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The localization of sound sources with delay-and-sum (DAS) beamforming is limited by a poor

spatial resolution—particularly at low frequencies. Various methods based on deconvolution are

examined to improve the resolution of the beamforming map, which can be modeled by a convo-

lution of the unknown acoustic source distribution and the beamformer’s response to a point

source, i.e., point-spread function. A significant limitation of deconvolution is, however, an addi-

tional computational effort compared to beamforming. In this paper, computationally efficient

deconvolution algorithms are examined with computer simulations and experimental data.

Specifically, the deconvolution problem is solved with a fast gradient projection method called

Fast Iterative Shrikage-Thresholding Algorithm (FISTA), and compared with a Fourier-based

non-negative least squares algorithm. The results indicate that FISTA tends to provide an

improved spatial resolution and is up to 30% faster and more robust to noise. In the spirit of repro-

ducible research, the source code is available online. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4922516]
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I. INTRODUCTION

Beamforming is a well-established signal processing

technique that is utilized for locating sound sources using a

microphone array. In the near field of a source, sound field

reconstruction techniques can provide a much better spatial

resolution compared to localization methods, e.g., beam-

forming. However, at measurement distances further away,

these techniques become impractical, and beamforming pro-

vides an attractive alternative.1

The delay-and-sum (DAS) beamforming algorithm

computes a map of the relative amplitude and position of

acoustic sources in a given measurement area. However,

due to the finite size of the array and finite number of

microphones, the beamforming map suffers from a spa-

tial resolution that is proportional to the wavelength (i.e.,

poor resolution at low frequencies), and the appearance

of ghost sources, i.e., non-existent sources.2 These limi-

tations degrade the overall accuracy of the beamformer

and can make the localization of sound sources

uncertain.

During the last decade, several techniques have been

developed to overcome the spatial resolution limit of beam-

forming.3–7 One popular approach is using a procedure

known as deconvolution. This method tries to recover the

true source distribution from the beamforming map, which

can be approximated by a convolution of the acoustic source

distribution and the beamformer’s response to a point source,

i.e., the point-spread function (PSF). Some well-known

deconvolution algorithms include CLEAN,8 initially intro-

duced in astrophysics and later applied for sound source

localization by Dougherty and Stoker,4 DAMAS by Brooks

and Humphreys5 and its extensions,9 the active set method

dubbed NNLS10 modified for sound source localization by

Ehrenfried and Koop,6 and Richardson-Lucy11,12 another

algorithm introduced in astrophysics that has been applied in

the acoustic literature.6,13

The general assumption in the above-mentioned referen-

ces is an uncorrelated noise-source distribution. Examples of

methods dealing with correlated noise source distributions

can also be found in the literature.7,14–17 In the present work,

uncorrelated noise source distributions are considered.

Deconvolution algorithms require additional computa-

tional effort compared to conventional DAS beamforming.

Spectral (Fourier-based) procedures are known to reduce the

computational effort;6 however, spectral methods can only

be employed if the beamformer’s PSF is shift-invariant, i.e.,

the PSF is the same regardless of the position of the point

source in the computational grid.18 This assumption is only a

good approximation if the source region is small compared

to the distance between the array and the source. This can be

achieved by reducing the coverage angle of the array.a)Electronic mail: oliverlylloff@gmail.com
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However, some degree of shift-variance will inevitably exist

and introduce a mismatch between the convolution model

and measured data.

The purpose of this work is to propose and validate a

new and efficient deconvolution algorithm for sound source

localization based on an accelerated gradient projection

algorithm called Fast Iterative Shrikage-Thresholding

Algorithm (FISTA).19 As a reference, the Fourier-based

non-negative least squares (FFT-NNLS) algorithm, a sub-

gradient projection algorithm known to produce computa-

tionally efficient solutions to the sound source localization

problem,6 is used to provide a benchmark of efficiency

for the comparison with the proposed deconvolution

algorithm. FISTA takes its name from a specific applica-

tion known as compressed sensing20 in which a so-called

shrinkage operator is utilized. With minor modifications,

FISTA can be applied in this work, where the shrinkage

operator will not be used, although the acronym is retained

throughout.

FISTA has a worst-case convergence rate that is greater

than that of ordinary gradient methods, such as FFT-

NNLS.21 Consequently, there is reason to expect that the

efficiency of FISTA is greater than FFT-NNLS. With a more

efficient deconvolution algorithm, it is possible to increase

the dimensions of the problem or number of iterations to

gain spatial resolution, calculate more frequency bands

to obtain a better spectral accuracy, or simply reduce the

computational run time of some demanding applications,

such as three-dimensional acoustic imaging.22

FISTA belongs to the class of accelerated proximal

methods, used for solving constrained optimization prob-

lems. The theory behind proximal methods is vast and the

authors refer to the monograph by Parikh and Boyd23 for an

extensive review.

This paper is organized as follows: the general beam-

forming framework and problem formulation are reviewed

in Sec. II. The present work is concerned with incoherent

sources. However, the theory outlined in Sec. II is valid also

for the case of partially coherent sources. The deconvolution

algorithms FFT-NNLS and FISTA are stated in Sec. III and

examined with computer simulations and experimental mea-

surement data in Secs. IV and V. A discussion and conclud-

ing remarks are given in Secs. VI and VII. The source code

is available online.24

In the following, vectors are denoted by boldface lower-

case letters and matrices by boldface uppercase letters.

II. BEAMFORMING AND CROSS-SPECTRAL
FORMULATION

Consider an unknown number of sources, producing sta-

tionary noise, located in the x – y plane at a distance of z0 m

from a microphone array with M microphones (Fig. 1). The

source plane is divided into S ¼ N � N equidistant

grid points (x, y) with grid spacing d0=ðN � 1Þ, where

d0 ¼ z0 tan ðh=2Þ is the width of the source plane at a dis-

tance z0 with an array coverage angle h, referred to as open-

ing angle.

For stationary noise, the cross-spectral matrix is calcu-

lated by dividing the captured time data of each microphone

into L frames. Each frame is then converted into NFFT narrow

frequency bins by the FFT and averaging is performed over

the L frames. For a given frequency bin x, the cross-spectral

matrix is averaged as

C xð Þ ¼ 1

L

XL

l¼1

pl xð Þpl xð ÞH; (1)

or in short: C ¼ ppH , where pðxÞ ¼ ½p1ðxÞ; p2ðxÞ;…;

pMðxÞ�T ; ð�ÞH denotes the conjugate transpose, and ð�Þ the

average over frames. For the sake of brevity, x is omitted in

the following.

The single-frame DAS output being vðrÞHp=M leads to

the following expression for the mean-square DAS beam-

former output:

b rð Þ ¼ 1

M2
v rð ÞHppH v rð Þ ¼ 1

M2
v rð ÞHCv rð Þ; (2)

where vðrÞ ¼ ½v1ðrÞ; v2ðrÞ;…; vMðrÞ�T , whose elements are

given by

vm rð Þ ¼ jr� rmj
e�jkjr�rmj

jrj : (3)

In this formulation, jrj is the distance from the center of the

array to the beamformer focus position r; jr� rmj is the dis-

tance from the focus point to the mth microphone, and k is

the wavenumber.2,6

Considering Eqs. (1) and (3) and the expression for a

monopole in free space,25 it follows that the response of

the beamformer to a single point source at the focus point r,

Eq. (2), equals the mean square pressure at the center of the

array from that source.

In the following, bðrÞ is computed for all grid points

(x, y) in the source plane with contributions arranged in a

vector b and referred to as the beamformer map.

Furthermore, diagonal removal is applied to C, i.e., diagonal

elements Cmm are set equal to 0 and the term 1=M2 is replaced

by 1=MðM � 1Þ before computing bðrÞ from Eq. (2). The

main reason for using diagonal removal is suppression of

FIG. 1. A microphone array with diameter D is placed in the center of

the coordinate system. The M microphone positions are given by

rm ¼ ðxm; ym; zmÞ, beamformer focus positions by r ¼ ðx; y; z0Þ, and point

source positions by rs ¼ ðxs; ys; z0Þ. The computational grid consists of

N � N equidistant points.
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noise in the individual measurement channels, typically flow

noise in microphones in a wind tunnel or outdoor.5

The procedure described in the preceding text provides

an easy way to locate sound sources. However, as mentioned

previously, the beamformer map suffers from a poor spatial

resolution. To improve on that, deconvolution algorithms

can be applied, which requires slight modifications to the

former analysis.

Consider the total sound pressure contribution at all M
microphones rewritten in vector notation p ¼ Gq, where

G ¼

g1ðr1Þ g1ðr2Þ � � � g1ðrSÞ
g2ðr1Þ g2ðr2Þ

..

. . .
.

gMðr1Þ gMðrSÞ

2
666664

3
777775

(4)

is a normalized propagation matrix with elements gmðrsÞ
¼ jrsjðe�jkjrs�rmj=jrs � rmjÞ and q ¼ ½q1; q2;…; qS�T is a vec-

tor of source amplitudes in terms of the pressure produced at

the array centre, qs ¼ ðjxqQs=4pjrsjÞ. The elements of G

compensate for the distance scaling of the source terms qs.
2,6

Notice that G 2 C
M�S; q 2 C

S
and p 2 C

M
.

Using the vector-notation introduced in Eq. (4), the

cross-spectral matrix, stated in Eq. (1), can be modeled as

C ¼ GqqH GH; (5)

where

qqH ¼

q1q�1 q1q�2 � � � q1q�S
q2q�1 q2q�2

..

. . .
.

qSq�1 qSqS�

2
666664

3
777775
: (6)

There are SðSþ 1Þ=2 unknown and independent correlation

terms. The aim is to estimate these. However, if the acoustic

sources are incoherent, the cross terms in qqH can be

assumed to be negligible compared to the diagonal, which

leads to a simplified cross-spectral matrix,

C ¼
XS

s¼1

jqsj2 � grs
gH

rs
; (7)

where grs
is a column vector of G, and the squared term

jqsj2 ¼ jqsq�s j denotes a power descriptor of the source at the

sth grid point. That is, sources contribute additively to power

descriptors. The assumption of incoherence reduces the

problem dimensions from SðSþ 1Þ=2 to S unknowns. The

aim of the present work is to estimate the non-negative

power terms jqsj2 by means of deconvolution.

III. DECONVOLUTION ALGORITHMS

Deconvolution methods are widely used in many field

of imaging to improve spatial resolution.18,26,27 In acoustics,

these methods make use of the fact that the beamformer’s

output can be approximated by a convolution of the acoustic

source distribution and the PSF under the assumption that

the source distribution can be described as a linear superpo-

sition of incoherent point sources. The sound pressure is cap-

tured by a microphone array, and the cross-spectral matrix,

C, is calculated from Eq. (1). The beamformer map can then

be obtained from the real part of Eq. (2). The objective of

any deconvolution algorithm is to retrace the underlying

source distribution that has been blurred by the beamforming

procedure.

The PSF is defined as the beamformer’s response to a

single unit-power point source. Inserting Eq. (7) into Eq. (2)

and assuming a point source at rs, the PSF is given by

PSF rjrsð Þ ¼ 1

M2
v rð ÞH grs

gH
rs

h i
v rð Þ

¼ 1

M2
jv rð Þgrs

j2: (8)

With this expression, the beamformer’s output at a single

focus point, can be written as

bðrÞ ¼
XS

s¼1

jqsj2 � PSFðrjrsÞ; (9)

or in the case of a shift-invariant PSF,

bðrÞ ¼
XS

s¼1

jqsj2 � PSFðr� rsÞ; (10)

which corresponds to a linear convolution of the source

power descriptors, jqsj2 , and the shift-invariant PSF.

By computing PSFðrjrsÞ for all combinations of ðr; rsÞ
in the grid (x, y) and arranging each resulting PSF map

column-wise in a matrix A (with dimensions N2 � N2), a lin-

ear system of equations arises

Ax ¼ b; (11)

where b contains the beamformer map and x ¼ ½jq1j2 ;
jq2j2 ;…; jqSj2 �T is the source distribution of power descrip-

tors. The aim is to recover x given A and b. If the PSF is

assumed to be shift invariant, the matrix corresponds to a

discretized two-dimensional (2D) blur operator, and hence

Eq. (11) is an ill-posed discrete inverse problem.28

Assuming that the vector b contains Gaussian noise and

using the prior information that x is nonnegative, the follow-

ing optimization problem arises

minimize
1

2
kAx� bk2

2;

subject to xi � 0;
(12)

where the non-negativity constraint on x is due to the fact

that the source power descriptors can only attain non-

negative values. The optimization problem in Eq. (12) is

also known as a non-negative least-squares (NNLS) problem

(not to be confused with the NNLS algorithm proposed by

Lawson and Hanson10).
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The convolution formulation in Eq. (10) makes it possi-

ble to utilize the convolution theorem to perform efficient

calculations in the wavenumber domain via the discrete

spatial Fourier transform,

B ¼ X � PSF ¼ F�1½FðXÞ � FðPSFÞ�; (13)

where B; x ¼ vecðXÞ, and PSF are matrices with the beam-

former map, the source distribution of power descriptors,

and the point-spread function respectively. F and F�1

denote the 2D Fourier transform and its inverse and ð�Þ
denotes a convolution product. The efficiency advantage

of the convolution formulation is due to the fact that

the Fourier transform can be performed via a circular convo-

lution with the FFT in Oð2N2 log NÞ time for a N�N com-

putational grid, compared to a OðN4Þ complexity of a

matrix-vector multiplication, Ax. However, replacing a

linear convolution with a circular convolution will result in

a wrap-around (replicated aperture) error if the input is not

periodic. Applying sufficient zero padding, extending the

N�N grid to at least ð2N � 1Þ � ð2N � 1Þ by padding with

zeros, is necessary in prevent the wrap around effect.29

The NNLS problem in Eq. (12) can be rewritten to take

advantage of the convolution formulation,

minimize
1

2
kF�1 F Xð Þ � F PSFð Þ½ � � Bk2

Fro;

subject to Xi;j � 0; (14)

where k � kFro is the Frobenius norm. This approximation

reduces the computational run time significantly because it

removes the need for an explicit formulation of A. The often

large dimensions of the problem makes first-order algo-

rithms, such as the steepest descent algorithm, the only prac-

tical option for computationally efficient solutions.30

To introduce the following deconvolution algorithms,

an equivalent formulation of the NNLS problem, Eq. (12), is

given by

minimize F xð Þ ¼ f xð Þ þ g xð Þ

¼ 1

2
kAx� bk2

2 þ Iþ xð Þ; (15)

where f ðxÞ ¼ 1
2
kAx� bk2

2 is a smooth and unconstrained

quadratic function and gðxÞ ¼ IþðxÞ, a non-smooth indicator

function given by the optimization constraints

IþðxÞ ¼
0 xi 2 Rþ
1 otherwise;

�
(16)

where Rn
þ ¼ fx 2 Rnjxi � 0; i ¼ 1;…; ng is the non-

negative orthant.

The projected gradient descent algorithm for the solu-

tion of Eq. (12) is given by

xkþ1 ¼ Pþðxk � tkrf ðxkÞÞ; (17)

where Pþ is the Euclidean projection of x onto the non-

negative orthant Rn
þ.23 Given a start guess on the solution x0

(a common choice is x0 ¼ 0 but other are possible, as will be

discussed later), the projected gradient descent algorithm

generates a sequence of solutions by taking steps tk in the

negative gradient direction, i.e., the steepest descent direc-

tion, followed by a projection that sets all variables xi < 0 to

zero. The algorithm is terminated by a stopping criterion

defined by the user. A common and computationally inex-

pensive choice is to stop after a fixed number of iterations.

Based on the projected gradient descent algorithm, vari-

ous methods have been proposed by the aeroacoustic com-

munity for the solution of the NNLS problem, Eq. (12). The

FFT-NNLS algorithm, in particular, has been shown to pro-

vide computationally efficient solutions comparable to

DAMAS2 and Richardson-Lucy.6,13 The FFT-NNLS algo-

rithm for the solution of Eq. (12) is stated in the following

text.

A. FFT-NNLS

Given a start vector x0 and a convex function f, repeat

for k � 1 until the stopping criterion is satisfied

(1) Search direction: Compute subgradient dk for all xi

dk
i ¼

� @

@xi
f xk

i

� �
; xi > 0

max 0;� @

@xi
f xk

i

� �� �
; xi ¼ 0:

8>>><
>>>:

(2) Step size: tk ¼ ½ðAdkÞTðAxk � bÞ�=½ðAdkÞTðAdkÞ�.
(3) Update: xkþ1 ¼ Pþðxk þ tkdkÞ.

FFT-NNLS is a projected subgradient method with a

line search. Compared to Eq. (17), the computation of the

subgradient dk ensures that only the subgradients dk
i within

the feasible set is updated; this results in a more efficient

algorithm. Furthermore the convolution formulation can be

used to compute the matrix-vector products Adk and Axk

efficiently; this makes it suitable for the solution of the alter-

native problem formulation in Eq. (14).

A more recently proposed algorithm for solving inverse

problems arising in signal/image processing is known as

FISTA.19 When applied to the problem in Eq. (12), FISTA

takes the following form.

B. FISTA

Given a start vector x0 and a convex function f with a

Lipschitz continuous gradient rf and a Lipschitz constant

L> 0 defined by krf ðxÞ � rf ðyÞk2 � Lkx� yk2, set

y1 ¼ x0; t1 ¼ 1, and repeat for k � 1 until the stopping crite-

rion is satisfied,

(1) Update xk ¼ Pþðyk �rf ðykÞ=LÞ.
(2) Intermediate step tkþ1 ¼ 1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t2

k

q
Þ:

(3) Update ykþ1 ¼ xk þ ½ðtk � 1Þ=tkþ1�ðxk � xk�1Þ:

The two main differences between FFT-NNLS and

FISTA are the computation of step sizes and the introduction

of an auxiliary vector y in FISTA.

In FISTA, the step size 1=L is fixed and calculated in

advance of the main loop from the Lipschitz constant of rf .
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This can be interpreted as minimizing a local quadratic

upper approximation of f, around x, where the exact local

minimizer of the quadratic approximation of f is achieved

with a step size of 1=L. For the problem in Eq. (12), the

Lipschitz constant is equal to the largest eigenvalue of the

Hessian r2f ¼ ATA, and this can be estimated using, e.g.,

the power method.31 If the estimated L is too conservative,

the step size will be small, and the method will be less

efficient.

The primary computational cost of the algorithms is due

to the matrix product with A in the evaluation of the objec-

tive function f xkð Þ ¼ 1
2
kAxk � bk2

2 and its gradient rf ðxkÞ
¼ ATkAxk � bk2. The main efficiency advantage of FISTA

comes from the fact that only two matrix products are

required, while FFT-NNLS requires one more for the step

size calculation.

Additionally, the auxiliary vector y acts as a momentum

term, where the previous iterate is taken into account to

improve the efficiency.

To the authors’ knowledge, no convergence proof exists

for FFT-NNLS. The theoretical convergence rate of the

ordinary projected gradient algorithm is Oð1=kÞ. On the con-

trary, the convergence rate of FISTA is Oð1=k2Þ.19

Preliminary tests have shown that it is possible to reduce

the number of iterations by utilizing a warm start strategy

using the solution in one frequency band as the initialization

of the next. However, this is not addressed in the present

paper.

IV. SIMULATIONS

In this section, computer simulations of two point sour-

ces are considered. The performance of FFT-NNLS and

FISTA is evaluated and compared.

Consider two unit-power point sources placed in the

x – y plane at a distance of z0 ¼ 5 meters from a planar

60-channel microphone array with irregular microphone

positioning and a diameter of 1 m. Gaussian white noise is

added with a signal-to-noise ratio of 30 dB at the microphone

array.

The beamformer resolution limit due to Rayleigh’s

criterion is given by

R ¼ az0k
cos3 /ð ÞD ; (18)

where a 	 1:22 and k, /, and D are the wavelength, the

array off-axis angle, and the array aperture diameter,

respectively.2

At a frequency of 1500 Hz and with a microphone array

opening angle of h ¼ 2/¼ 30
, the resolution limit is about

R 	 1:54 m. Placing the point sources Dx ¼ 1:33 m apart,

they are barely separated in the beamformer map (Fig. 2)

with N¼ 100.

Applying the deconvolution algorithms, FFT-NNLS and

FISTA, with a starting guess x0 ¼ 0, 5000 iterations, and

sufficient zero-padding to the beamformer map, results in

two deconvolved maps shown in Fig. 3. The point source

positions are well confined and distinguishable, and FISTA

provides a slightly better spatial resolution than FFT-NNLS.

The convergence behavior of the deconvolution algo-

rithms is assessed by the ratio

FIG. 2. (Color online) Beamformer map at f¼ 1500 Hz. Star symbols indi-

cate position of the simulated point sources.

FIG. 3. (Color online) Deconvolved maps. The scale is normalized to the

maximum of each independent map.
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f xkð Þ � f x�ð Þ
f x�ð Þ ; (19)

where x� is the optimal solution and f xkð Þ ¼ 1
2
kAxk � bk2

2 is

the objective function evaluated at iteration k. The optimal

solution is two delta functions each of unit power at the posi-

tions indicated by the star symbols in Fig. 2. However, to

compare the convergence behavior with the experimental

study in Sec. V, where the optimal solution is not known, x�

is approximated by the solution obtained with FISTA after

3K iterations, where K¼ 5000 is the maximum number of

iterations.

The convergence ratio ½f ðxkÞ � f ðx�Þ�=f ðx�Þ is shown in

Fig. 4. Initially, FFT-NNLS converges faster to x� than FISTA.

Between 100 and 300 iterations, FISTA and FFT-NNLS have

similar convergence rates and beyond 300 iterations FFT-

NNLS starts to produce sudden peaks in the convergence plot.

Eventually, after 1000 iterations, FFT-NNLS stagnates com-

pletely and FISTA continues to decrease at a fairly constant

rate. The random peaks generated by FFT-NNLS are believed

to be due to numerical rounding errors in the computation of

the step sizes. The stagnation in convergence is due to step

sizes that are smaller than the smallest double-precision float

point value, i.e., 2�52.

The time spent by FFT-NNLS and FISTA on an Intel

Core 2 Duo, 3.0 GHz processor is at the order of 20 ms per

iteration; however, FISTA is about 30% faster than FFT-

NNLS. In particular, FFT-NNLS takes 24 ms per iteration

and FISTA 17 ms per iteration, which is a total of 120 and

85 s after 5000 iterations, respectively. This means that

FISTA can perform more iterations than FFT-NNLS in the

same amount of time, e.g., a run time of 20 s, with the

described hardware, will result in about 1175 iterations with

FISTA but only about 833 iterations with FFT-NNLS. The

additional time used by FFT-NNLS is due to the computa-

tion of step sizes in each iteration. The fixed step size in

FISTA requires no additional time per iteration. The effi-

ciency gain obtained with FISTA is problem independent,

which means that FISTA will be 30% faster than FFT-NNLS

irrespective of the size or conditioning of the problem.

Ideally the deconvolved maps should converge to two

delta functions with unit power; however, due to the approxi-

mation of a shift-invariant PSF, some degree of mismatch

will exist and affect the convergence of both algorithms.

The power of the sources after applying the deconvolu-

tion algorithms is assessed by a cross-sectional plot of the

deconvolved maps. Figure 5 shows that FISTA provides a

better approximation to a unit-power delta function than

FFT-NNLS after 5000 iterations.

The total power in the deconvolved maps (Fig. 3) equals

1.89, slightly lower than the expected power of 2 of the two

sources. The deviation is due to zero-padding of the beam-

former map (Fig. 2). At this particular frequency, the main

lobes of the beamformer map is cut away at the edges and

power is removed, thus deconvolution cannot recover the

initial source power.

Unlike FFT-NNLS, FISTA continues to converge

beyond 1000 iterations and obtains a lower convergence

ratio after about 2000 iterations. It is therefore expected that

the solution provided by FISTA will be more alike two delta

functions.

Although a low value in the convergence ratio is not

necessarily a guarantee of high spatial resolution, it is visu-

ally clear that FISTA provides a better approximation to the

original source distribution.

V. EXPERIMENTAL RESULTS

Measurements have been conducted in an anechoic

room with a volume of about 1000 m3 to assess the perform-

ance of the deconvolution algorithms FFT-NNLS and

FISTA in an experimental setting (Fig. 6). The microphone

array consisted of 60 1/4 in. microphones, Br€uel and Kjær

type 4935, arranged in a pseudo-random pattern with a

diameter of about 1 m. Two loudspeakers (Br€uel and Kjær

Omnisource type 4295) were placed 2.7 m from the center of

the microphone array, driven independently with random

noise generated by two noise generators, to ensure mutually

incoherent sources. The loudspeakers are manufactured

to have radiation characteristics of a monopole with a

FIG. 4. (Color online) Normalized objective function values as a function of

iterations.

FIG. 5. (Color online) Cross section of deconvolved maps at y¼ 0 after

5000 iterations. Dotted lines represent the positions of the point sources.
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near-omnidirectional response and thus are useful for the

comparison with the simulation study. The microphone array

and loudspeakers were controlled by a Br€uel and Kjær

PULSE analyzer and a PC outside the anechoic room.

The microphone signals were recorded in 20 s segments,

and the cross-spectral matrices were calculated from frames

of 1 s Hanning windows with 50% overlap and averaged as

described in Eq. (1).

Cross-spectral matrices of dimensions 60� 60 were

stored for each frequency bin up to the Nyquist frequency

f¼ 8192 Hz with a spectral resolution of 1 Hz.

In the following, two identical measurement setups are

considered with and without an external noise source.

A. Without external noise source

The beamformer map at f¼ 1200 Hz is shown in Fig. 7

with an array opening angle of h¼ 40
. The level difference

of the two sources is approximately 10 dB at this particular

frequency, thus only one of the sources is clearly visible in

the beamformer map. The signal-to-noise ratio at the micro-

phone array is about 30 dB.

Applying the deconvolution algorithms, FFT-NNLS and

FISTA, to the beamformer map with 5000 iterations results

in the deconvolved maps shown in Fig. 8.

Both sources are well-resolved by FFT-NNLS and

FISTA. The spatial resolution is increased significantly

by both algorithms. FISTA provides a slightly better

resolution with more confined point sources than FFT-

NNLS.

As in the simulation study, the convergence ratio

½f ðxkÞ � f ðx�Þ�=f ðx�Þ, shown in Fig. 9, serves as a measure

of convergence rate of the two algorithms. Initially, the con-

vergence rate of FFT-NNLS is better than FISTA. After

about 100 iterations FFT-NNLS slows down and exhibits

random peaks, which was also seen in the simulation study,

and FISTA obtains a better convergence rate. The conver-

gence of FFT-NNLS stagnates just after 4000 iterations

while FISTA continues to decrease.FIG. 6. (Color online) Measurement setup in an anechoic room. In the fore-

ground, two loudspeakers are seen and in the background a microphone

array is seen.

FIG. 7. (Color online) Beamformer map at f¼ 1200 Hz. Star symbols indi-

cate approximate position of the loudspeakers.

FIG. 8. (Color online) Deconvolved maps. The scale is normalized to the

maximum of each independent map.
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B. With external noise source

To test the performance of the deconvolution algorithms

in high background noise conditions, an external noise

source (a fan-type reference sound source) is added to the

measurement setup located on the side between the array

and loudspeakers (outside the field of view in Fig. 6). The

beamformer map at f¼ 1200 Hz is shown in Fig. 10, where

the array signal-to-noise ratios are �5 and 5 dB for the left

and right source, respectively.

Applying FFT-NNLS and FISTA to the beamformer

map with 5000 iterations results in the deconvolved maps

shown in Fig. 11. Similar to the case without an external

noise source, the spatial resolution is significantly better than

the beamformer map.

The convergence rates of FFT-NNLS and FISTA,

shown in Fig. 12, are very alike. As in the previous investi-

gations FFT-NNLS is faster initially. After about 100 itera-

tions and up until 1000 iterations, the two algorithms have

almost identical convergence rates. Random peaks are once

again seen in the convergence of FFT-NNLS and a total

stagnation is observed after 1000 iterations. The greater

FIG. 9. (Color online) Normalized objective function values as a function of

iterations.

FIG. 10. (Color online) Beamformer map at f¼ 1200 Hz with external noise

source. Star symbols indicate approximate position of the loudspeakers.

FIG. 11. (Color online) Deconvolved maps. The scale is normalized to the

maximum of each independent map.

FIG. 12. (Color online) Normalized objective function values as a function

of iterations.

J. Acoust. Soc. Am. 138 (1), July 2015 Lylloff et al. 179

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  194.239.172.15 On: Sat, 25 Jul 2015 08:29:15



convergence rate of FISTA above 1000 iterations is assumed

to be the reason for the improved spatial resolution seen in

Fig. 11(b).

VI. DISCUSSION

It has been assumed that the PSF is shift-invariant. This

implies an inherent limitation of convergence and, conse-

quently, spatial resolution of the deconvolution algorithms.

One approach to overcome this limitation is to apply a coor-

dinate transformation to the equidistant grid, such that the

PSF is forced to be shift-invariant.22 However, the trans-

formed grid does not have a uniform grid density, which

results in a decreasing spatial resolution from the center of

the grid toward the edges.

The mathematical framework behind FISTA provides

an accessible option for adding further constraints. One pop-

ular constraint is found in compressed sensing that uses a

1-norm regularization constraint.20 For future investigations,

it will be of interest to extend the capabilities of the present

formulation of FISTA to include a sparsity constraint on the

solution to see whether the efficiency could be further

improved. Additionally, the problem of localizing coherent

point sources efficiently is also of interest and the framework

around FISTA can possibly provide the necessary tools.

VII. CONCLUSION

An examination of two deconvolution algorithms, FFT-

NNLS and FISTA, has been carried out. It has been seen that

they provide an improved spatial resolution over beamform-

ing for sound source localization.

A comparison of the efficiency of the algorithms has

shown that FISTA can reach the same solutions as FFT-

NNLS in less time; approximately 30% faster. Furthermore,

due to the increased and stable convergence rate beyond

approximately 100 iterations, FISTA tends to provide solu-

tions with a better spatial resolution than FFT-NNLS. Both

algorithms have proved to be robust to high background

noise conditions although FISTA presented a better conver-

gence rate than FFT-NNLS after about 1000 iterations.
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