
2001-01-0707

The Development of Tools for the Automatic Extraction of
Desired Information from Large Amounts of Engineering Data

Jianrong Dong
Gabriella Cerrato-Jay

Chih-Hung Chung
MTS Systems Corporation

Copyright © 2001 Society of Automotive Engineers, Inc.

ABSTRACT

Product development processes generate large
quantities of experimental and analytical data. The data
evaluation process is usually quite lengthy since the
data needs to be extracted from a large number of
individual output files and arranged in suitable formats
before they can be compared. When the data quantity
grows extremely large, manual extraction cannot be
done in a limited timeframe. This paper describes a set
of tools developed by MTS engineers to automatically
extract the desired information from a large number of
files and perform data post-processing. The tools
greatly improved both speed and accuracy of the
evaluation process during the development of a sound
quality-based end-of-line inspection system for seat
tracks [1]. It allowed engineers to quickly gather a
comprehensive understanding of the relative importance
of individual design parameters and of their correlation
to the subjective perception of the sound quality of the
seat track.

INTRODUCTION

The need to develop an automatic processing program
came naturally during the development of a Sound
Quality – Based End-of-Line inspection system. The
goal of the project was to establish and implement
pass/fail criteria based on certain standard metrics and
other numerical values obtained from the recorded
sound files. These metric values are defined in
psychoacoustics theory [2], which is the interdisciplinary
science between psychology and acoustics. It allows
quantitative evaluation of subjective sound sensations.
After the project started, numerous sound files of
different seat tracks arrived. The transient segments of
each sound file were trimmed off before a number of
metric values and functions were computed. For each
sound file, its metric values were saved in a metrics file
and its corresponding metric functions were saved in a
universal file. As part of the logic, we also computed

some descriptors from the time variant metrics functions.
Both the metric values and the descriptors of different
seat tracks were put into an Excel file, which is a
summary of the metric values and function descriptors
for all the data.

Time was limited to develop the pass/fail criteria.
Additionally, reprocessing the data manually to compute
additional metrics could double or triple the effort. The
job had to be done automatically.

Similar situations often arise in the auto industry since
problems are often urgent and engineers would like
feedback from numerous sources of test data as soon
as possible. Manual processing of data is too slow.
Test engineers spend a lot of their time doing data
reduction after the data is acquired.

For as large as the data quantity is, the number of
different data formats is very small. Automatic
processing has two advantages here. First, automatic
data processing tools can greatly increase an engineer’s
productivity by reducing both time and energy spent on
repetitive work. The advantage of automatic processing
over manual processing becomes more apparent when
the data quantity grows. Second, the number of
programs that needs to be developed per project is very
small. With the experienced developer, the automatic
processing tools can be developed in very short time.

The reason why there are very few automatic processing
tools in the market is that different projects have different
requirements on how the data should be processed and
a cure-all program is unrealistic. Experience has shown
that seldom can major parts of programs that are
developed for previous projects be used on the current
one. Different requirements often result in completely
different data structures. Inserting part of the old
programs into new ones is often ineffective and error
prone.

An automatic processing tool is similar to a database in
that both of them have a data structure to store the data
and provide some processing functions. However, they
are quite different in other aspects. First, the database
has a query language like SQL to provide such functions
as creating, searching, and updating records. This
process is user-driven. The automatic processing tool,
on the contrary, has preset tasks, which can only be
changed by modifying the code. Second, to provide
such comprehensive functionality plus a GUI, a
database requires a large amount of code. An
automatic processing tool is much smaller, requiring only
several hundred lines of code. Third, using a
commercial database to deal with post processing of
data is also not feasible since the input format to the
database is fixed and it has limited mathematical
processing power. As a result, the engineer has to
develop something independently in addition to using
the database.

In this case, one has to develop something new for each
different project. The following guidelines should be
followed to reduce development time while generating
robust code.

MINIMIZE DEVELOPMENT EFFORT – Writing one’s
own code is always the last method. Exploring the batch
processing capability of commercial software and
bridging their functions with interface programs saves
both time and effort. Our experience showed that the
following software is very useful in speeding up the
process.

• TCL/TK Scripting. In the MTS-Sound Quality
software, a very powerful programming tool
called TCL/TK scripting can be used to write
batch programs. TCL/TK can be used to pop up
different menus, load parameters to different
forms, start various processes like filtering,
editing, transporting, etc., change display
formats and compute metric values. Using
scripting is just like using menus to generate
sound quality metric values and function files.
Generally, the only program that needs to be
developed is the one that gathers information
from the individual output files of metric values
and metric function descriptors and puts the
result into Excel.

• MTS-IMAT Software. Developed in MATLAB,
MTS-IMAT is the interface software between I-
DEAS Test and MATLAB. IMAT software can
read in and write out I-DEAS Test files and
general universal files. By providing new
objects in MATLAB, IMAT can perform data
management since the user can now access all
the header information in the universal files and
manipulate file storage more easily. IMAT is
very capable and flexible at processing test
FRF’s because MATLAB has provided a huge
library of matrix related routines. In addition,

with the help of IMAT, MATLAB expands its
processing objects to experimental data, which
helps the development of hybrid models,
correlation, and structural modification
procedures. The graphics capability of IMAT is
also very powerful.

It would be unwise and error prone to obtain these
functionalities by developing the software from scratch.

KISS – Keep It Short and Simple. The shorter the
program, the faster it can be developed. To be short,
the programming language should have a good library to
provide sufficient high-level support functions. In
engineering applications, a good math library is
essential. To be simple means the program should be
modular and no fancy GUI’s are needed. It also means
that the data structure of the programming language
should be simple to manipulate. For instance, all the
data types in MATLAB are matrices, and it has a
comprehensive library on string pattern recognition,
matrix manipulation and sorting, etc. These capabilities
make MATLAB a good candidate when selecting the
programming language for the automatic processing
tool.

COMMON ROUTINES – Some common procedures of
these data processing programs should be isolated from
the rest of the software. This eliminates the need for
repetitive modifications in several places if the code is
changed at one place.

EASY DEBUG CAPABILITY – The programming
language should be easy to debug. Here execution
efficiency is not so important because any automatic
processing is much faster comparing with manual
processing. However, the ability to easily step through
programs and view the current values of different
variables is highly desirable for debugging purposes.
Therefore, a language that executes faster but needs
compiling after each modification, such as C or C++, is
not as convenient as some language running as an
interpreter, such as MATLAB. Furthermore, if speed is
really important, the MATLAB compiler can be used to
compile the code after its correctness has been verified.

ROBUSTNESS WITH IMPERFECT INPUT – Unlike
CAE output, experimental data is inconsistent in nature.
The program should be able to handle the imperfectness
in the data. It should warn the user and pause the
execution in the case of unexpected input. For example,
sometimes the RPM curves of the DC motors are so
contaminated that certain metrics computation
algorithms result in unreliable data. Sometimes the
output is even incomplete. The subsequent automatic
processing programs must be able to detect this error
and act accordingly to stop error propagation.

MINIMAL MODIFICATION FOR DATA GROWTH – The
program should be able to accommodate the growth of
data. Since only a small portion of data is available at

the beginning of coding, the input routine is separated
from the rest of the program so that subsequent
changes are limited to adding new file names to the
input file list. Besides, variables should be used to
describe the length, number of elements etc., of the
input file list. The other part of the program should
reference these variables instead of using numbers
directly.

The end of line project described in the companion
paper [1] is a good example of a case where these
principles were applied. In this project the editing was
done half automatically with the help of scripting, since
all sounds also had to be listened to for subjective
evaluation.

TCL, a programming language like LISP, was used to
write scripts for filtering the data and computing the
metrics values and functions. One of our tests shows
that applying two filters and computing 15 metric values
for 300 sound files takes only several hours without
engineer’s supervision while doing it manually takes
more than a week. The average metrics values were
output to the metrics files and the functions to universal
files.

The major development work was limited to the
programs that extract the metrics values and functions
from individual metrics files and universal files, compute
the descriptors of the metrics functions, store the results
in a matrix, and process the matrix to yield a global
picture on the distribution of all seat track data. The
result was an ASCII file that can be read into Excel
without modifications. The software is small in size,
altogether 400 lines including a lot of comment lines,
excluding the huge input file name list. However it
processes the data in little time.

Figure 1 shows the overall process for post-processing
the data. The ati files are from MTS I-DEAS Test; they
hold multiple records, every one of which is either a
sound pressure record or a tachometer record. The
tachometer signal is embedded into the least significant
bit of the sound record, and the sound format is changed
into a special wave format for input of MTS Sound
Quality Software. The wave files are further edited to
trim off transient signals at both ends so that only the
steady parts of the signals are kept. Using scripts, we
can filter the wave and compute the metric values.
There are two ways to go from this point. We can either
manually extract all the information from individual
metric value files (.mtrc files), and metrics function files
(.unv files), or we can use the automatic processing tool
developed in Matlab to get it done more quickly. The
final results include the Excel file that summarizes the
information and the metrics functions. They are
arranged in two columns format, that is, one column for
uneven x values, and one column for the corresponding
y values. The metrics functions can be displayed easily
using some software later.

WaveAti
script script

Edited wave

script
Filtered wave

Metrics in .unv & .mtrc files
script

IMAT
Matlab matrices Excel files, others

Matlab

WaveAti
script script

Edited wave

script
Filtered wave

Metrics in .unv & .mtrc files
script

IMAT
Matlab matrices Excel files, others

Matlab

Figure 1. Overall Data Reduction Procedure

PROGRAM DETAILS

Small as it is, the software is designed to meet the
growth requirement with minimal changes to the input
file names. It consists of four modules. In the first one,
Head1_builder(), the user can add different input file
names, change the naming convention, choose the
parameters that need to be processed, etc. The second
module, Digger(), is an interpreter that scans all input
files, recognizes different keywords and extracts the
numbers after them. The third module, Funlogics()
controls the overall process, consolidates all information
extracted by the interpreter, calculates the pass-fail
criteria based on user-defined algorithms and outputs
the results using Excel format. The fourth module,
Newmetrics(), outputs the user defined numerical
descriptor according to the metrics file format so that
they can be imported into MTS-Jury for sensory
evaluation.

Figure 2 shows the corresponding calling relationship
between the four modules. The main module is
Funlogics(). It calls the other modules. Digger() further
calls Digfunction() and Digvalue() to deal with the
universal files and metrics files separately. For every
batch of new data, what the user changes are two lists,
the input file name list and the naming convention list in
Head1_builder().

DATA STRUCTURE FOR STORAGE AND
MANIPULATION – The core data structure is a four
dimensional matrix. It stores and manipulates the
extracted data. The first dimension is ROW, which
represents different seat tracks. It grows larger when
more and more seat track data are available. The
second dimension is COLUMN, which represents the
different metric values plus some derived numbers using
the logic. Once set, this dimension is the same for all
the sound files. The dimension is deliberately set a little
larger so that new derived numbers can use the
reserved space.

Head1_builder Funlogics

Digger Newmetrics

Digfunction Digvalue

Head1_builder Funlogics

Digger Newmetrics

Digfunction Digvalue

Figure 2. Structure of the Auto Processing Tool

The third dimension is SHEET, which represents all
possible motion-ear combinations. The seat tracks have
multiple motors and for each motor, two directions are
possible, i.e., up/down, forward/rearward. Furthermore,
for each sound file, there may be two sound tracks
representing both ears of the binaural head.

If only the average values are needed, the above three
dimensions suffice. However, if more metric function
descriptors are used, a forth dimension, DEPTH, needs
to be added to accommodate the additional data.

Using a single matrix to represent all the extracted and
computed data makes it easy to process this matrix with
MATLAB functions. To output the matrix results to Excel
is straightforward. The DEPTH elements are moved into
COLUMN by using more column titles.

INPUT AND GLOBAL DEFINITION MODULE –
HEAD1_BUILDER() - In the input and global definition
module, a name list is made of the input metrics file
names and the input universal file names. The naming
convention of these files is consistent. A typical name is
“sn129_track_fvd.mtrc” or “sn129_track_fvd.unv”. Here
sn is the abbreviation of serial number and 129 is serial
number, track stands for track adjuster instead of a
completed seat. fvd is the shorthand for “front vertical
down”. Similarly fvu stands for “front vertical up”, and
rvd stands for “rear vertical down”, etc. “.mtrc” is the
suffix for metrics file while “.unv” is the suffix for
universal file. Consistent naming facilitates information
extraction, since string functions can perform pattern
recognition on the names easily.

Variables like number_of_input_files, etc. can be
obtained via some MATLAB functions every time the
input file name list is updated. As a result, when the list
expands, the rest of the program using these variables
remains the same.

There are other lists in the input and global definition
module that define the titles for the rows, columns,
sheets, and depths in the final Excel file. Once the lists
are changed, their dimensions are changed
automatically and stored in variables. The lists and

global definitions are saved in a .mat file and loaded by
subsequent modules.

INTERPRETER MODULE – DIGGER() – The second
module is an interpreter. It scans through all metric files
and universal files, extracts the various metrics values
and functions, and computes metrics function
descriptors on the fly. It returns the metrics and
descriptor values in several 1-dimensional arrays.

A typical sound metrics file generated by the MTS
Sound Quality is as follows:

Metric Results for Sound File <sn296_track_frvertup.wav>
 Between 0.0000 and 11.4055 Seconds
Subject: Aachen Head
Test Condition:
Test Engineer:
Test Date:
Created:
Correction: NONE
MTS Sound Quality 3.6 Alpha 4
Tue Jul 18 10:32:05 2000

Metrics Units Left Right Avg.

Linear SPL dB
A-weighted SPL dBA
B-weighted SPL dBB
C-weighted SPL dBC
D-weighted SPL dBD
Speechband SPL dB
Linear SPLT dB
Intelligibility %
Pref Speech Interference dB
Speech Interference dB
Spectrum Balance dB
Composite Rating Preference dB
Frame Kurtosis
Average Kurtosis
Zwicker Loudness (Sones) sone
Zwicker Loudness (Phons) phon
Sharpness acum
Transient Loudness (Sones) sone 2.7 2.8
 2.8
Transient Loudness (Phons) phon
Transient Sharpness acum
Time Varying Loudness (Sones) sone
Time Varying Loudness (Phons) phon
Roughness asper
Fluctuation Strength vacil
Tonality 0.119 0.151 0.135
Speed Variation
Speed Variation2 1.72 1.72 1.72
FM Fluctuation

The metrics file starts with a header with the sound file
name, length of recordings, test engineer name, and test
date, etc., then follows a list of different sound quality
metrics. Some metrics are selected for computation
while others are neglected. Different numbers of metrics
may be computed for different sound files in different
development stages. Occasionally some metrics cannot
be computed due to the contaminated RPM signals.
Therefore, a fixed input format is unfeasible and not
robust enough to deal with the metrics files. The
program must recognize the keywords (metrics names),
anticipate operands (metrics values), and act

accordingly. This keyword based branch structure is
exactly the idea of an interpreter.

The interpreter treats the metrics file as a string of
characters that are separated by white spaces, carriage
returns, etc., and ended with the End Of File (EOF)
symbol. Several while loops with internal if-then-else
branching statements are used to control the progress.
The metrics names are treated as keywords. For
instance, “A-weighted” is a keyword and “SPL” is a
keyword. Since there may be many SPL’s in a sound
metrics file, different metrics can be differentiated by
keeping track of the most recent four keywords. Some
MATLAB functions are used to check the validity of the
operand. If the operands corresponding to a metrics
keyword are missing, a warning message is generated
and the program suspends itself. Validity checks can
also be put on the operands to see if they are out of
reasonable ranges.

To deal with universal files, Digfunction() uses some
functions of IMAT to read universal files to MATLAB
matrices. The metrics functions extracted from universal
files are never stored. They are extracted on the fly and
saved into different file names. Only the function
descriptors are calculated and stored in the storage
matrix. The advantage is, no matter how different the
function lengths are, the numbers of their descriptors are
the same. So using a matrix to hold these descriptors is
simplest, most economic and efficient for retrieval. The
address computation for a matrix is the simplest of all
data structures that hold large quantities of data.

COMPUTATION AND EXCEL OUTPUT MODULE –
FUNLOGICS() – The computation and excel output
module is the main module. First it calls the input and
global definition module and use the dimensions defined
in that module to initialize the storage matrix. In a loop
that covers all the input metrics files and universal files,
the interpreter module is called to dig out the metrics
values and metrics functions. By pattern matching the
metrics file and universal file names with a row title in
the row title list and a motion title in the motion-ear title
list, respectively, it locates a specific position in the
storage matrix where it can put the metrics values and
function descriptors. If the mth element in the row title list
and the kth element in the motion-ear title list are
matched, the storage index is (m, :, k, :). The second
dimension index is determined by metrics. For instance,
Kurtosis has index 1 and Loudness index 2, etc.

After the storage matrix is completed, all the data are
printed out in Excel file format. There is some subtlety
here. A new index EXTENDED COLUMN needs to be
established in order to convert two indices COLUMN
and DEPTH to one index EXTENDED COLUMN. As a
result, an Extended Column Titles List can be formed so
that the descriptor numbers in the fourth dimension
DEPTH can have a title in the EXTENDED COLUMN.
This list can be defined in the input and global definition
module.

The output to Excel uses three levels of looping. The
first level loop prints out 12 sheets, corresponding to the
12 motion-ear pairs (6 motions x 2 ears). The sheet title
and the column titles are needed for every sheet. The
second level loop is for different seat tracks, which are
represented by the different rows on that sheet. The
name of the seat track is printed. The third level loop is
for different metrics and their descriptors in the
EXTENDED COLUMN. It prints out the different metrics
and function descriptor values in a line, but internally it
converts one index EXTENDED COLUMN back into two
indices, COLUMN and DEPTH in order to retrieve the
data in the storage matrix.

MODIFIED METRICS FILES OUTPUT MODULE –
NEWMETRICS() - The metric descriptor results can be
output again to some modified metrics files. The reason
is that the MTS-Jury Evaluation software needs a
standard metrics file as its input format. Therefore, new
titles can be used for the additional descriptors. Similar
to the Funlogics() module, it prints out the EXTENDED
COLUMN titles followed by the values of the function
descriptors, that is, left, right and average values.

The pass/fail logic is based on these metrics values and
function descriptors. One method to develop the
pass/fail logic is to accumulate a sufficient amount of
sound data and set acceptable thresholds on some
specific metrics descriptors. The ability to provide a
global picture very quickly is critical in this process.
After the prototype is developed, the pass/fail logic
needs to go through several thousands of seat tracks off
the assembly line for final tune-up.

Another method is to use Jury to develop a regression
equation relating the preference number obtained from
some Jury tests to the different metrics descriptors in the
modified metrics files. Traditionally, the logic used in the
preference equation is based on the single or average
number of the metrics such as loudness, kurtosis, speed
variation etc. However, experience has shown that in
some cases, it is not the average numbers that influence
our subjective judgment. In many cases, the time
variation of the metrics function also has a major role in
determining our preference. Therefore it is desirable to
use the functions instead of the single values in the
equations.

CONCLUSION

The small set of tools discussed above was developed
in only a few days. Yet it has greatly facilitated the
engineer’s daily work in processing. The engineer can
then concentrate on the most important part of the
project, that is, to develop, implement and validate
different pass/fail logic criteria. However, the
development rules discussed here have wide application
in our daily practice, apart from its original goal in the
end-of-line detection system project.

REFERENCES

1. T. Bernard, G. Cerrato-Jay, J. Dong, DJ Pickering,
L. Braner, R. Davidson, The Development of a
Sound Quality-Based End-of-Line Inspection System
for Powered Seat Adjusters. SAE 01PC-205.

2. E. Zwicker, H. Fastl, Psychoacoustics, Facts and
Models, Spring-Verlag, 1990.

CONTACT

For any discussion on the paper, please contact the
authors. Jianrong Dong, PhD., Project Engineer,
Jianrong.Dong@mts.com. Office: (248) 397-4964.
Gabriella Cerrato-Jay, PhD., Principal Engineer,
Gabriella.Cerrato-Jay@mts.com. Office: (248) 397-
4953. Chih-Hung Chung, PhD., Senior Project
Engineer. Jerry.Chung@mts.com. Office: (248) 397-
4954. MTS Systems Corporation, Noise and Vibration
Division, 800 East Whitcomb Ave. Madison Heights, MI
48071. Phone: 248-585-5000. Fax: 248-585-3013.

