
Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

Mechanical Systems and Signal Processing 74 (2016) 183–198
http://d
0888-32

E-m
journal homepage: www.elsevier.com/locate/ymssp
Rotor anisotropy as a blade damage indicator for wind turbine
structural health monitoring systems

Dmitri Tcherniak
Brüel & Kjær Sound & Vibration Measurement, Skodsborgvej 307, Nærum 2850, Denmark
a r t i c l e i n f o

Article history:
Received 10 October 2014
Received in revised form
13 July 2015
Accepted 27 September 2015
Available online 23 October 2015

Keywords:
Rotor anisotropy
Floquet analysis
Linear periodic time variant system
Wind turbine
Operational modal analysis
x.doi.org/10.1016/j.ymssp.2015.09.038
70/& 2015 Elsevier Ltd. All rights reserved.

ail address: dtcherniak@bksv.com
a b s t r a c t

Structural damage of a rotor blade causes structural anisotropy of the rotor. In rotor
dynamic, the anisotropy affects the symmetry of the rotor mode shapes, and the latter can
be utilized to detect the blade damage. The mode shape symmetry can be characterized by
relative blades’ magnitude and phase. The study examines the potential use of these
parameters as rotor damage indicators.

Firstly the indicators are studied analytically using a simple 6 degrees-of-freedom
model of a rotating rotor. Floquet analysis is used due to the time periodic nature of the
considered system. Floquet analysis allows one to perform analytical modal decomposi-
tion of the system and study the sensitivity of the damage indicators to the amount of
damage. Secondly, operational modal analysis (OMA) is involved to extract the same
damage indicators from simulated experimental data, which was synthesized via
numerical simulations.

Finally, the same procedure was applied to operating Vestas V27 wind turbine, first
using the simulated experimental data obtained by using aeroelastic simulation code
HAWC2 and then using the data acquired during the measurement campaign on a real
wind turbine.

The study demonstrates that the proposed damage indicators are significantly more
sensitive than the commonly used changes in natural frequency, and in contrast to the
latter, can also pinpoint the faulty blade. It is also demonstrated that these indicators can
be derived from blades vibration data obtained from real life experiment.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Blades of modern wind turbines are complex, high-tech structures, and their cost constitutes a significant part of the
entire wind-turbine cost. While operating, the blades are heavily loaded and exposed to harsh weather conditions, espe-
cially for off-shore wind turbines. If damage to the blades develops to a critical level, it may cause catastrophic con-
sequences. If the damage leads to partial or complete loss of structural integrity, repair is extremely costly, or may even be
impossible. This calls for automatic blade health monitoring systems that are able to automatically detect and report
damage, follow up on damage development and guide the blade Operational and Maintenance programme in general.

The damage detection approach presented in this paper generally follows the traditional concept: we extract modal
parameters from the vibration data measured on an operating wind turbine; the potential changes in the modal parameters
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are used to detect and localize the damage [1]. Time-periodic nature of an operating wind turbine complicates modal
analysis, and it is important to take this into consideration. This issue will be discussed later.

However, in this study, we take a pragmatic view: we are looking for the blade damage features sufficiently sensitive, and
these features should be observable in a real-life situation. The following two examples demonstrate the opposite: It is
known that damage changes natural frequencies of the structure. However, many conclude [2] that these changes are not
sensitive to the damage; that is, the damage must grow to an extreme amount to change the natural frequencies sig-
nificantly enough to be detectable. It is also known that the mode shapes of flapwise blade modes can be used to localize
blade damage [3]. However, it was shown [4,5] that for operating wind turbines, the flapwise modes are not observable with
the accuracy level sufficient for damage localization.

For modal parameter estimations, we use operational modal analysis (OMA) [6], which does not require the excitation
force to be measured, and extracts modal parameters based on response data only, given that the structure is excited by
ambient operational forces. We need to admit that OMA, though a valuable tool for big structures, is not perfectly suited for
operating wind turbines. The acting aerodynamic loads do not satisfy OMA assumptions [7] and, in general, an operating
wind turbine cannot be modelled as a time-invariant system. A linear time-periodic (LTP) system is a better model for an
operating wind turbine; for modal decomposition of such systems, a number of dedicated methods have been developed,
for example [8,9]. However, here we also take a pragmatic approach: the goal is not to perform a perfect modal identifi-
cation, but rather be able to extract few modal-based dynamic features, which are sensitive to damage and which can be
used for confident damage detection.

Floquet theory describes the complex dynamic of a rotating rotor via periodic modes: each mode can be presented via
superposition of Fourier components oscillating at different frequencies. In theory, there is an infinite number of Fourier
components even in a system with few degrees-of-freedom. Full modal analysis of a general time-periodic system is
incredibly difficult. However, practical observations can pinpoint the dynamic features, which are sensitive to rotor ani-
sotropy and can be identified from measured data and thus can serve the purpose of blade damage detection.

This explains the selection of damage features for this study: From practical experience [5], it was noticed that the
magnitude and phases between the blades for whirling modes demonstrate a high level of sensitivity to blade damage. Also
from experience [4,5], it is known that the edgewise whirling modes can be identified with a high level of confidence. Based
on these observations, it was decided to examine how a slight rotor anisotropy due to blade damage influences the mode
shape of the edgewise whirling modes, with the focus on phase and magnitude of the blade motion.

The rotor anisotropy also affects the tower; here we also propose and examine a damage indicator based on the changes
in the tower dynamics.

The idea of using rotor anisotropy as a damage indicator was initially suggested in [10]; the present paper further
develops the idea and exemplifies it by three means: (i) a simple lumped-mass model; (ii) simulated experiment using data
generated by nonlinear aeroelastic code HAWC2 and (iii) by using experimental data obtained from an operating Vestas V27
wind turbine.

The paper applies the following investigation strategy: Section 2 sets up a lumped-mass model of a three-bladed rotor,
simple but sufficient for catching the effects of rotor anisotropy for in-plane1 rotor modes. The equations of motion are
derived, and modal decomposition based on Floquet analysis is performed. Section 3 examines the differences in dynamics
of isotropic and anisotropic rotors, and based on this, Section 4 suggests and studies the dynamic features that can be used
as damage indicators. The sensitivity of these features to the amount of damage is examined.

In order to utilize the proposed damage indicators in practice, it should be possible to obtain the proposed damage
indicators from measured data. Section 5 addresses the experimental techniques applicable to anisotropic rotors. The
techniques are demonstrated on three cases with increasing complexity:

1. The first case (Section 5.1) is based on simulated data from a numerical experiment on the simple lumped-mass model
introduced in Section 1.

2. The second case (Section 5.2) is based on numerical simulation of dynamics of operating Vestas V27 wind turbine. The
simulations were conducted using non-linear aeroelastic code HAWC2.

3. The third case (Section 5.3) uses the blade vibration data recorded during a measured campaign on a real Vestas V27
wind turbine.
2. Simplified rotor model

A simple six degree-of-freedom (DOF) system (Fig. 1) models a rotating rotor and the supporting tower/nacelle struc-
tures. Each blade is modelled as two beams with lengths a and b, connected by a linear angular spring with stiffness kl, l¼1,
…, 3, where l is the blade index. The blades are evenly distributed over the rotor, the blades’ azimuth angles are:
1 Due to blade pitch, the edgewise blade motion corresponds to in-plane rotor motion when the wind turbine is operating, and to out-of-plane when it
is idle.



Fig. 1. Simplified rotor system.
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ψ l tð Þ ¼ψ tð Þþ2π
3 ðl�1Þ. Lumped massesml are attached to the ends of the outer beams. The rotor rotates with angular speed Ω

about point C attached to the mass mN; the latter models the nacelle. The mass is supported by two springs with stiffnesses
kH and kV, which model the tower. The drivetrain has a moment of inertia ID and stiffness kD. A similar lumped parameter
system is considered in [12]; however, there the focus was on the out-of-plane rotor motion.

2.1. Equation of motion and Coleman transformation

The system is described by six coordinates: xC and yC are the coordinates of point C, the deflection of each blade from a
straight line is described by angle ϕl, and θ is the drivetrain angular vibrations.

Equations of motion (EoM) are derived using the Lagrange method. The linearized EoM can be written as

M tð Þ €y tð ÞþG tð Þ _y tð ÞþK tð Þy tð Þ ¼ 0; ð1Þ
where M tð Þ, G tð Þ and K tð Þ are mass, gyroscopic and stiffness matrices. The matrices depend on the rotor azimuth ψ ðtÞ; for
constant rotor speed Ω, ψ ðtÞ ¼Ωt, the matrices are periodic with rotor period T ¼ 2π=Ω: M tð Þ ¼M tþTð Þ, G tð Þ ¼G tþTð Þ,
K tð Þ ¼K tþTð Þ. The vector y tð Þ ¼ xC tð Þ; yC tð Þ;ϕ1ðtÞ;ϕ2ðtÞ;ϕ3ðtÞ;θðtÞ

� �T describes the physical DOFs of the system measured
from the equilibrium position. Note the mixture of displacement and angular units in the vector.

The Coleman (also known as multiblade coordinate or MBC) transformation converts the blade DOFs ϕj tð Þ to multiblade
coordinates [11]:

a0 tð Þ ¼ 1
3

X3
l ¼ 1

ϕlðtÞ

a1 tð Þ ¼ 2
3

X3
l ¼ 1

ϕlðtÞ cos ðψ l tð ÞÞ ð2Þ

b1 tð Þ ¼ 2
3

X3
l ¼ 1

ϕlðtÞ sin ðψ l tð ÞÞ

The backward Coleman transformation converts the multiblade coordinates back to the blade coordinates:

ϕl tð Þ ¼ a0 tð Þþa1 tð Þ cos ψ l tð Þ
� �þb1 sin ψ l tð Þ

� �
: ð3Þ

In matrix form the transformation (3) can be written as

y tð Þ ¼D tð Þw tð Þ; ð4Þ
where w tð Þ ¼ xC tð Þ; yC tð Þ; a0ðtÞ; a1ðtÞ; b1ðtÞ;θðtÞ

� �T is the vector of multiblade coordinates. The matrix D can be easily derived
from (2) or found in, for example, [11]. It has the following properties [11]: DðtÞ�1 ¼ΓD tð ÞT , _DðtÞ ¼D tð ÞR and €DðtÞ ¼D tð ÞR2.
Knowing matrix D, the matrices Γ and R can be easily derived, and it can be shown that they are time-invariant. Applying
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the transformation to (1), using the above-mentioned properties and pre-multiplying by DðtÞ�1 yield the equation of motion
in multiblade coordinates:

MD tð Þ €w tð Þþ 2MD tð ÞRþGD tð Þð Þ _w tð Þþ MD tð ÞR2þGD tð ÞRþKD tð Þ
� �

w tð Þ ¼ 0; ð5Þ

where MD tð Þ ¼ΓD tð ÞTMðtÞDðtÞ, GD tð Þ ¼ΓD tð ÞTGðtÞDðtÞ and KD tð Þ ¼ΓD tð ÞTKðtÞDðtÞ.
The important property of the Coleman transformation is that for isotropic rotors: m1 ¼m2 ¼m3 ¼m and k1 ¼ k2 ¼ k3 ¼ k,

the mass and gyroscopic matrices are time-invariant: MD tð Þ ¼MD and GD tð Þ ¼ GD; the stiffness matrix is also time-invariant
in the absence of gravity, KD tð Þ ¼KD. In the presence of gravity, the latter becomes time-periodic with period T=3. Thus, for
isotropic rotors, if the influence of gravity is neglected, the Coleman transformation converts the time-periodic EoM (1) into
the time-invariant one:

MD €w tð Þþ 2MDRþGDð Þ _w tð Þþ MDR
2þGDRþKD

� �
w tð Þ ¼ 0; ð6Þ

and thus allows application of eigenvalue analysis to EoM (6). Let the rth mode of (6) have the eigenvalue λr ¼ iωr�σr and
the mode shape rr , which is defined in multiblade coordinates: rr ¼ XC ;YC ;A0;A1;B1;Θ

� �T
r , rrAC6�1. The oscillations at this

mode are rreλr t . Using the backward Coleman transformation (3) and recalling the lth blade's azimuth ψ l tð Þ ¼Ωtþ2π
3 ðl�1Þ, it

is straightforward to convert the mode shape from the multiblade coordinates to the blade coordinates:

ql;r tð Þ ¼ A0;reiωr t�σr tþ1
2 A1;r� iB1;r
� �

ei ωr �Ωð Þt�σr t� i2π3 l�1ð Þ þ1
2 A1;rþ iB1;r
� �

ei ωr þΩð Þt�σr tþ i2π3 l�1ð Þ:
ð7Þ

Thus, in blade coordinates, the rth mode consists of three components. The first one oscillates at frequency ωr , all the
blades have the same magnitude and move in phase. This component is called collective. The second component is called
forward whirling, it oscillates at ωr�Ω, all blades have same magnitudes and the phase lag between the blades is the same
for all blades and is equal to 2π

3 (or 120°). The third, backward whirling component, oscillates at ωrþΩ, and again all blades
have same magnitudes and the phase lag between the blades is �2π

3 (or �120°).
The latter two components are called whirling because, when visualized, they resemble a whirl rotating in the rotor

direction (forward whirling) and in opposite direction (backward whirling).

2.2. Floquet analysis

In this study, a deviation from the rotor isotropy is in focus, and the Coleman transformation followed by the eigenvalue
analysis cannot be applied. Still, since the considered deviations from isotropy are assumed small, the results of the
eigenvalue analysis of (5) might be useful as a starting point.

Let us consider the rotor becoming slightly anisotropic, for example due to damage that causes some reduction of the
stiffness of one of the blades. In this situation, the EoM (5) will have time-periodic coefficient matrices. To obtain a solution to
the time-periodic EoM, several techniques could be employed. Skjoldan, in his Ph.D. thesis, describes and compares several
applicable methods (Table 3.1 in [14]); in this study, the classical Floquet analysis was chosen as the most appropriate.2

The first-order form of (1) is

_x tð Þ ¼ �A tð Þx tð Þ; ð8Þ

where x tð Þ ¼ _y tð ÞT ; y tð ÞT
n oT

is the state vector (in multiblade coordinates) and �A tð Þ ¼ �A tþTð Þ is the periodic system
matrix, the size of which is 12�12:

� A tð Þ ¼ �M tð Þ�1G tð Þ �M tð Þ�1K tð Þ
I6�6 06�6

 !
: ð9Þ

Extending Coleman transformation to the first-order form:

x tð Þ ¼ B tð Þz tð Þ; ð10Þ

one arrives at the first-order equation in multiblade coordinates:

_z tð Þ ¼A tð Þz tð Þ; ð11Þ

where A tð Þ ¼ �A tð ÞB tð Þ:
Following [15], the analysis is performed in a number of steps:
2 With insignificant changes, this paper uses the notations and follows the derivation given in [15], where more details are provided.
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1. The fundamental matrix of the system is built: Eq. (11) is numerically integrated for 12 linearly independent initial
conditions. Denoting the solution for the jth initial condition at time t as φj tð Þ, the fundamental matrix is written as

Φ tð Þ ¼ φ1 tð Þ … φ12 tð Þ
h i

; ð12Þ

where Φ 0ð Þ ¼ I.
2. Then the monodromy matrix is computed as

C¼Φ 0ð Þ�1Φ Tð Þ ¼Φ Tð Þ; ð13Þ

3. As Lyapunov–Floquet transformation transforms the time-periodic system (11) into a time-invariant one, we can compute
its system matrix R as

R¼ 1
T
ln Cð Þ; ð14Þ

4. Eigenvalue decomposition of matrix R is performed:

R¼ VΛV�1; ð15Þ
where the columns of V are the eigenvectors vj, and the diagonal elements of Λ are the eigenvalues λj ¼ σjþ iωj, the real
part is the damping and the imaginary part is the frequency. Actually, the same eigenvalues can be obtained as

λj ¼
ln ρj

� �
T

; ð16Þ

where ρj are the eigenvalues of the monodromy matrix C.
5. The periodic mode shape of the system (11) in the multiblade coordinates, is

rjðtÞ ¼Φ tð Þvje�λj t ; ð17Þ

6. In the blade coordinates, this is

uj tð Þ ¼ B tð Þrj tð Þ ¼ B tð ÞΦ tð Þvje�λj t : ð18Þ

7. Since the logarithm in (16) is complex, any λj ¼ σjþ i ωj7nΩ
� �

;nAZ are also eigenvalues of R. Similar to the principal
value of a complex logarithm, the principal frequency is defined as

ωpj ¼ωj�njΩ;nj:ωpjA ��Ω=2;Ω=2� ð19Þ

and the principal eigenvalue as λpj ¼ σjþ iωpj. This is not a unique way to designate the principal eigenvalue. From
practical considerations it is often more convenient to designate ωpj closest to the corresponding natural frequency of the
underlying LTI system, when Ω¼ 0.

8. The jth periodic mode shape (17) computed for the principal eigenvalue λpj is expanded to the Fourier series, the most
dominant Fourier component is identified, and its frequency is n0jΩ. For the isotropic rotor in the absence of gravity, the
frequencies ωpjþn0jΩ coincide with the eigenfrequencies of the time-invariant system (5).

9. Finally, the periodic mode shape in blade coordinates (18) is also expanded to the Fourier series. The dominating Fourier
components will be concentrated around the frequency ωpjþn0jΩ. The behaviour of these components for different
degrees of anisotropy are examined in the next section.
3. Examination of the modal dynamic

For examination of the rotor modal behaviour, the following parameters were chosen:

mN ¼ 446∙103kg;

m1 ¼m2 ¼m3 ¼ 41:7∙103kg;

k1 ¼ k2 ¼ k3 ¼ 2:006∙108Nm;

kD ¼ 108Nm;

kH ¼ 2:6106N=m;
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Fig. 2. Backward whirling mode. Left: magnitude of Fourier components; right: complexity plot of the dominant whirling component n¼5: (a) isotropic
rotor, no gravity; (b) isotropic rotor, with gravity; (c) anisotropic rotor, kc¼0.99k, with gravity; and (d) anisotropic rotor, kc¼0.97k, with gravity.
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Fig. 3. Forward whirling mode. Left: magnitude of Fourier components; right: complexity plot of the dominant whirling component n¼6: (a) isotropic
rotor, no gravity and (b) anisotropic rotor, k3¼0.97k, with gravity.
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kV ¼ 5:2108N=m;

ID ¼ 2:6∙107kgm2;

a¼ b¼ 13:1m;

Ω¼ 2π0:16rad=s:

These parameters approximate the parameters of a generic 10 MW wind turbine model. A proportional damping term
was introduced to (1): αM tð ÞþβK tð Þ� �

_yðtÞ; α¼ 0:05;β¼ 0:003 were chosen for the examination.
Fig. 2a, c, e, and g show the amplitudes of the Fourier components of the backward whirlingmode; its principal frequency

is ωpBW �Hz and n0BW¼4. The mode is normalized so that the dominant component amplitude is unity. When the rotor is
isotropic, with no gravity (Fig. 2a), the mode consists of three components, (i) horizontal motion of the nacelle (xC coor-
dinate) at frequency ωpBW þ4Ω� 0:716 Hz, (ii) backward whirling at ωpBW þ5Ω� 0:876Hz and (iii) forward whirling at
ωpBW þ3Ω� 0:556 Hz. The magnitude of the forward whirling component is one decade smaller than the backward
whirling component, and it vanishes completely if the rotor support is symmetric, that is, kV¼kH. The mode is called
backward whirling since the rotor dynamic is dominated by the backward-whirling Fourier component.

Further in the text, we use the abbreviation BW for backward whirling and FW for forward whirling.
Complexity plot is a convenient tool for mode shapes visualization in the cases when the phase is neither 0° nor 180°.

Fig. 2b shows the complexity plots of the dominating BW component (n¼5). The phase lag between all three blades is the
same, �120°, and the amplitudes of the blades are also exactly equal. As mentioned before, the same results could be
obtained without Floquet analysis, by a much simpler Coleman transformation followed by eigenvalue decomposition of the
system matrix A in (11), which is time-invariant in this case.

Due to gravity, this mode gets enriched by more Fourier components, but only two are significant: those at
ωpBW þ6Ω� 1:04Hz and ωpBW þ7Ω� 1:20Hz (Fig. 2b). As observed from the complexity plot, the blade amplitudes are the
same, as are the lags, �120°.

Let us introduce a slight rotor anisotropy by reducing the stiffness of the third blade: k3¼0.99k; these can be considered
as a blade damage. Due to this, a horizontal motion appears at ωpBW þ6Ω� 1:04 Hz, but its magnitude is significantly
smaller than the dominant horizontal motion (n¼4). More interesting, one can see that the blades’ phase lags start to
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deviate from �120°: the lag between the undamaged blades 1 and 2 becomes less than 120°. In addition, the amplitudes of
the different blades are not the same anymore (Fig. 2c): the amplitude of the damaged blade 3 is greater.

This behaviour becomes more pronounced when the stiffness k3 decreases further (Fig. 2d).
Fig. 3 shows the Fourier components of the FW mode. For the isotropic rotor case, when no gravity is present, its

principal frequency is ωpFW �−0:061Hz and n0FW¼7. The mode is dominated by the horizontal motion of the nacelle at
frequency ωpFW þ7Ω� 1:06Hz and FW at ωpFW þ6Ω� 0:899 Hz. The magnitude of the BW at ωpFW þ8Ω� 1:22Hz and the
other components are significantly smaller. The mode is called forward whirling since the FW component dominates the
rotor dynamics; the BW component is small and vanishes completely for the symmetric rotor support. The rotor anisotropy
is clearly visible on the mode shape; however, the effect is opposite to what was observed on the BW mode. Here the
amplitude of the weaker blade 3 is smaller compared to undamaged blades 1 and 2. The phase lag between the undamaged
blades becomes greater than 120°, and grows with the increase of anisotropy. Also, the non-dominating horizontal com-
ponent at ωpFW þ5Ω� 0:739 Hz appears and develops with the increase of anisotropy, though it is still a decade smaller
that the dominant horizontal component.

One may notice that the frequency of the dominating whirling components of the two considered modes are very close:
0.876 Hz and 0.899 Hz. This is not just a coincidence. This phenomenon can be explained by the close natural frequencies of
the vertical and horizontal rotor modes when the rotor does not rotate, see, for example, the Campbell diagram [13] (Fig. 2).
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Fig. 5. Damage features vs. stiffness k3: (a) phase lag BWmode; (b) same, FW mode; (c) normalized blades amplitudes, BWmode; and (d) same, FW mode.
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If the vertical and horizontal stiffnesses of the supporting structure are equal, kV¼kH, one should expect the frequencies of
the dominating whirling components of the BW and FW modes to be exactly the same.

The proximity of the dominating whirling components of the two whirling modes, which is typical for operating wind
turbines, creates a complex dynamic behaviour clearly observable on the measured spectra, as will be reported later in
Sections 5.2 and 5.3. Fig. 4 illustrates this by combining the BW and FWmodes on the same frequency axis, showing the case
when both modes have the same magnitude.
4. Damage indicators

Based on the observations above, several modal-related damage indicators are proposed: (i) phase between the blades
for the dominating whirling component; (ii) blade amplitudes of the dominating whirling component; and (iii) amplitude of
the non-dominant horizontal component. The sensitivity of these damage indicators to the amount of damage is
examined below.

The dominating whirling components are n¼5 for BW mode and n¼6 for FW mode (see Figs. 2 and 3). Fig. 5a and b
show how the phase lag depends on k3 for BW and FW respectively. The calculation of the phase lag is shown in Fig. 3b,
right. One per cent reduction of k3 causes the change of the phase lag between two undamaged blades by about 5–6% and 2–
3% between damaged and undamaged blades.

All three blades have the same magnitude for isotropic rotors, but start to differ when the rotor becomes anisotropic, see
Fig. 5c and d for BW and FW modes respectively. The damaged blade amplitude increases for the BW mode and decreases
for the FW mode. The changes are about 4–6% for 1% reduction of k3.

It is important to note that both features also indicate which blade is damaged.
The non-dominant horizontal component also increases with rotor anisotropy development. This is the Fourier com-

ponent n¼6 for the BW mode and n¼5 for the FW mode (Figs. 2 and 3); it increases by about 5–7% per 1% reduction of k3.
Considering use of this phenomenon as a damage indicator, the advantage is that it can be extracted from the nacelle

acceleration measurements and does not require getting measurements from the blades, which is more difficult from the
practical point of view. There are two drawbacks, however. This damage feature does not indicate which blade is damaged.
Also, examining the spectra overview (Fig. 4), one can note that the non-dominant component of the FW mode is very close
in frequency to the dominating component of the BW mode, and vice versa. This means that it might be difficult to extract
this feature from bare spectra examination, and more advanced signal analysis techniques such as singular value decom-
position (SVD) might be necessary.

For comparison, a one per cent decrease of k3 causes only 0.14–0.17% change of the natural frequencies. Therefore, this
damage indicator, which is typical in many SHM systems, is more than 30 times less sensitive to damage than those pro-
posed in this study.
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5. Experimental techniques

The analytical study in the previous section utilizes a possibility to integrate the known EoM. The objective of this section
is to demonstrate that the suggested damage features are derivable from experimental data, when the EoM are unknown.

There are only a few methods capable of addressing LPTV systems from the experimental view point. For example, the
above-mentioned Coleman transformationwas suggested as a pre-processing step to OMA [16]. Following this approach, the
experimentally obtained blade coordinates are converted to multiblade coordinates in the time domain, using (2). Then
OMA provides modal parameters, with the mode shapes expressed in multiblade coordinates. Backward Coleman trans-
formation (3) converts each mode shape into three Fourier components, each oscillating at the frequencies separated by Ω.
As mentioned before, the method assumes an isotropic rotor. Attempts to apply it to an anisotropic rotor may lead to
erroneous results, as was shown in [17]. In the context of this study, this method is not applicable at all: indeed, Eq. (7)
shows that the shapes of the three components always have the same magnitudes for all blades, and the phase between the
blades is always 0 or 7120°. This means that the damage features suggested in Section 4 cannot be extracted using the
Coleman transformation.

Another method suggested in [18] deals with the system's periodicity by sampling its state once per revolution, when the
rotor is at exactly the same position. The drawback of this method is that it requires as many rotor revolutions as samples. In
order to provide sufficient accuracy of the followed stochastic subspace identification, the observation period requires
several thousand revolutions under stationary operating conditions. This is difficult to achieve in the case of wind turbines,
where the wind conditions and rotor speed constantly change [19]. This method is more suitable for rapidly rotating rotors,
for example helicopters rotors.

Another recently suggested method is based on the harmonic power spectra (HPS) suggested in [20], which was
extended to the time domain [21] and dubbed H-OMA-TD. The core of the method is the exponential harmonic modulation
of the measured response signals y(t):

ym tð Þ ¼ y tð Þe� imΩ; m¼ �M; …; M ð20Þ

whereΩ is the rotational speed andM is a small integer. After some treatment, the obtained time histories ym tð Þ become the
input to an OMA algorithm. This approach does not require the rotor and measurement system to be isotropic and outputs
2Mþ1 correctly scaled Fourier components of the identified modes.

It is important to recall that the objective of this section is not to provide correct dynamic identification of the rotor but
to extract the damage features proposed in Section 4. Here we suggest to apply OMA directly to the raw data measured on
the rotor. This is incorrect from the modal identification point of view since the important content of the periodic modes,
namely the linkage and correct scaling of the Fourier components, are being lost. Instead, the algorithm outputs the Fourier
components as separate normalized modes. This is the same as setting M¼ 0 in (20). However, from the damage features
extraction point of view, this is sufficient. Indeed, according to Section 4, one needs to extract and monitor only one
dominant whirling component of two modes, and this can be done by direct application of an OMA algorithm to the
raw data.

In the following, the proposed experimental approach is demonstrated on three examples: (i) simulated behaviour of the
6DOF system on Fig. 1 excited by random uncorrelated noise, (ii) simulated vibrations of a Vestas V27 wind turbine due to
modelled aeroelastic forces, and (iii) experimentally obtained vibration data from a real Vestas V27 wind turbine.

5.1. Application to the 6-DOF simplified rotor system

Here we model a measurement system installed on the simplified rotor (Fig. 1): accelerometers are attached to the tips of
all blades, measuring in the tangential direction; two more accelerometers measure vertical and horizontal motion of the
nacelle and an angular vibration accelerometer is installed on the drivetrain. All DOFs are excited by random, uncorrelated
broadband noise. This excitation satisfies OMA assumptions, but we acknowledge that the real aeroelastic forces are dif-
ferent [7]. Then the EoM is numerically integrated using MATLAB's ode45 routine, and the response time histories for the
physical DOFs are obtained and converted to the signals that would be measured if the accelerometers were installed as
described above. From now on, we assume that the excitation forces and the EoM are not known, and the damage features
shall be derived from the observed responses only.

Time histories 7200 s long, which correspond to 1152 rotor revolutions, were synthesized and sampled at 50 Hz. The time
histories were used as input to Brüel & Kjær Type 7760 OMA software. The modal analysis was performed using the Sto-
chastic Subspace Iteration (SSI/UPC) algorithm. Four system states, one undamaged and three damaged (k3¼0.99, 0.98 and
0.97) were analysed. To collect statistics, five different load realizations were generated for each state. Thus, in total 20
analyses were performed.

The results of the simulated experiment are shown as error bars in Fig. 5. The centre tick denotes the mean of the five
OMA runs, the upper and lower ticks denote 95% confidence interval. The damage features derived from the OMA results are
in agreement with analytical values – there is significant dispersion, especially for the magnitudes, but the general tendency
and the curve's slope are correctly reflected.



Fig. 6. Power spectral density of the three edgewise blade-tip accelerometers for low-speed regime (32 rpm): (a) HAWC2 simulation, isotropic rotor;
(b) same, 3% Young modulus reduction of blade 2; (c) same, 5% Young modulus reduction of blade 2; and (d) experimentally obtained. The dotted lines
indicate rotor harmonics.
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Fig. 7. Complexity plots of the dominant components of the whirling modes. Top: BW mode: (a) isotropic rotor; (b) 1% Young modulus reduction of blade
2; (c) 3% Young modulus reduction of blade 2; and (d) 5% Young modulus reduction of blade 2. Bottom: FWmode: (e) isotropic rotor; (f) 1% Young modulus
reduction of blade 2; (g) 3% Young modulus reduction of blade 2; and (h) 5% Young modulus reduction of blade 2.
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Fig. 8. Spectra of the simulated nacelle signal in side-to-side direction for different degree of anisotropy: (a) Overview; (b)–(d) insets corresponding to the
boxes on the overview.
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5.2. Application to simulated Vestas V27 wind turbine

As mentioned in the previous section, the aerodynamic loads acting on the rotor of an operating wind turbine are much
more complicated than the uncorrelated broadband white noise used in the previous section. This section employs a more
realistic load scenario by using a dedicated tool for simulation of operating wind turbine dynamics, HAWC2.

Horizontal Axis Wind turbine Code 2nd generation (HAWC2 ) is a nonlinear aeroelastic code designed for simulation of
the wind turbine dynamic response in the time domain. It was developed and maintained by DTU Wind Energy department
Fig. 9. Instrumentation of Vestas V27 wind turbine: (a) accelerometers placement on a blade. Dot – flapwise, circle – edgewise accelerometer; (b),
(c) accelerometers on the leading and trailing edges of the blades, white arrows indicate accelerometer placement; (d) B&K Type 4507B6 mounted on a
leading edge of one of the blades.
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(formerly Risø Danish National Lab for Sustainable Energy). The structural part of the wind turbine is modelled by
employing a multibody formulation, where each body is an assembly of Timoshenko beam elements. The aerodynamic part
of the code is based on the blade element momentum (BEM) theory, extended to handle dynamic inflow. The gravity, wind
shear and turbulence, as well as the wind turbine control system are modelled as well, making HAWC2 a powerful tool for
the investigation of wind turbine dynamics; full control of the model and operational environments allows one to play
“what–if” scenarios. More details about HAWC2 can be found in [22].

A Vestas V27 wind turbine was chosen as a test object. The main reason for the choice was that the experimental data for
this wind turbine were available. On today's scale, the V27 is a relatively small wind turbine with 225 kW rated power, 27 m
rotor diameter and the hub about 30 m above the ground. However, the V27 design is similar to modern horizontal-axis
wind turbines; it is pitch-regulated and has three blades. The blades are relatively stiff, and the small rotor diameter
determines the high rotor speed: the low-speed regime is 32 rpm and the high-speed regime is 43 rpm.

The HAWC2 model of the V27 was tuned to match the experimentally observed dynamics of the real V27 in both high-
and low-speed regimes, under the observed wind conditions (taking into account the wind speed, shear and turbulence).
The details of the model tuning can be found in [23]. Using the model, 20-min time histories were simulated (100 Hz
sampling frequency, 120,000 samples) for isotropic and anisotropic rotors. The averaged spectra of the edgewise tip
accelerometer signals for different degrees of rotor anisotropy are shown in Fig. 6a–c.

A structural anisotropy was introduced by reduction of Young modulus and shear stiffness of all elements constituting
one blade, while the two other blades were kept unchanged. The anisotropy does not affect most of the simulated spectra;
the only noticeable effect appears at the peaks around 3.6 Hz (Fig. 6a–c). As is known from the previous study [17], these
peaks are due to the dominant whirling components of the first edgewise whirling modes, that is, those suggested as
damage indicators in Section 4.

To quantify the phenomena, we extract the Fourier components using OMA. We used HAWC2 to simulated acceleration
time histories at the tip point and the point located at 67% of the blade length, in edgewise direction, for all three blades. The
time histories were input to OMA SSI/UPC and the dominating whirling components of the FW and BW modes were
identified. As explained before, OMA outputs the Fourier components as normalized modes. Though the components are
very close in frequency, it is not difficult to identify them and the find components’ shapes. The complexity plots allow
examination of the blades’ magnitude and phase for each component shape (Fig. 7). The isotropic rotor features approxi-
mately equal magnitudes and the phase lag between the blades (Fig. 7a and d). Introduction of the anisotropy funda-
mentally changes the shape of both Fourier components: for the BW mode, the amplitude of Blade 2 grows relative to the
magnitudes of the two other blades, and the phase lag between blades 1 and 3 gets smaller, approaching zero (Fig. 7d). For
the FW mode, the magnitude of Blade 2 becomes smaller and the phase lag between Blade 1 and Blade 3 increases,
approaching 180° (Fig. 7h). This readily identifies the blade with reduced Young modulus, namely Blade 2. These results
qualitatively resemble the analytical results reported in Section 3 and illustrated by Figs. 2 and 3.

To illustrate the third damage indicator proposed in Section 4, the spectra of the tower top vibrations in a side-to-side
direction are plotted in Fig. 8. The changes of the two peaks, around 3.1 Hz and 4.2 Hz are in focus; they are shown in insets
of Fig. 8c and d respectively. For the isotropic rotor, these peaks correspond to the dominant horizontal components: the left
to BW mode, and the right to FW mode, compare to Fig. 4a. When the rotor becomes anisotropic, the non-dominant
horizontal components of the whirling modes appear (Fig. 4) and significantly change the magnitude and shape of the peaks
(Fig. 8c and d).
  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180

Blade 1

Blade 2

Blade 3

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180

Blade 1

Blade 2

Blade 3

Fig. 10. Complexity plots of the dominant components of the whirling modes, obtained from experimental data: (a) BW mode and (b) FW mode.
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An isotropic rotor has pronounced sharp peaks at 3p (blade pass frequency) and its harmonics. Structural anisotropy
leads to rotor unbalancing, which shows itself as sharp peaks at 1p, 2p and some other harmonics. One can correctly suggest
that the development of sharp peaks at these harmonics can act as a damage indicator. However, from the spectra in Fig. 8
(and inset Fig. 8a), one can hardly detect the peak at 1p for a slightly anisotropic rotor (1% stiffness reduction); in contrast,
the peaks due to the whirling modes change noticeably even for a small amount of anisotropy (Fig. 8c and d). Difference in
the blade masses (for example, due to ice formation on one of the blades) can be another reason of rotor unbalancing,
causing similar effects on the spectra; the unbalancing due to mass anisotropy is not examined in the presented study.

Obviously, the magnitude and shape of the peaks of the tower response spectra are not a robust indicator for the rotor
damage. A better technique might involve modal analysis to follow up the development of the non-dominant horizontal
component of the whirling modes, which requires more sophisticated analysis tools. In practice, this could be done after
damage has been detected by simpler methods. The thoughtful investigation of damage indicators based on tower accel-
eration signals is outside the scope of this study.

5.3. Application to experimental data from a Vestas V27 wind turbine

The results of this section are based on experimental data obtained during the measurement campaign, which took place
from October 2012 through May 2013. The test wind turbine, a Vestas V27, which is a part of DTUWind Energy test facilities,
is located near Roskilde, Denmark (Fig. 9). Each blade of the V27 was instrumented with 12 accelerometers (Brüel & Kjær
Types 4507 and 4508): 10 accelerometers in the flapwise direction, five on the leading edge and five on the trailing edge;
and 2 accelerometers in the edgewise direction, one at the tip, and another at 67% of the blade length. Special care was taken
to mount the sensors on all three blades as similar to each other as possible, both location- and direction-wise. The nacelle
was instrumented with three triaxial accelerometers. The data streams from the rotor and nacelle were synchronized using
IRIG-B signals. In addition to the sensors measuring structural vibration, more instruments were installed to provide the
instantaneous rotor azimuth, rotor angular speed and blade pitch angle. In total, 40 channels were measured on the rotating
part of the wind turbine using Brüel & Kjær LAN-XI data acquisition modules located in the hub and wirelessly transferred
to the nacelle, where another 11 channels were measured. All channels were recorded at a sampling frequency of 4096 Hz.
More details regarding the measurement setup can be found in [24]. Simultaneously, weather conditions such as wind
speed, turbulence, wind direction, etc. were logged.

For the analysis, a 20-min dataset was selected that features a minimal pitch activity and rotor rpm variation. The power
spectral density of the edgewise tip accelerometers averaged over the observation time are shown in Fig. 6d (for comparison
with HAWC2 simulations, Fig. 6a–c.). Two edgewise accelerometer signals from each blade (in total 6 signals) were used as
input to OMA. An identical modal identification procedure as for simulated time histories (Section 5.2) was used. Using
OMA-SSI/UPC, two whirling components constituting the peak at 3.5–3.6 Hz where extracted, and their shapes were
examined using complexity plots (Fig. 10).

Comparing with the simulated examples, one can observe a similar pattern in the complexity plots: for the BW mode,
Blade 1 has the biggest magnitude, while the phase lag between Blade 2 and 3 is almost zero. For the FW mode, Blade 1 has
the smallest magnitude, and the phase lag between Blades 2 and 3 is almost 1800. Thus, one can suspect that Blade 1 has
reduced structural stiffness compared to the other two blades. Of course, this is still a hypothesis; there could be other
reasons for rotor anisotropy, for example mass unbalance, aerodynamic anisotropy due to pitch mismatch or some other
reasons. Testing these hypotheses is out of scope of the present study.
6. Conclusion

Novel damage indicators for a potential SHM system of a wind turbine rotor are suggested and examined. The indicators
are modal-based and utilize mode shape asymmetry due to rotor anisotropy caused by blade damage. It is demonstrated
that these features are significantly more sensitive to the damage compared to the natural frequencies of the rotor.
Moreover, the indicators can pinpoint which of the blades are different from the others. It is also shown that it is possible to
extract these indicators from measured vibrations.

Employing a simple six DOF analytical model of a rotating rotor and using Floquet analysis, the exact modal decom-
position was performed for isotropic and anisotropic rotors. Comparing the results, the dynamic features most affected by
the anisotropy were found.

A simulated experiment using aeroelastic code HAWC2 confirmed that the damage features can be extracted from
measured vibration responses using OMA.

The applicability of the proposed damage indicators to realistic data was confirmed using simulated and experimental
data. Using wind turbine aeroelastic code HAWC2, it was possible to conduct a simulated experiment on a Vestas V27 wind
turbine rotor with an increasing amount of damage and show that the damage indicators can correctly detect the damage
and identify the damaged blade. Then the damage detection algorithm was applied to experimentally obtained data from a
real Vestas V27, and a hypothesis of the cause of the observed rotor anisotropy was proposed.

In this paper, the use of the non-dominant horizontal component as a damage indicator was mentioned but not ela-
borated. This could be suggested as an interesting topic for the future research.
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