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ABSTRACT 

In some cases, measured cross-spectral matrices (CSM’s) from a microphone array will be contaminated by 

severe incoherent noise signals in the individual channels. A typical example is flow noise when measuring in 

a wind tunnel. Assuming stationary signals and performing long-time averaging, the contamination will be 

concentrated on the diagonal of the CSM. When the CSM is used for traditional frequency-domain 

beamforming, the use of the diagonal can be avoided – a technique referred to as Diagonal Removal (DR). 

DR is effective at suppressing the effects of the contamination, but it also has some side effects, such as 

underestimation of source levels. With other beamforming algorithms, such as Functional Beamforming, and 

in connection with acoustic holography, however, the diagonal of the CSM is needed. The present paper 

describes a method for removal of incoherent noise contamination from the CSM diagonal. The method 

formulates the problem as a Semidefinite Program, which is a convex optimization problem that can be 

solved very efficiently and with guaranteed convergence properties. A numerical study focuses on the 

question, whether the Semidefinite Program formulation will provide in all cases the desired output, i.e. the 

diagonal with precisely the contamination removed. Results from measurements are also presented. 

 

Keywords: Wind noise, beamforming, diagonal removal. 
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1. INTRODUCTION 

Microphone array measurements performed outdoor or in wind tunnels  will often suffer from 

self-induced flow noise in the individual microphones (1). Use of windscreens can reduce the effect, 

but not remove it. For frequency-domain beamforming applications, averaging of a Cross Spectral 

Matrix (CSM) is typically first performed. If the measured flow-noise signals are (to a good 

approximation) independent stationary stochastic processes over the measured time interval, and if the 

averaging time is sufficiently long, then the flow noise will contribute almost entirely on the diagonal 

of the averaged CSM. Use of windscreens will reduce the noise, but the noise from one windscreen 

may be picked up by neighboring microphones, if the screens are not much smaller than the 

microphone spacing, resulting in contributions outside the CSM diagonal. 

Assuming the flow-noise contributions to be concentrated on the CSM diagonal,  their effect on 

beamforming results can be almost entirely removed by use of so-called Diagonal Removal (DR), 

where the use of the diagonal elements is avoided (1). This technique has a simple and robust 

implementation in connection with traditional frequency domain beamforming, typically Delay And 

Sum (DAS). Unfortunately, it also has some side effects, such as underestimation of source levels and 

areas with negative power in produced contour maps. With other beamforming algorithms, such as 

Functional Beamforming, and in connection with acoustic holography, the diagonal of the CSM is 

needed. 

Beamforming deconvolution techniques based on use of the so-called Point Spread Function (PSF), 

such as Non-Negative Least Squares (2), can be implemented with DR, because the PSF can be 

calculated using DR. Clean-SC (3) also includes a DR procedure, which however is much more 

complicated, requiring for each new identified point source an iterative solution of a system of 

non-linear equation. In reference (4) the iterative solution procedure was found to work nicely for the 

strong sources, but to fail converging for the weaker sources. To overcome that limitation, the 

algorithm introduced in the present paper was adopted. 

Dougherty (5) recently published a paper describing a method entitled Cross Spectral Matrix 
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Diagonal Optimization, which uses the same idea as the method of the present paper to remove 

microphone self-noise contributions from the CSM diagonal: The idea is to minimize the sum of the 

auto-power elements on the CSM diagonal, while maintaining the matrix positive semidefinite (i.e. 

with non-negative eigenvalues). All off-diagonal elements remain unchanged. The present paper 

describes a different solution procedure making use of recent developments in Convex Optimization; 

see for example references (6) and (7). This allows the problem to be solved very efficiently and with 

guaranteed convergence properties. 

The new Diagonal Reconstruction (DiRec) method is outlined in Section 2. Following that, Section 

3 presents a numerical investigation of the conditions under which the new DiRec method will return 

a diagonal with all incoherent noise contributions removed and with nothing else removed. Results 

from actual measurements with flow noise are presented in Section 4. Here, a specific focus is on the 

importance of using sufficient averaging to concentrate the flow noise contributions on the diagonal of 

the CSM. Finally, Section 5 gives a summary. 

2. THEORY 

Let C be an MM element complex Hermitian cross-spectral matrix contaminated by microphone 

self-noise contributions on its diagonal. We would like to add an MM element diagonal matrix D with 

unknown non-positive diagonal elements dm to cancel the self-noise. Arranging the unknown diagonal 

elements in an M-element vector d, we write D = diagd. After the determination of D we will replace 

C by C+D. Cancelling the self noise on the diagonal implies a minimization of the sum of the elements 

dm. However, the remaining matrix C+D must still be Hermitian, i.e. with non-negative eigenvalues. 

Therefore, the idea is to determine d as the solution to: 

 min𝐝 ∑ 𝑑𝑚𝑚        subject to          𝐂 + 𝐝𝐢𝐚𝐠{𝐝} ≥ 0, (1) 

where “ 0” for a matrix means that it is positive semidefinite. The problem (1) has the form of a 

Semidefinite Program, which can be solved efficiently and with guaranteed convergence properties 

using Convex Optimization methods, see for example reference (6). 

Figure 1 shows the few lines of Matlab code needed to solve the problem (1) using the publicly 

available Matlab library CVX. The library can be downloaded from the website given in reference (7). 

 

 
Figure 1 – CVX Matlab code for performing DiRec. 

 

An important question is whether the above solution procedure will always provide output with 

exactly the self-noise removed from the diagonal. The minimization in (1) will proceed until one of the 

eigenvalues of C+D reaches zero, showing that too much will be removed, if the desired matrix has 

only positive eigenvalues. The following section presents some numerical simulations to investigate 

that issue. It turns out that an “exact” solution is obtained, if a small minimum number of eigenvalues 

of the desired matrix are equal zero. The errors resulting from a class of decaying eigenvalue 

distributions are also investigated. 

3. INVESTIGATION BASED ON SYNTHESIZED CROSS-SPECTRAL MATRICES 

The algorithm was tested by synthesis of MM element Hermitian cross-spectral matrices from K 

random rank-1 matrices, K ≤ M: 

 
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Here, H represents conjugate transpose, and the real and imaginary parts of each element in the M1 

vectors pk are generated as random numbers with zero mean and standard deviation equal to 1. The 

resulting matrix 𝐂̃ will have a set of K non-zero eigenvalues covering a wide range. To shape the 

eigenvalue spectrum, a singular value decomposition was first made: 

cvx_begin; 
variable d(M); 
C + diag(d,0) == hermitian_semidefinite(M); 
minimize( sum(d) ); 
cvx_end; 
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followed by a scaling of the K non-zero singular values in 𝐒̃ to get the matrix S0, which is then used to 

obtain the modified cross-spectral matrix C0 with shaped eigenvalue spectrum: 

 H
VSUC 00  . (4) 

This matrix C0 is used as the target to be recovered from a matrix C with noise added on its diagonal: 

  ndiagCC  0 , (5) 

n being a vector of squared, suitably scaled, random numbers. Ideally, the method of Section 2 should 

be able remove the added noise, i.e. provide d = -n. 

Section 3.1 investigates the error in the case, where the matrix C0 has a variable number of equal, 

non-zero eigenvalues (the rest being equal to zero), while Section 3.2 investigates the case of a 

decaying eigenvalue spectrum with none of them equal to zero. 

3.1 Varying number of equal, non-zero eigenvalues 

In this case, the largest singular value 𝑆̃𝑚𝑎𝑥 in 𝐒̃ was identified, and the singular values 𝑆0,𝑚 of S0 

were then set as: 

 𝑆0,𝑚 = 𝑆̃𝑚𝑎𝑥    𝑚 = 1, 2, … , 𝐾, 

 𝑆0,𝑚 = 0           𝑚 = 𝐾 + 1, 𝐾 +  2, … , 𝑀. (6) 

Based on S0, the matrix C0 could be computed using Eq. (4). The elements of the noise vector n were 

initially generated as squared random variables with zero mean and standard deviation 1. Subsequently 

they were scaled to have standard deviation a chosen number of decibel, X, higher than the average C0 

auto-power. Finally, C could be generated through application of Eq. (5). 

 

 
Figure 2 – For five different arrays with 20, 40, 60, 80 and 100 microphones, the reconstruction error Err is 

shown as a function of the number of equal, non-zero CSM eigenvalues. 

 

After the solution of the DiRec problem (1), the deviation from the ideal solution d = -n was quantified 

by the error function: 
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where dm are the elements of d, nm are the elements of n, and C0,m,m are the diagonal elements of C0. 

Figure 2 shows this relative error as a function of the number K of equal, non-zero eigenvalues for 5 

different values of the matrix dimension M used as annotation at the curves: M = 20, 40, 60, 80 and 100. 

In this case, the level X of the added noise was set to be 40 dB above the average level on the diagonal 

of C0, but several levels were tested with almost identical result: X = 0, 20, 40 dB. Thus, apparently it 

is not the level of the added noise that sets the accuracy, but rather the eigenvalue spectrum of the 

desired matrix C0. Based on a series of simulations and results like those in Figure 2 it was found that 

effectively an exact noise subtraction can be performed, when the number K of equal non-zero 

eigenvalues does not exceed a value Kmax given as: 

 𝐾𝑚𝑎𝑥(𝑀) = 𝑀 − √2.5 ∗ 𝑀. (8) 

Close to the point, where K exceeds Kmax, the relative error increases steeply to be in the range between 
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-20 and -10 dB, and after that point it increases smoothly to be 0 dB at K = M. As mentioned above, the 

method cannot handle accurately the situation, where all eigenvalues are positive. Intuitively one 

might think that the method should work perfectly as long as C0 had just one eigenvalue equal to zero. 

The reason why a number of eigenvalues must equal zero is not known. A guess could be finite 

precision in the number handling, but it remains as an interesting open question.  

3.2 Decaying eigenvalue distribution 

In practical applications, the desired CSM C0 will normally have a more or less smoothly decaying 

spectrum of eigenvalues. Here, we will consider spectra of the form shown in Figure 3, which are 

synthesized from the formula: 

 ,,,2,1,
2

,0 MmeS Mm
m    (9) 

with  set to produce a specific attenuation A in decibel at m = M. In the case of Figure 3 the 

attenuation is A = 40 dB, which is also the range covered by the eigenvalue spectrum.  

 

 
Figure 3 – Simulated CSM eigenvalue distribution with 40 dB range for a 60-element array. 

 

After calculation of C0 by Eq. (4), the noise vector n was calculated using the same procedure as 

described in Section 3.1. For this, the level X of the noise relative to the average auto-power on the 

diagonal of C0 had to be chosen. Again, it turned out that the errors were to a good approximation 

independent of the noise level, depending almost entirely on the eigenvalue spectrum. Figure 4 shows 

the relative noise removal error, calculated using Eq. (7), as a function of the eigenvalue range A for an 

array with M = 60 microphones. The relative noise level was again X = 40 dB, i.e. the noise was 40 dB 

higher than the average auto-power on the diagonal of C0. Except for the highest values of A, Figure 4 

shows that with axes in decibel the relative noise removal error is close to a linear function of A. For 

the chosen eigenvalue-spectrum shape, the relation is Err[dB]  -0.65 * A[dB]. A similar relation was 

true for other values of M, the slope of the linear relation increasing slowly with M. 

 

 
Figure 4 – Reconstruction error Err for a 60-element array with CSM eigenvalue distribution of the type 

shown in Figure 3. The eigenvalue range A is on the x-axis. 

 

An interpretation of the results in this section and in Section 3.1 is that solution of Eq. (1) will very 

effectively remove noise added on the diagonal of the CSM, but depending on the eigenvalue spectrum 

it will also remove/modify some of the desired diagonal. If a sufficient number of eigenvalues are zero 

or very small, then the introduced error is negligible. 
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4. MEASUREMENTS 

A series of measurements were performed on a small loudspeaker excited by broadband random 

noise. Each configuration was measured with and without flow incident on the array. Since the speaker 

signal and the flow-induced noise in the microphones are mutually incoherent, the measured CSM will  

ideally be the sum of their contributions: 𝐂𝐒𝐌total = 𝐂𝐒𝐌speaker + 𝐂𝐒𝐌flow. Due to finite averaging 

time, though, the equation will hold only approximately. With the first and the last of the three matrices 

measured, the flow noise contribution 𝐂𝐒𝐌flow can be calculated. The DiRec method relies on that 

matrix being close to diagonal, i.e. with the measured coherence between all flow-noise signals close 

to zero. One thing to be aware of is possible large errors in the elements of 𝐂𝐒𝐌flow because it is 

obtained as a difference between two non-simultaneously measured matrices. It could have been 

measured directly, but that was not done. 

Two different flow conditions were measured, since they provide different challenges: 1) Flow with 

large-scale turbulence. 2) Approximate laminar flow concentrated on an small array section. 

4.1 Turbulent flow 

A series of measurements were taken with a 36-element 

pseudo-random array on a Brüel & Kjaer Mouth Simulator Type 

4227 excited by white random noise. Figure 5 shows the setup 

with the 45 cm diameter array at 40 cm distance from the source 

and with a flow-outlet nozzle entering at the bottom. The nozzle 

emitted a flow-beam towards the array center, but due to the quite 

long distance, the microphones were exposed to a diverged beam 

with turbulent rather than laminar flow. Despite the long distance, 

the flow speed was very inhomogeneous across the array. For a set 

of different excitation levels of the source, 20 sec recordings with 

32768 Hz sampling frequency were taken with and without the 

flow. Using a 200-line FFT for cross-spectral averaging, 2559 

averages could be achieved. Only results for a single selected 

source excitation level will be presented below. 

Figure 6 shows the 36 auto-power spectra from the 

measurement with no flow, while the corresponding spectra with 

flow are shown in Figure 7. Clearly, the flow adds some strong 

low-frequency noise, the level of which varies between the 

microphones and decreases with increasing frequency. The added 

noise is strong at the center of the flow beam, and it decreases 

away from that point. Inspection of the flow profile, just by 

holding a hand in it, indicated a reasonably laminar flow at the 

core, but otherwise a lot of large-scale turbulence. This has been confirmed by visual inspection of the 

recorded time signals and by listening to these signals. The microphones furthest away from the core 

flow have almost no added flow noise. 

Based on the measurements with and without flow, the CSM of the flow noise, 𝐂𝐒𝐌flow, was 

 
Figure 5 – Picture of the setup with 

array (right), source (left) and 

flow-outlet nozzle (bottom). 

 
Figure 6 – Auto-power spectra. No flow. 

 
Figure 7 – Auto-power spectra. Flow. 
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estimated as described above. The degree to which 𝐂𝐒𝐌flow is diagonal could be represented in 

several ways. Here, a representation based on the squared coherence function  
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between microphone signals i and j has been chosen. Only, instead of looking at coherences between 

single microphone pairs, an average coherence for the full matrix is calculated using the expression: 
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Clearly, for a diagonal matrix that average coherence will equal zero. Direct application of Eq. (10) to 

the matrix 𝐂𝐒𝐌flow gave in some cases large errors, because the matrix is calculated as the difference 

between two non-simultaneously measured CSM’s. The formula (11) for the average coherence is, 

however, very robust. 

Figure 8 shows the average coherence function 𝛾̅ for the flow contribution 𝐂𝐒𝐌flow over the 

frequency range from 500 Hz to 8 kHz. Up to around 2 kHz, only a low level of coherence around 0.02 

is found, which can be explained as being entirely due to the limited number of averages: Assuming 

zero coherence between two stationary random signals x and y, the residual coherence 𝛾𝑥𝑦 after N 

averages can be shown to be 1 √𝑁⁄ , see for example reference (8). With 2559 averages, this residual 

coherence will be 0.020, which fits perfectly with the result in Figure 8 below 2 kHz . Above 3 kHz, 

Figure 8 shows an average coherence that increases up to approximately 0.7 at 8 kHz. The first idea 

was that perhaps the diagonal elements in 𝐂𝐒𝐌flow were too small to be determined with sufficient 

accuracy as the difference between elements of 𝐂𝐒𝐌total and 𝐂𝐒𝐌speaker. However, the same type of 

result was obtained from measurements with lower speaker excitation levels, where the flow 

contributions were higher than the speaker contributions. Another possible explanation could be the 

large-scale turbulence, where microphones are hit by flow bursts at irregular time intervals. To 

investigate that, another series of measurements was conducted as described in the following section.  

 

 
Figure 8 – Average coherence for the measured flow-noise CSM. 

 

As mentioned previously, the DiRec algorithm relies on the flow noise contributions being 

concentrated on the diagonal of the CSM. Significant off-diagonal elements in 𝐂𝐒𝐌flow, indicated by 

rather high average coherence in Figure 8, will force the algorithm to retain some flow-noise related 

contributions on the diagonal of the CSM in order to retain the matrix positive semidefinite. 

Figure 9 shows the achieved reduction in decibel of the flow-noise-related auto-power sum (the 

sum of the diagonal elements in 𝐂𝐒𝐌flow), when applying the DiRec algorithm to the matrix 𝐂𝐒𝐌total: 

The speaker contribution 𝐂𝐒𝐌speaker was subtracted from the 𝐂𝐒𝐌total before and after application 

of DiRec to 𝐂𝐒𝐌total to get the flow-noise CSM’s before and after. Figure 9 shows the ratio between 

the auto-power sums for these two flow-noise CSM’s. Up to around 2 kHz a reduction around 10 dB is 

obtained, but from 4 kHz up to 8 kHz it decreases to be close to 0 dB. That decrease is due to the larger 

off-diagonal elements in 𝐂𝐒𝐌flow, represented by the higher measured average coherence in Figure 8. 
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Figure 9 – Reduction of flow-noise auto-power sum on the CSM diagonal obtained using the DiRec method 

of Section 2. 

 

 
Figure 10 – Average element sizes in 𝐂𝐒𝐌flow relative to average element sizes in 𝐂𝐒𝐌speaker. 

 

Thus, remaining flow-noise related off-diagonal contributions in 𝐂𝐒𝐌total will limit the reduction 

of the flow-noise auto-power contributions that can be achieved by use of the DiRec algorithm. The 

degree to which this will be visible in beamformed maps depends on the level of the flow noise relative 

to the level of the source signal of interest. Figure 10 shows the average level differences between the 

elements of 𝐂𝐒𝐌flow and 𝐂𝐒𝐌speaker. Elements on the CSM diagonal (solid red) and off-diagonal 

elements (dashed red) are considered separately. Considering for example the off-diagonal elements, 

the average of absolute values is calculated for 𝐂𝐒𝐌flow, the same is done for 𝐂𝐒𝐌speaker, and the 

level difference between the two averages is plotted. 

Between 6 and 8 kHz the average flow-noise auto-power is approximately equal to the average 

speaker auto-power. Due to the measured high coherence of the flow noise in that range, the DiRec 

algorithm can reduce the flow-noise auto-power sum by only between 0 and 3 dB, see Figure 9. The 

remaining auto-power, together with the significant flow-noise off-diagonal elements (observed in 

Figure 10), leads to the poor flow-noise suppression by DiRec seen in the DAS beamforming map for 

the 6.3 kHz 1/3-octave band in Figure 11. Beamforming was here performed on narrow-band CSM’s, 

and the output was synthesized into 1/3-octave bands. 

Each row in Figure 11 represents a given 1/3-octave band with the same color scale used in all four 

plots. The first (leftmost) three columns were obtained from the measurement with flow, whereas the 

fourth and last column is from the corresponding measurement without flow. Column 1 represents use 

of the basic DAS algorithm, in column 2 the DiRec algorithm has been applied before DAS, and in 

column 3 the traditional diagonal removal (DR) method has been used. 
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Figure 11 – DAS beamforming results in synthesized 1/3-octave bands. All plots in a row use the same color 

scale. Display range is 15 dB, corresponding to 1.5 dB between colors. 
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Looking at the leftmost column, the flow noise almost completely hides the source of interest up to 

around 2 kHz, and from that point, the source gradually becomes clearer up to 3.15 kHz. This agrees 

nicely with the variation of the flow noise contribution on the CSM diagonal represented by the solid 

curve in Figure 10. Use of the traditional DR provides a very good suppression of the flow noise 

effects, even at 1.6 and 2 kHz, where the flow noise has a significant contribution to the CSM 

off-diagonal elements. In comparison, the suppression obtained with the DiRec method is not as good, 

although it also provides a very good improvement compared to doing nothing (leftmost  column). The 

reason is as already explained that the algorithm is forced to retain flow-noise related diagonal 

components corresponding to the off-diagonal flow-noise contributions in order to maintain the CSM 

positive semidefinite. These retained diagonal components will increase the flow-noise effects seen in 

DAS maps. At 3.15 and 4 kHz one can notice that DiRec recovers the sidelobe pattern obtained when 

pure DAS is applied to the measurement with no flow. Use of traditional DR does the well-known 

sidelobe reduction. At both 3.15 and 4 kHz, Figure 10 shows a significant flow-noise contribution on 

the diagonal, but the measured flow-noise coherence, shown in Figure 9, is sufficiently low that the 

DiRec algorithm can perform a good suppression of the flow noise. Below the 3.15 kHz 1/3 -octave 

band there is also a low measured flow-noise coherence, but the flow-noise auto-power contribution is 

becoming too strong to be effectively suppressed. 

4.2 Approximate laminar flow over array section 

As described in the above section, the measured high 

flow-noise coherence above 4 kHz in Figure 9 was 

assumed to be caused by large-scale turbulence. To further 

investigate that, a series of measurements were taken with 

the flow outlet moved very close to a bottom section of a 

small 30-channel array with the microphones flush 

mounted in a plate, see Figure 12. The diameter of the 

array was 30 cm, and the measurement distance was again 

40 cm. As a result, the lowest 6-7 microphones were 

exposed to strong, approximately laminar flow, with much 

lower flow speed at the remaining microphones. This was 

checked by putting a hand in the flow and by listening to 

the recorded signals. For a set of different excitation levels 

of the source, 30 sec recordings with 32768 Hz sampling 

frequency were taken with and without the flow. Only 

results for one of the source levels will be presented here. 

The 30 second recordings were used to calculate CSM’s based on 3839 averages with a 200-line FFT. 

 

 

Figure 13 – Auto-power spectra. Flow. 

 

Figure 13 shows the 30 auto-power spectra from the measurement with flow. The 6-7 microphones 

exposed to strong flow are easily identified. Figure 14 shows the average coherence 𝛾̅ obtained by 

application of Eq. (11) to the estimated flow-noise CSM, exactly like the results in Figure 8 were 

 
Figure 12 – Picture of the setup with array 

(right), source (left) and flow-beam hose 

(bottom right). 
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obtained. Above 1.2 kHz the average coherence is low and fluctuates around 0.016, which corresponds 

precisely to the residual coherence between two truly incoherent signals after 3839 averages. Thus, for 

the present case of strong, approximately laminar flow over a subset of the microphone, the high 

average coherence appearing in Figure 8 above 3 kHz has disappeared. This could indicate the 

coherence increase in Figure 8 being due to large-scale turbulence. A small increase in the average 

coherence is seen in Figure 14 below 1.2 kHz. The reason is unknown, but it might be related to the 

extraordinarily high signal level measured by a single microphone at these low frequencies, see Figure 

13. That microphone was the one closest to the flow-outlet nozzle. 

 

 
Figure 14 – Average coherence for the measured flow-noise CSM. 

 

 
Figure 15 – Reduction of flow-noise auto-power on the CSM diagonal obtained using the DiRec method of 

Section 2. 

 

 
Figure 16 – Average element sizes in 𝐂𝐒𝐌flow relative to average element sizes in 𝐂𝐒𝐌speaker. 

 

Figure 15 shows the reduction in flow-noise auto-power provided by the DiRec algorithm. Notice 
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the very close match with the average flow-noise coherence 𝛾̅ in Figure 14. Actually, the reduction in 

flow-noise auto-power is very close to 7 ∙ log10(𝛾̅) decibel over the full frequency range. Above 1.2 

kHz we have further 𝛾̅ ≈ 1 √𝑁⁄ , where N is the number of averages used in the CSM calculation. 

Figure 16 shows the average level-differences between the elements of 𝐂𝐒𝐌flow and 𝐂𝐒𝐌speaker 

on and off the diagonal. The average flow-noise auto power is seen to be higher than the average 

speaker auto-power over the full frequency range, while the average flow-noise cross-power is a bit 

lower than the average speaker cross-power at all frequencies above 1 kHz. DiRec will attenuate the 

flow-noise auto-power spectrum by the decibel values shown in Figure 15. This will bring the 

flow-noise auto-power below the speaker auto-power only in a frequency band around and somewhat 

below 4 kHz plus in a band near 8 kHz. 
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Figure 17 – DAS beamforming results in synthesized 1/3-octave bands. All plots in a row use the same color 

scale. Display range is 15 dB, corresponding to 1.5 dB between colors. 

 

These observations agree quite well with the DAS beamforming maps presented in Figure 17 . In the 

4 kHz 1/3-octave band, DiRec provides a map very close to the map obtained from the measurement 

without flow. In the other 1/3-octave bands there are slightly larger remaining effects of the flow noise. 

Again, the classical DR method is very good at minimizing the flow-noise effects in the DAS maps, 

even when there are significant off-diagonal contributions from the flow noise in the CSM. Such a high 

off-diagonal contribution is seen in Figure 16 in a band around 6.3 kHz, but the DAS result s in Figure 
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17 show no flow-noise effects in the 6.3 kHz 1/3-octave band, when DR is used in connection with the 

measurement with flow. 

5. Summary 

The subject of the paper has been methods to reduce the impact  on array-processing results of 

incoherent noise in individual measurement channels, typically flow noise in connection with 

measurements in wind tunnels or outdoors. Diagonal Removal (DR) is an established technique for 

noise reduction with conventional frequency-domain Delay And Sum beamforming, avoiding 

completely the use of the diagonal of the cross-spectral matrix (CSM). However, DR also has some 

limitations and with some array processing methods, it does not apply. The present paper has described 

a method called Diagonal Reconstruction (DiRec) to remove the incoherent noise contributions from 

the diagonal of the CSM. The idea is to minimize to sum of the CSM diagonal elements, while leaving 

all off-diagonal elements unchanged, and while keeping the CSM positive semidefinite. The problem 

has the form of a so-called Semidefinite Program, which can be solved very efficiently and with 

guaranteed convergence properties using Convex Optimization methods.  

The properties and limitations of the method were first investigated by applying  it to computer 

synthesized CSM’s with noise added on the diagonal.  It turned out that for CSM’s with more than 

~√2.5 ∗ 𝑀 eigenvalues equal to zero, M being the number of microphones, DiRec is accurate within 

the numerical accuracy almost independent of the level of the noise added on the diagonal. For CSM’s 

with eigenvalues decaying smoothly following an assumed form, the reconstruction accuracy was 

shown to be very good – also virtually independent of the level of the noise added on the diagonal . 

Measurements have been performed on a small loudspeaker with the array exposed to airflow. Two 

types of airflow were tested: 1) With the flow-outlet nozzle at some quite long distance, the array was 

exposed to mainly large-scale turbulence. 2) With the nozzle close to a small group of the array 

microphones, these microphones were exposed to approximately laminar flow. In both cases, the 

achievable noise reduction on the CSM diagonal was shown to be limited by off-diagonal 

contributions from the flow noise. Even with perfectly incoherent flow-noise signals in the individual 

channels there will be residual off-diagonal contributions due to finite averaging time. These 

off-diagonal contributions will limit the noise reduction on the diagonal. For measurements with 

large-scale turbulence at the array, a particular problem with large flow-noise-related off-diagonal 

elements was observed at high frequencies. More investigation would be needed to conclude that the 

reason is large-scale turbulence. 
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