modeshape sensitivity for finite element model updating in an iterative 

framework.  The updating parameters (
ip ), corresponding to finite element model, are corrected to bring the analytical modal 

data closer to that obtained experimentally. For the rth eigenvalue, 
rλ (square of the rth natural frequency in rad/sec), and the rth 

eigenvector, { }r
Φ  (the mode shape), linearization gives: 
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where subscript FE and X denote finite element model and experimental model respectively. nu represents number of updating 

parameters. The derivative of eigenvalues and mode shapes can be calculated from the following relationship given by Fox and 

Kapoor [15],   
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Using the above equations, the finite element model updating for resonance frequencies and modeshapes can be written for m 

number of modes as: 
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where { }p∆  is a vector of change in updating parameters. It can be observed from Eq. 17 that values of updating parameters are 

mostly affected by eigenvalues as magnitude of eigenvalues is significantly higher than eigenvectors. In order to include the 

effect of changes in eigenvectors, the ratio of eigenvalues is considered in this problem formulation. 

4. Investigations on an Analytical 5 DOF system 

4.1 Modal Parameter Identification 

A simple 5 DOF system as shown in Fig. 1 is selected to investigate the applicability of the proposed method. The associated 

mass and stiffness matrix for this system are listed below. 
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Figure 1: 5 DOF Lumped Mass system 

4.1.1 Case 1 - Undamped System 

To begin with, the above-mentioned system is considered undamped. Since the current version of proposed approach is 

formulated for SIMO scenario, the third column of the impulse response matrix, h:,3 is considered in this study. It should be 

noted that the algorithm was set up to jointly diagonalize the first 1500 time lags of IRFs. A comparison of estimated natural 

frequencies with theoretical values is provided in Table 5 at the end of this section. This table lists and compares the natural 

frequencies from various cases investigated in this study. Mode shape comparison is given in Table 1. 

Table 1: Modal Shape Comparison for undamped system 

DOF 
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Theo. Est. Theo. Est. Theo. Est. Theo. Est. Theo. Est. 

1 1 1 1 1 1 1 1 1 1 1 

2 1.4904 1.4904 0.8376 0.8377 -0.6026 -0.6025 -13.669 -13.712 -19.872 -19.872 

3 1.3608 1.3611 -0.2382 -0.2397 -0.2490 -0.2500 220.79 222.254 465.19 465.19 

4 1.2022 1.2022 -1.2100 -1.2099 0.1326 0.1327 121.92 121.44 -17.687 -17.687 

5 0.6547 0.6547 -0.6896 -0.6896 0.0842 0.0842 -2080.6 -2073.2 21.206 21.206 

 

 

Figure 2: Power spectra of decoupled modes (Undamped System) 



The separation using SOBI, illustrated in Fig. 2, shows the power spectra of decoupled SDOF systems, calculated on the basis 

of estimated ( )tη . It is noticeable that estimated mode shapes match very well with theoretical values. The only error 

noticeable, although very small, is for the fourth mode. 

4.1.2 Case 2 – Light Proportional Damping 

Next, damping is introduced to the above-mentioned 5 DOF system and several possibilities are considered. To begin with 

damping is considered as proportional, C = 1.3M + 4e-6K. Modal vectors in this case are still real and same as that listed in 

Table 2 along with estimated mode shapes. Note that modal frequency and damping for this proportionally damped case are 

listed in Table 5 and 6. The power spectra of estimated SDOF systems (Fig. 3) again shows that the system modes are decoupled 

satisfactorily by SOBI. The mode shape estimates compare well in this case also. 

Table 2: Modal Matrix (Light proportional damping) 

DOF 
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Theo. Est. Theo. Est. Theo. Est. Theo. Est. Theo. Est. 

1 1 1 1 1 1 1 1 1 1 1 

2 1.4904 1.4906 0.8376 0.8366 -0.6026 -0.6024 -13.669 -18.247 -19.872 -19.968 

3 1.3608 1.3608 -0.2382 -0.2361 -0.2490 -0.2461 220.79 279.94 465.19 467.28 

4 1.2022 1.2024 -1.2100 -1.2107 0.1326 0.1326 121.92 162.58 -17.687 -17.772 

5 0.6547 0.6548 -0.6896 -0.6898 0.0842 0.0843 -2080.6 -2774.8 21.206 21.298 

 

 

Figure 3: Power spectra of decoupled modes (Light Proportional Damping) 

4.1.3 Case 3 – Moderate Proportional Damping 

In this case, damping is still considered to be proportional but it is adjusted so that the values are moderate. This is achieved 

by using the following value, C = 1.3M + 9e-5K. The theoretical and estimated mode shapes are listed in Table 3. The power 

spectra of separated modes, shown in Fig. 4, indicates that separation is not as complete as is the case with previous scenarios. 



This can be seen in the power spectra of 5th mode. The comparison of estimated frequency and damping is provided in Table 5 

and 6. 

 

Table 3: Modal Matrix (Moderate proportional damping) 

DOF 
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Theo. Est. Theo. Est. Theo. Est. Theo. Est. Theo. Est. 

1 1 1 1 1 1 1 1 1 1 1 

2 1.4904 1.4907 0.8376 0.8320 -0.6026 -0.6008 -13.669 61.766 -19.872 -21.876 

3 1.3608 1.3612 -0.2382 -0.2387 -0.2490 -0.2435 220.79 -1234.0 465.19 510.14 

4 1.2022 1.2027 -1.2100 -1.2115 0.1326 0.1325 121.92 -71.371 -17.687 -19.351 

5 0.6547 0.6549 -0.6896 -0.6900 0.0842 0.0847 -2080.6 1918.9 21.206 21.278 

 

 

Figure 4: Power spectra of decoupled modes (Moderate Proportional Damping) 

4.1.4 Case 4 – Non-proportional Damping 

Previously, damping is either neglected or considered proportional. Here, the effects of non-proportional damping are studied. 

The chosen damping matrix is given as 
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Theoretical modal parameters (frequency and damping) for the non-proportionally damped case are listed in Table 5 and 6. 

Modal vectors in this case become complex and are listed in Table 4 along with estimated vectors, which are expectedly real. 

The power spectra plots (Fig. 5) for this case clearly show that decoupling of impulse response functions into simple SDOF 



system responses is not as accurate. This is expected as the method is formulated on the assumption that the system is either 

undamped or proportionally damped, which is not the case here. 

Table 4: Estimated Modal Vectors (Non-proportional damping) 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Theo. Est. Theo. Est. Theo. Est. Theo. Est. Theo. Est. 

1.0000 + 

0.0000i 
1 
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0.0000i 
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Figure 5: Power spectra of decoupled modes (Non-proportional Damping) 

 

 

 

 

 



4.2 Modal frequency and damping comparison 

Table 5 and 6 provide the comparison of theoretical and estimated frequency and damping values for the four cases studied in 

last section. Results show that the estimated values compare well with theoretical parameters. 

Table 5: Comparison of modal frequencies 

Undamped 
Light Proportional 

Damping 

Moderate Proportional 

Damping 

Non-proportional 

Damping 

Theo. (Hz) Est. (Hz) Theo. (Hz) Est. (Hz) Theo. (Hz) Est. (Hz) Theo. (Hz) Est. (Hz) 

12.5234 12.5672 12.5230 12.5295 12.5226 12.5336 12.5263 12.5317 

22.0805 22.1070 22.0803 22.0828 22.0792 22.0900 22.0830 22.0923 

34.8880 34.9054 34.8878 34.8904 34.8851 34.8931 34.8635 34.8782 

88.5248 88.5651 88.5246 88.5230 88.4944 88.4275 88.5238 88.5210 

104.7825 104.8246 104.7822 104.7735 104.7334 104.3835 104.7787 104.7354 

 

Table 6: Comparison of modal damping 

Light Proportional 

Damping 

Moderate Proportional 

Damping 

Non-proportional 

Damping 

Theo. (%) Est. (%) Theo. (%) Est. (%) Theo. (%) Est. (%) 

0.8418 0.8303 1.1801 1.1874 1.1486 1.1411 

0.4963 0.4928 1.0928 1.0971 1.0589 1.0643 

0.3404 0.3413 1.2830 1.2809 2.1720 2.1653 

0.2281 0.2278 2.6198 2.6226 0.4872 0.4876 

0.2304 0.2306 3.0614 3.0748 0.8423 0.8329 

4.3 Investigations related to model updating 

Choice of updating parameters on the basis of engineering judgment about the possible locations of modeling errors in a 

structure is one of the strategies to ensure that only physically meaningful corrections are made. While using the mode shapes 

estimated using SOBI in previous section, for model updating purposes, two different cases are considered. First, stiffness K1 

is considered as an updated parameter and later stiffness K3. In case of 5 degrees-of-freedom lumped mass system, modeling 

of stiffness at the ends is expected to be a dominant source of inaccuracy in the FE model assuming that the values of material 

and the geometric parameters are correctly known. The modeshape and natural frequencies extracted for 4 different cases have 

been used to update the stiffness K1. The updated values of the stiffness K1 and corresponding errors are provided in the Table 

7. It can be observed from the Table 7 that, after updating, the error in all the cases have been less than 2%, which is acceptable.    

Table 7: Stiffness values of spring K1 after updating 

Cases Updated values % Error 

Undamped system 4.0603 Х106 -1.5079 

Lightly proportional damped 4.0303 Х106 -0.7582 

Moderate  proportional damped 4.0718 Х106 -1.7951 

Non-proportional damping 4.0615 Х106 -1.5384 



 

Next K3 has been considered as updated parameter. The reason for choosing K3 is that SOBI is applied to the SIMO case where 

the structure is excited at location 3. It can be observed from the updated values of K3, given in Table 8 that after updating the 

error is very small. 

Table 8: Stiffness values of spring K3 after updating 

Cases Updated values % Error 

Undamped system 6.0226 Х106 -0.3773 

Lightly proportional damped 5.8769 Х106 2.0510 

Moderate  proportional damped 5.8988 Х106 1.6869 

Non-proportional damping 5.9900 Х106 1.5384 

 

4.3 Discussions 

Results listed in previous section show that proposed approach of applying SOBI to impulse response functions for modal 

parameter estimation purposes yields satisfactory results. The frequency and damping estimates compare well in most cases 

and the same can be said for mode shapes in general. 

It is a feature of the proposed approach that mode shape matrix is estimated directly in the first step itself (mode shape matrix 

is analogous to mixing matrix). Expectedly, estimated mode shapes are real, irrespective of the nature of the dynamic system 

under investigation. There is no direct way of comparing them with theoretical mode shapes (which can be complex in certain 

cases). For cases such as undamped and proportionally damped system, modal coefficients compare well. It should be noted 

that applied algorithm is a SIMO algorithm and the chosen input DOF might not be able to excite all the modes equally. In all 

cases however, the modal assurance criteria (MAC) is close to 1. The biggest error in mode shapes is observed for moderately 

damped proportional damping case, where the mode shape associated with the fourth mode (third modal coefficient in 

particular) is not estimated with high accuracy. It is worth investigating if this can be improved by choosing a different 

excitation point. The performance with regards to non-proportional damping case is however satisfactory. 

The results from finite element updating procedure show the effectiveness of this approach as the real mode shapes can be 

directly utilized for model updating procedure. The reported errors on the updated parameter is relatively low. However, the 

true measure of the advantage of this approach, for the purpose of model updating, can only be assessed by evaluating its 

performance vis-à-vis conventional techniques, which provide complex mode shape that are required to be normalized to obtain 

real mode shapes. The error on updating parameter using these two different approaches can provide more insight into the 

effectiveness of BSS based approach.  

5. Conclusions 

BSS algorithms have typically been employed in modal analysis domain within OMA framework. This is obvious as, like BSS, 

aim of OMA is to obtain modal parameters only on the basis of measured output responses. This paper treats BSS as a second 

order mathematical decomposition and exploits the joint diagonalization properties of SOBI to derive a new approach that is 

applicable to traditional experimental modal analysis framework where both input and output are known. The applicability and 

effectiveness of this approach is shown in this paper by means of investigations done on a numerical lumped mass system. The 

obtained results are satisfactory.  

The suggested approach has a property that it provides real mode shapes irrespective of the nature of the dynamic system being 

analyzed. This is a drawback of the suggested approach but this property can be exploited for model updating purposes. The 

feasibility study carried out in this paper shows promise in terms of utilizing mode shapes obtained from this approach. 

However, as noted earlier, a complete picture can only emerge after comparing this approach with conventional approaches, 

where estimated mode shapes are normalized to get real mode shapes.   
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