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Measurement of Normal Incidence
Transmission Loss and Other Acoustical
Properties of Materials Placed in a Standing
Wave Tube

J. Stuart Bolton and Taewook Yoo Oliviero Olivieri
Ray W. Herrick Laboratories Briiel & Kjcer
School of Mechanicl Engineering Sound & Vibration Measurement A/S
Purdue University Neerum, Denmark

West Lafayette, Indiana, USA

Abstract

A method for measuring the normal incidence transmission loss and related acous-
tical properties of a sample placed in a four-microphone standing wave tube is
described here. A conventional, two-microphone impedance tube, Briiel & Kjer’s
Type 4206, was connected to a sample holder downstream of the first microphone
pair and a section downstream of the sample holder that accommodates a second
pair of microphones. Sound pressure measurements on both sides of a piece of
material placed in the sample holder for two different tube termination conditions
(open and approximately anechoic) are typically used to estimate the two-by-two
transfer matrix that characterises the sample. When the sample under test is sym-
metric front-to-back, a single measurement with one tube termination condition is
sufficient to determine the transfer matrix elements. The transfer matrix elements
can be used to calculate the transmission loss of the sample as well as a variety of
other acoustical properties. The procedure is demonstrated here through measure-
ment of a complete set of the acoustical properties of a fibrous material.

Résumé

Est décrite ci-aprés une méthode pour mesurer sous incidence normale la perte par
transmission et autres propriétés acoustiques d'un échantillon de matériau placé
dans un tube a ondes stationnaires a quatre microphones : un tube de Kundt con-
ventionnel, le Tube de mesure de l'impédance a deux microphones Type 4206 de
Briiel & Kjeer, est connecté a un support d'échantillon de matériau placé en aval de



la premiére paire de microphones ; la deuxiéme paire de microphones est placée au
niveau de la section située en aval du support. Des mesures de pression acoustique
en amont et en aval de 1'échantillon, pour deux modes de terminaison différents du
tube (terminaison ouverte et approximativement anéchoique), sont utilisées pour
l'estimation de la matrice de transfert deux a deux caractérisant 1'échantillon.
Quand I'échantillon testé présente une symétrie avant/arriére, une seule mesure
avec un seul mode de terminaison du tube suffit a déterminer les éléments de la
matrice de transfert. Ces éléments sont utilisables pour le calcul de la perte de
transmission sonore et de plusieurs autres propriétés acoustiques du matériau. La
procédure est ici présentée et démontrée dans le cadre du mesurage des propriétés
acoustiques d'un matériau fibreux.

Zusammenfassung

Es wird eine Methode zur Messung des Ubertragungsverlustes bei senkrechtem
Schalleinfall und von weiteren akustischen Eigenschaften einer Materialprobe in
einem Vier-Mikrofon-Impedanzrohr mit stehenden Wellen beschrieben. Ein
herkémmliches Impedanzrohr mit zwei Mikrofonen, Typ 4206 von Briiel & Kjeer,
wurde mit einem Probenhalter hinter dem ersten Mikrofonpaar und einem Abschnitt
hinter dem Probehalter verbunden, der ein zweites Mikrofonpaar enthélt. In der
Regel werden Schalldruckmessungen auf beiden Seiten des im Probenhalter
angebrachten Materials fiir zwei verschiedene akustische Rohrabschliisse (offen und
annihernd reflexionsfrei) ausgefiihrt, um die 2 x2-Ubertragungsmatrix der
Probencharakteristik zu bestimmen. Wenn die Materialprobe im Langsschnitt
symmetrisch ist, reicht eine einzige Messung mit nur einem Rohrabschluss aus, um
die Elemente der Ubertragungsmatrix zu ermitteln. Die Elemente der
Ubertragungsmatrix konnen verwendet werden, um den Ubertragungsverlust der
Probe sowie eine Reihe weiterer akustischer Eigenschaften zu berechnen. Die
Vorgehensweise wird anhand der Ermittlung der akustischen Eigenschaften eines
Fasermaterials demonstriert.



List of Symbols

c ambient speed of sound

Cp complex sound speed of the material under test

Cph phase speed of the material under test

G, auto-spectrum of reference signal, »

I frgquency respo_n_se function between the comple>_< sound pressure at the i-th
” microphone position and the complex reference signal,

k complex wave number in the ambient fluid

k, complex wave number of the material under test

P complex sound pressure

P|x -0 sound pressure on the upstream face of the sample

P|x -4 sound pressure on the downstream face of the sample

R normal ihcidence pressure reflection coefficient for the case of an anechoic
¢ termination

R, normal incidence pressure reflection coefficient for the hard backing case

t time

T normal ir_10idence pressure transmission coefficient for the case of an anechoic
¢ termination

T transfer matrix element

TL, normal incidence transmission loss

14 complex normal acoustic particle velocity

V‘x -0 acoustic particle velocity on the upstream face of the sample

V|x . acoustic particle velocity on the downstream face of the sample

Z, surface normal incidence impedance for the case of an anechoic termination

z, complex characteristic impedance of the material under test



Greek

pa normal incidence absorption coefficient for the case of an anechoic termination

o normal ipcidence dissipation coefficient for the case of an anechoic
nd termination

Ay wavelength within the material under test

£o ambient fluid density

Py complex density of the material under test

@ angular frequency

Subscripts

a case of an anechoic termination

h hard backing case

n normal incidence

P material under test

Introduction

Many types of sound absorbing materials are used in noise control applications.
These materials include, for example: glass fiber, polymeric fibrous materials, and
various types of foams, along with barrier materials used either alone or in
combination with absorbing layers to form composite treatments. Itis of interest to be
able to assess quickly the noise control impact of these materials, whether in sound
absorption or barrier applications, as an aid either to material development or
treatment selection. A procedure addressing that need is presented here. Although a
primary result of the measurement procedure is the normal incidence transmission
loss of the sample, a variety of other properties such as the ratio of the sound energy
that is dissipated within the sample to the incident sound energy may also be
determined.

The procedure described here represents an extension of work reported earlier by
Bolton et al.! In that work, a four-microphone, standing wave tube measurement of
the normal incidence reflection and transmission coefficients of automotive sealant
materials was described. The success of that procedure depended on the provision of



a perfectly anechoic termination for the standing wave tube, which, in practice, is
difficult if not impossible to assure. Even relatively small amounts of reflection from
the termination could result in anoticeable distortion of the transmission loss. Here, it
is shown that the same type of measured data may be used instead to determine the
transfer matrix of the material under test if tests are conducted using two different
tube termination (or loading) conditions. The procedure is thus referred to as a “two-
load” method. The transfer matrix elements may then be related in closed form to the
sample’s normal incidence, anechoic transmission loss and other acoustical
properties, all of which are independent of the tube termination conditions. Further, if
the sample is a porous material that may be modeled as an effective fluid>'3%3, thatis,
if its solid phase is perfectly rigid or perfectly limp, the sample’s characteristic
impedance and the complex wave number within it may also be determined. Note that
the latter property in particular, yields both the phase speed and the spatial rate of
energy dissipation within the material. Note also that when the transfer matrix of a
sample is known, whether it be a homogeneous layer or a multi-layer composite, the
transfer matrix may be combined with experimentally-derived or theoretically-
predicted transfer matrices of other acoustical elements (for example, barrier or
resistive layers) to form the transfer matrix of a complete, multi-layer noise control
treatment.> The latter matrix may then be used to predict and optimise the absorption
and barrier properties of the complete treatment.

Transfer matrix approaches have many applications in acoustics, and have also
been used in hydraulics applications where this particular method is sometimes
known as the two-port or four-pole method.* As a result, there is a large body of
literature related to the measurement of the properties of acoustical elements based on
transfer matrix, or two-port, representa‘cions.5 ~!1 The transfer matrix method
adapted here for the measurement of material properties, has been widely used in the
pastboth to analyze and to measure the acoustical properties of flow system elements
(for example, automotive mufflers). In a measurement context, the transfer matrix
estimation has most often been implemented in a two-load form. Also note, that the
material property estimation procedure described here is of the same family as those
described in references [5], and [12] to [ 18] in the sense that measurements are made
on both sides of a cylindrical plug of material placed in a standing wave tube.
However, this procedure differs from those referenced approaches in that knowledge
of the tube termination condition is not required and because it is based more closely
on techniques previously used to measure the acoustical performance of flow system
components.



A measurement procedure that makes it possible to determine the transfer matrix of
a sample that is symmetric front-to-back on the basis of a single measurement with a
single, arbitrary-impedance tube termination (that is, a “one-load” method) has been
described previously.19 The one-load procedure is made possible by taking
advantage of the reciprocal nature of sound transmission through symmetrical,
homogeneous acoustical materials. That reciprocity imposes constraints on the
structure of the transfer matrices of these materials. Those conditions have been
noted previously by Pierce?” and have been used earlier, without comment, by
Bordone-Sacerdote and Sacerdote.” The mathematical constraints resulting from
sample symmetry reduce the number of unknown transfer matrix elements from four
to two, and thus make it possible to determine the acoustical properties of
homogeneous and isotropic porous materials based on a single-load measurement,
thus making it more convenient than the two-load approach when applied to
appropriate materials. A summary of the one-load procedure is included here for the
sake of completeness.

In this article, the theory underlying the transfer matrix approach is described first,
then followed by a description of the experimental implementation of the procedure.
Various measured results, including the normal incidence transmission loss along
with corresponding reflection and absorption coefficients and surface normal
impedances, are then presented for a nearly-homogeneous fibrous thermal insulation
material. Based on the latter results, some further comments are offered on the
frequency range over which useful experimental results may be obtained, in
particular, over which frequency range the tube results may be taken to represent the
properties of a laterally-infinite sample of the same material. It is noted that a low
frequency limit is established by a sample resonance resulting from the constraint of
the sample around its edges.

Theory of the Transfer Matrix Method
A. Sound Field Representation

In the approach considered here, it is assumed that the sound field in the up- and
downstream segments of the standing wave tube can be well approximated by
superpositions of positive- and negative-directed plane waves. In the frequency
domain, the sound field can be written as:

P,, = 4e7" + B™ (1a)



for the upstream segment, and:
P, = Ce? D™ (1b)

for the downstream segment. Here k represents the wave number in the ambient fluid;
P,,and Pg,,,, are complex sound pressures; and the coefficients 4 to D represent the
complex amplitudes (Fig. 1). Note that an ¢ 7®’ sign convention has been adopted and
is suppressed throughout the development.

Fig. 1. Schematic of the standing wave tube
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The complex sound pressures at the four measurement locations x; to x4 can be
written as:

_ —kx, Jkx,

P, = Ae + Be (2a)
—jkx Jkx

P,=de ‘+Be ° (2b)
—jkx Jkx

P3 = Ce 3 + De 3 (20)



—kx, Jkxy
= + De

P, = Ce @2d)

Equations (2a) to (2d) yield four equations for the coefficients 4 to D in terms of
the four measured sound pressures:

) jkx2 jkxl
J\Pe —P,e

A4 = , (3a)
2sink(x; —x,)

—kx; —kxy

j(Pze —Pe )
B = 3b
ZSink(xl—xz) (3b)

Jkxy Jkxz
j(P3e —P,e )
C = . (3¢)
2sink(x5 —x,)

—jkx —jkx
j(P4e - € 4)
D = . (3d)
2sink(xy —x,)

The latter coefficients provide the input data for subsequent transfer matrix
calculations. Note that the wave number, £, should be made complex to account for
the effects of viscous and thermal dissipation in the oscillatory, thermoviscous
boundary layer that forms on the inner surface of the duct. In the present work, a semi-
empirical formula given by Temkin was used to calculate the real and imaginary parts
ofthe wave number.>?

B. Transfer Matrix Formulation

The complex coefficients 4 to D can be used to calculate the sound pressures and
particle velocities at the two surfaces of the sample. The latter quantities can then be
related to each other by a two-by-two transfer matrix, and it is shown in this sub-
section that the elements of that transfer matrix can be determined based on the sound



pressure measurements at the four microphones. The latter is important, since the
acoustical properties of the sample are completely defined once the transfer matrix
elements are known. That is, based on a knowledge of the transfer matrix, the
transmission loss of the sample may be determined for arbitrary tube termination
conditions.

Thus, a transfer matrix is used to relate the sound pressures and normal acoustic
particle velocities on the two faces of a sample extending from x =0 to x = d, as in
Fig. 1:

Vix=0 T21 T22 Vix=a

In Eq. (4), P is the exterior sound pressure and ¥ is exterior, normal acoustic parti-
cle velocity. The pressures and particle velocities at the two surfaces of the porous
layer may easily be expressed in terms of the positive- and negative-going plane
wave component amplitudes: that is,

Pl _,=4+B (5)

V.o = Ap—cB (5b)
0
—jkd ikd

P| _, = Ce e D (5¢)
jkd jkd

V.., = —el (5d)

X = d pOC

where py is the ambient fluid density and c is the ambient sound speed. Thus when
the plane wave components are known, based on measurements of the complex
pressures at four locations, the pressures and the normal particle velocities at the
two surfaces of the porous layer can be determined.



Itis then of interest to determine the elements of the transfer matrix since, as will be
shown below, the elements of that matrix may be directly related to the properties of
the sample. However, first note that Eq. (4) represents two equations in four
unknowns: T4y, T3, T»1 and T,. Thus, two additional equations are required in order
to be able to solve for the transfer matrix elements. Those equations may be generated
by making a second, independent measurement at the four microphone positions after
changing the impedance terminating the downstream section of the standing wave
tube. Thatapproach is the basis of the so-called two-load method.® In matrix form, the
result of the two independent measurements may be expressed as:

Tll T12 Pl P2
T21 T22 Vl V2

Q)
x=0 x=d

where the subscripts 1 and 2 on the pressures and particle velocities, denote the
two different termination conditions. The transfer matrix elements may then be
determined by inverting the latter expression to obtain

Ty Tl _ 1 < 7
Ty Ty, Pl|x:dV2|x:d_P2|x:dV1|x:d
« Pl ‘xZO Vz‘x:d - 2|x= OVl‘x:d - 1|x=0 Pz‘x:d " P2|x=0 P1|x:d

Vl ‘x=0 V2 ‘x=d a V2|x= OV1 ‘x=d a 2|x=d Vl‘x=0 " Pl |x=d V2|x=0

Under certain circumstances, it is possible to take advantage of the reciprocal
nature of asample to generate two additional equations instead of making a second set
of measurements. Pierce noted that reciprocity requires that the determinant of the
transfer matrix be unity.20 Ingard has noted that the latter constraint is a general
property of passive, linear four-pole networks.!? Allard has also shown that this
condition follows directly from the requirement that the transmission coefficient of a
planar, arbitrarily-layered acoustical system be the same in both directions.??
Further, Pierce notes that for symmetrical systems, 7' = T,. It may easily be shown
that the latter condition follows when the plane wave reflection coefficients from the
two surfaces of a planar, layered system are the same.'® Thus, given reciprocity and
symmetry, it follows that:

10



Ty =Ty (8a)
T\ Ty =TTy =1 (8b)

The latter two constraint conditions along with a single measurement for one
tube termination condition complete the set of four equations necessary to solve for
the transfer matrix elements. Specifically, by combining Egs. (4), (8a) and (8b), the
transfer matrix elements for a sample satisfying the above conditions can be
expressed directly in terms of the pressures and velocities on the two surfaces of
the porous layer for one termination condition: that is,

T, T |
11 12:P v " 7 x (9)
T21 T22 |X=O |X:d |x=d |x:0
2
« P|x:dV|x:d+P|x:0V|x:0 P|X—O_P|X—d
2 2
V|x:0_V|x:d P|x:dV|x:d+P|x:0V|x:0

The latter procedure will be referred to here as the one-load method.

Once the transfer matrix elements are obtained by using either the one- or two-load
methods, all of the other acoustical properties of a sample, for example, its reflection
and transmission coefficients, can be calculated, as will be demonstrated next.

C. Calculation of Reflection and Transmission Coefficients

For example, consider a sample of depth d backed by a perfectly anechoic
termination, so thatit can be assumed that D is identically zero in the downstream tube
section. When the incident plane wave is assumed to have unit amplitude, the sound
pressures and particle velocities on the two surfaces of the porous layer become:

Pl _, = 1+R, (10a)
1-R,
M=o = — (10b)
0

11



Pl _, = Te (10¢)
) Tae_jkd
Mema = = (10d)

where R, = B/A and T, = C/4 are the normal incidence, plane wave reflection and
transmission coefficients, respectively, for an anechoically-terminated sample.
When Egs. (10a), (10b), (10c) and (10d) are substituted into Eq. (4), the normal
incidence pressure transmission and reflection coefficients for the case of an
anechoic termination, 7, and R, respectively, are found to be:

ikd
T = 2¢ )

T11+E+P()CT21+T22
Py€

T +h— cT,,—T.
nrLe Pocly =1
R = TO (12)
12
T,,+—=+p,cT,, +T
11 Pyt €L T 1)

In addition, the surface normal impedance of the anechoically terminated sample
may be calculated as:

T,,+T.,/pyc
z, =112 Po (13)
Ty + T/ pye

In contrast, when the sample of depth d is positioned against a rigid backing, then

4 v=d 0 . When the latter condition and Egs. (10a) and (10b) are substituted into

Eq. (4), the normal incidence reflection coefficient for the hard backing case, Ry, is
obtained as:

12



Ty =pycTy

Rh =
Ty + pyeTy

(14)

Similar expressions may easily be derived for the case of a porous layer backed by
an arbitrary impedance.
The normal incidence transmission loss of a sample can be calculated as:

TL = 101ogL2 (15)
|7

Note that when the same fluid is on both sides of the sample, |T a|2 is the normal
incidence, power transmission coefficient for an anechoically-terminated sample.
That is, the ratio of the sound power transmitted by the sample to the sound power
incident on the sample. Inthe case of a perfectly anechoic termination, D=0,and 7,,=
C/A. Note, however, that the sound power transmitted by a sample depends in general
both on the properties of the sample and on the tube termination conditions. For
example, in the extreme case of a perfectly rigid termination, the plane wave
coefficients C and D are equal in magnitude and the sound power transmitted by the
sample is, in principle, zero, thus causing the transmission loss to be apparently
infinite. Even when a tube termination is “nearly-anechoic”, small reflections from
the termination may have a noticeable impact on the transmission coefficient if it is
calculated simply as S/ RIN major advantage of the transfer matrix approach
presented here is that the transfer matrix elements are properties only of the sample
and not of the measurement environment. Further, when those elements are known,
the sound power transmitted by the sample can be calculated for any tube termination
condition. When the latter calculation is based on a perfectly anechoic termination, as
inEq. (11), the corresponding transmission loss gives a true indication of the sample’s
barrier performance.

13



D. Calculation of Wave Number and Characteristic Impedance

Next, note that the normal incidence transfer matrix for a finite-depth layer of a
homogeneous, isotropic porous material that it can be considered to be either limp
or rigid so that it can be modeled as an equivalent fluid is:13,23

Ty, Tpy _ [coskpd ]ppcpsmkpd} 16)

Ty, Ty jsmkpd/ppcp cos kpd

In Eq. (16), k,, is the complex wave number in the acoustical material; d is the layer
thickness; and p,,c,, is the complex characteristic impedance of the material. Thus, the
four transfer matrix elements may be directly associated with the acoustical
properties of the porous material. In particular, the wave number can be evaluated
either as:

k, = Cll,cos_]T11 (17a)
or

_ 1.
kp = C—l,sm—l =T, T5; (17b)

and the characteristic impedance of the acoustical material can be calculated most
directly as:

o= | (18)
’OPP T21

Quantities such as the complex sound speed, ¢, = w/k,,, and complex density,

Pp = PpCp/cp, can easily be determined when &, and p,,c,, are known.

v Cp

14



Experimental Procedure

The experimental procedure described here is based very closely on the earlier
work by Song and Bolton.'® The measurements were made using Briiel & Kjeer’s
Transmission Loss Tube Kit Type 4206-T. A loudspeaker at one end of the tube
was used to generate a broadband random signal over the frequency range 0 to
6400 Hz, and the frequency response functions between the input signal to the
loudspeaker and the complex sound pressures at each of the four measurement
positions were measured simultaneously by using Briiel & Kjar’s Pulse FFT &
CPB Analysis Type 7700 software running on a personal computer. Coefficients 4
to D can then be estimated by using the following formulae:

) Jkxy Jkxy
j(lee —H,,e )

A= 1
Crr ek, —xy) (192)
—jkxl —jkx2
j(H2re _lee )
B = 1
Grr 2sink(x; —x,) (190)

) Jkxy Jkxz
c=[G et ) 19
= AT T k(g —x,) (19¢)

. —jk.)C3 —jkx4
J(H4re —13,€ )
= NG 2sink(x5 —xy4) (19d)

o
[

where H,, is the frequency response function between the complex sound pressures,
P;, and the complex reference signal, r, provided for the loudspeaker; and G, is the
autospectrum of reference signal, 7.

In this approach, it is assumed that the loudspeaker is perfectly linear, which may
be confirmed by an inspection of the coherence of the frequency response functions
as a function of source level. If only four data acquisition channels are available,
the signal from microphone 1 may be used as the reference.?’

15



Briiel & Kjar Transmission Loss Kit Type 4206-T (Fig. 2) is suitable for both
low frequency (50 to 1600 Hz) and high frequency (500 to 6400 Hz) measurements
since it includes both 2.9 cm and 10.0 cm inner diameter tube sections. In principle,
it is necessary to compensate for the propagation delay between the loudspeaker
and the various microphones to avoid the introduction of a time delay bias error
which can result in a uniform reduction of the coherence.?”>?® In practice, compen-
sation is not necessary when the propagation delays are very small compared to the
time record lengths used to compute the cross-spectral and transfer function esti-
mates.

The transmission loss tubes feature microphone holders positioned both up- and
downstream of a sample holder having the same inner diameter as the up- and
downstream sections, see Fig. 2.

Fig. 2. Schematic of Type 4206-T
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The two measurement positions in the up- and downstream tube sections were
separated by a distance of 5 cm for the large tube and 2 cm for the small tube. Note
that it has been reported that there is a frequency-dependent, optimum microphone

16



separation for multi-microphone measurements of the type reported here.?® The
latter effect could be important under poor signal-to-noise conditions.

For the two-load measurement cases, measurements were made first with the tube
termination open, and then when the downstream tube sections were terminated by
approximately anechoic terminations. The latter were created by loosely packing the
standard sample holders with an approximately 70 cm depth of 3 M Thinsulate™
sound absorbing material. The absorption coefficients of the large and small tube
terminations are plotted in Fig. 3.

Fig. 3. Absorption coefficients of nearly anechoic terminations. (a): Large tube. Frequency
range: 20Hz— 1.6 kHz, (b): Small tube. Frequency range: 20 Hz— 6.4 kHz
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In the one-load measurement case, the measurements were performed with the
anechoic terminations in place. Note that an anechoic termination is not required by
either of the two- or one-load measurement procedures discussed in the last section.

17



In principle, the termination impedance can be arbitrary, and its value need not be
known. However, the presence of the anechoic termination in at least one
measurement condition causes the sound field in the downstream section to be almost
purely propagational in that case, thus maximising the phase difference between the
sound pressures at the two downstream microphone locations and minimising the
effect of microphone phase-mismatch on the downstream transfer function
estimates. Note that a microphone switching procedure may be performed at a
calibration stage to reduce the effects of microphone and measurement channel
mismatch, as recommended in ASTM standard E 1050, for example.29 Owing to the
type of test material considered here (that is, highly absorptive), the measurement
environment in the tube was not difficult and the microphone switching procedure
had a negligible impact on the results. Thus, all the results shown in the next section
were calculated without using a microphone switching procedure. Note also that
when the downstream termination impedance is known either a priori (for example, if
there is a rigid termination) or by independent measurement, the relation between the
coefficients C and D in Egs. (2a) to (2d) can be determined. In that case only a single
downstream sound pressure measurement would be required, and the one-load
procedure described above would become, in effect, a broadband implementation of
the Champoux and Stinson technique described inreference [15].

The material used in the present tests was a fibrous, thermal insulation material
provided by 3 M Corporation and is denoted THL. The properties of THL are listed in
Table 1. Cylindrical samples of the material were carefully cut to fit snugly inside the
sample holder. Care was taken to ensure that there were no leaks around the
circumference of the samples and that the samples were not deformed when placed in
the tube. The measurements were made using either three or six layers of material to
give total sample thicknesses of 11.1 cmand 22.2 cm. Lining materials were carefully
inserted into the sample holder so that the depth of the individual layers comprising
the complete sample was preserved. To reduce the effect of sample mounting
variability and material inhomogeneity, multiple transmission measurements were
performed using a total of thirty individual samples. For the three layer
measurements, ten sets of three samples were measured; for the six layer
measurements, five groups of six samples were used. In the small tube
measurements, the samples were positioned so that their front surface was 3.5 cm
downstream of microphone 2, and so that there was a 16.5 cm distance from the front
of the sample to microphone 3. In the large tube case, the front surface of the sample
was positioned 15cm downstream of microphone 2, and 30cm upstream of
microphone 3. Itis generally recommended that the sample surfaces be no closer than
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one tube diameter from the closest microphone position to ensure that non-
propagating modes induced by sample inhomogeneity and edge constraints do not
contribute to the measured sound pressures.

Table 1. The physical properties of THL

Thickness Mass Per Unit Area

3.7 cm (single layer of THL) 0.156 Kglm2

Results and Discussion
A. Transfer Matrix

The magnitudes and phases of the averaged transfer matrix elements for the THL
materials, calculated using Eq. (7), are plotted in Fig. 4. These results are based on a
two-load measurement using three layers of material. Each of the elements is
significant in this case, and each has a particular physical meaning. Note first that the
elements 7| and 75, are identical for practical purposes, owing to the fact that the
sample was essentially homogeneous and symmetric, back-to-front. As a
consequence, the one-load and two-load estimates of the transmission loss of this
sample are almost identical, as will be discussed in the next sub-section. Further, the
element 7' is the ratio of the upstream and downstream pressures in the case of azero
velocity state at the downstream layer surface, and it is thus dimensionless. The
element 7, is the ratio of the upstream pressure and downstream velocity when a
zero pressure state exists at the downstream surface of the sample, and thus it has the
units of impedance. Conversely, 75 represents the ratio of the upstream velocity and
the downstream pressure when the downstream surface velocity state is zero, that is,
for the case of a hard-backing boundary condition at the downstream surface of the
sample. The element 7, thus has the units of admittance.
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Fig. 4. Averaged transfer matrix elements, T;, for three layers of THL material based on a
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two-load measurement in the small tube for both magnitude and phase. Frequency
range: 50 Hz— 6.4 kHz. Dotted curves: Standard deviation (+1). (a): T}y, (b): T},,
(c): Tyy, (d): Ty
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B. Transmission Loss

Consider next the normal incidence transmission loss of both three and six layer
samples calculated using Egs. (11) and (15): see Fig. 5 to Fig. 9. The results of both
one- and two-load measurements for 3 layers of material are shown in Fig. 5 for
both the large tube and small tubes. It can be seen that the transmission loss
increases monotonically with increasing frequency above 200 Hz as would be
expected for a porous layer.Note also that there are resonance features at approxi-
mately 40 and 120 Hz in the large tube results, and at approximately 150 and
450 Hz in the small tube results. This behaviour is typical of the effect of sample
edge constraint on the normal incidence transmission loss of an elastic porous
material, 31323334 an effect first noted by Beranek in the context of normal inci-
dence absorption measurements.>® The two features represent the effects of the
first two diaphragm-like modes of the samples in which the sample experiences a
pure shearing motion.>!*? The frequencies at which these features occur are
inversely proportional to the sample diameter and are directly proportional to the
square root of the ratio of the shear modulus and density of the sample. Thus, the
first resonance in the large tube case occurs at approximately one-quarter of the
resonance frequency observed in the small tube. Further, this effect is primarily
significant at low frequencies owing to the relatively strong viscous coupling
between the solid and fluid phases of the porous material in that region. At frequen-
cies below the first resonance, the transmission loss, in principle, rises to a low-fre-
quency limit proportional to the flow resistance of the sample.31’32 The latter
behaviour is not clearly evident for the present material since its shear modulus is
relatively low, with the result that the first diaphragm-like mode occurs at very low
frequencies. In this region the microphone separations in the upstream and down-
stream pairs are very small compared to a wavelength, so that the measurements
may not be particularly accurate owing to the effect of residual phase mismatch
between the microphones. Nonetheless, a close examination of the data shows that
the transmission loss does indeed increase with decreasing frequency below the
first resonance in both the large and small tube results. Thus, at low frequencies the
sample edge constraint causes the normal incidence transmission loss of a porous
sample measured in a tube to differ from that of a laterally infinite plane sheet of
the same material. This effect becomes more significant as the flow resistivity of
the samples increases (therein increasing the strength of the coupling between the
solid and fluid phases of the material) and the shear stiffness of the sample
increases in proportion to its bulk density (increasing the frequency of the dia-
phragm-like resonances). This effect is particularly noticeable in measurements of
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essentially impermeable barrier materials, which may also be tensioned when they
are held in the sample holder.

Fig. 5. Averaged normal incidence transmission loss, TL,, for three layers of THL material
with standard deviations (dotted curves) measured using one- and two-load methods.
Red curves: One-load method. Blue curves: Two-load method. (a): Results from large
tube. Frequency range: 20Hz—1.6kHz, (b): Results from small tube. Frequency
range: 20Hz—- 6.4 kHz
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The data shown in Fig. 5 also indicate that the one- and two-load methods give
essentially the same results in this case, as would be expected owing to the sym-
metry of the sample. At low frequencies, the effects of noise are more clearly evi-
dent in the one-load method results and at higher frequencies the variation of the
transmission loss with frequency is not as smooth in the one-load case as for the
two-load case.

In Fig. 6, the transmission losses measured for three-layer samples in both the
large and small tubes are superimposed.
Fig. 6. Averaged normal incidence transmission loss, TL,, for three layers of THL material

with standard deviations (dotted curves). Red curves: Large tube. Blue curves: Small
tube. (a): Frequency range: 20 Hz— 1.6 kHz, (b): Frequency range: 20 Hz— 6.4 kHz
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Nonetheless, the results of the two methods are, for practical purposes, the same for
this material. The differences between the two results are generally much less than the
standard deviation of the measurement (resulting from sample and sample mounting
variability). Thus, for samples that are, practically-speaking, symmetric, the one-
load method may be used as a matter of convenience, if desired.

In the two-load results for the large and small tubes shown in Fig. 6, it may be seen
there that there is excellent agreement between the two sets of results in the frequency
range in which they overlap — except at the lowest frequencies, in which region the
edge-constraint effect discussed above causes the results to differ from one another.
However, for this material, the difference between the two measurements in the
frequency range from approximately 200 to 1600 Hz is generally less than the
standard deviation of the results. Thus, if edge-constraint effects are not an issue
either in the upper frequency range of the large tube results or the low frequency range
ofthe small tube results, satisfactory overlap of the measurements may be expected.

Finally, in Fig. 7, the transmission loss results for three and six layers of material
measured in the large tube are compared. There it may be seen that the transmission
loss of the six layer samples is very nearly equal to twice the transmission loss of
the three layer samples (also plotted) as would be expected for a uniform material.
Again, the difference between the directly measured six-layer result and that
estimated by simply doubling the transmission loss of the three-layer sample is
smaller than the standard deviation of the results.
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Fig. 7. Averaged normal incidence transmission loss, TL,, for three and six layers of THL
material with standard deviations (dotted curves). Frequency range: 50 Hz— 1.6 kHz.
Red curves: Three layers. Green curves: Six layers. Blue curves: 2 x three layers
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Note that the transmission loss discussed in this section is the normal incidence
transmission loss, which generally differs from the random incidence transmission
loss that is typically measured using a sample placed between two reverberation
rooms.>> There is no simple relationship between the random and normal incidence
transmission except for particular types of materials. For example, if the sample is
a homogeneous, isotropic porous material that is either perfectly limp or rigid, the
random incidence transmission loss may be calculated from a knowledge of the
sample’s complex density and sound speed (see sub-section “Complex Density and
Sound Speed” on page 37).36

C. Reflection and Absorption Coefficients and Surface Normal

Impedance

The reflection and absorption coefficients along with the surface normal
impedance of the three layer samples measured in both the small and large tubes are
shown in Fig. 8 to Fig. 11, and will be discussed briefly here.

The plane wave, anechoic reflection coefficient, R ,, was calculated using Eq. (11),
and is shown in Fig. 8. Since the flow resistance of the material under test was
relatively low, and because the sample was effectively anechoically-terminated,
most of the incident energy was either transmitted through the sample or was
dissipated within it. As a result, the magnitude of the reflection coefficient is
relatively low except at the lowest frequencies where the sample is stiffened by the
effect of the edge constraint. Note that the feature in the small tube reflection
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coefficient near 200 Hz is associated with edge-constraint resonance discussed in the

last sub-section.

Fig. 8. Averaged normal incidence anechoic reflection coefficient, R,,, for three layers of THL
material with standard deviations (dotted curves). Red curves: Large tube. Blue
curves: Small tube. (a): Frequency range: 20Hz—- 1.6 kHz, (b): Frequency range:
20Hz—-6.4kHz
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The normal incidence, anechoic absorption coefficients for the small and large
tube cases were calculated as:

o, = 1-|R)? (20)

and are shown in Fig. 9.
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Fig. 9. Averaged normal incidence anechoic absorption coefficient, «,,, for three layers of
THL material with standard deviations (dotted curves). Red curves: Large tube. Blue
curves: Small tube. (a): Frequency range: 20Hz—1.6kHz, (b): Frequency range:
20Hz-6.4kHz
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It may be seen, as expected, that the absorption coefficients are nearly unity,
except at the lowest frequencies. An interesting feature of the method, is that it is
possible to distinguish the fraction of the incident energy that is dissipated within
the sample, from that that is simply transmitted through it. Here we define the
normal incidence, anechoic dissipation coefficient as:

2 2
Opg = 1_|Ra| _|Tb| = ana'_|T

2
d

e2)

that is, as the difference between the fraction of the incident energy absorbed by
the sample at its front surface and transmitted at its rear surface. The dissipation
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coefficient is, therefore, a measure of the sample material’s ability to dissipate
energy. The dissipation coefficients for the three layer samples in the large and
small tube are shown in Fig. 10, where it can be seen that the dissipation within the
sample increases essentially monotonically with frequency, as is typical for a
porous material.

Fig. 10. Averaged dissipation coefficient, o, for three layers of THL material with standard

deviations (dotted curves). Red curves: Large tube. Blue curves: Small tube.
(a): Frequency range: 20 Hz— 1.6 kHz, (b): Frequency range: 20 Hz— 6.4 kHz
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The surface normal impedance of the anechoically terminated sample was
calculated using Eq. (13) and the large and small tube results are shown in Fig. 11.
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Fig. 11. Averaged surface normal impedance in the case of anechoic termination, Z,, for
three layers of THL material with standard deviations (dotted curves). Red curves:
Large tube. Blue curves: Small tube. (a): Frequency range: 20 Hz— 1.6 kHz,
(b): Frequency range: 20 Hz— 6.4 kHz
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Note that over most of the frequency range, the real part of the normal
impedance is only slightly greater than pyc, and the imaginary part is relatively
small, which is consistent with the high levels of absorption noted previously. It
should be emphasised that the absorption coefficient of an anechoically terminated
sample is significantly different (and usually larger) than the absorption of the
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same sample when rigidly-backed as would normally be measured in a two-
microphone standing wave tube.

D. Wave Number and Characteristic Impedance

Many types of sound absorbing materials are used in noise control applications. It
is of interest to be able to predict the noise control impact of these materials, whether
in sound absorption or barrier applications. At the design stage, finite element,
boundary element and statistical energy analysis programmes make that possible in
principle. However, to take full advantage of these software capabilities, it is
necessary to have detailed knowledge of the acoustical properties of the noise control
materials. In particular, it is usually necessary to know their characteristic impedance
and wave number.

In this sub-section we will imagine that the porous materials under test are
homogeneous (that is, materials whose properties are spatially uniform) and isotropic
(materials whose properties are independent of direction), and that their expanded
solid phase may be assumed to be either perfectly rigid or perfectly limp. In general,
most noise control materials are poroelastic: that is, they can support two
compressional waves and a transverse wave.>’ However, in certain frequency or
material property regimes, certain porous materials behave as though they were rigid,
in that their solid phase motion is negligible compared to that of the fluid phase owing
to weak coupling or the relatively high density or stiffness of the solid phase. In other
regimes, certain materials such as low density, high flow resistivity, unreinforced
glass fibers may be approximated as being limp, meaning that the in vacuo stiftness of
their bulk solid phase is negligible compared to that of the saturating fluid.> For
practical purposes, many fibrous materials and foams fall into these two categories in
specific frequency ranges of interest. Air-saturated, homogeneous and isotropic
porous materials that can be approximated as either rigid or limp may be considered
to support only a single dilational wave type and may thus be modeled as dissipative
fluids having complex physical properties, for example, characteristic impedance
and wave number.” The acoustical properties of such a medium are completely
specified when the latter two quantities, or two independent properties derived from
them (such as complex density and complex sound speed) are known. Thus, it is of
interest to be able to determine experimentally the wave number and the
characteristic impedance of a homogeneous and isotropic porous material. Further,
note that when the medium can be modeled as an effective fluid, the acoustical
properties of a laterally infinite layer of that material are completely specified by a
two-by-two transfer matrix.

31



The material considered here, THL, may be modeled as an effective fluid since the
motion of its solid phase is essentially negligible owing to the material’s relatively
low flow resistivity. The wave numbers and normalised characteristic impedances
for the THL material are plotted in Fig. 12 and Fig. 13, respectively. Those results are
based on three-layer, two-load measurements. The real part of the wave number is a
measure of the rate of change of phase with position within the porous material, and
increases with frequency approximately, but not quite linearly (owing to the variation
of wave speed with frequency within the material). The imaginary part of the wave
number is a measure of the rate of attenuation with distance within the material, and
for the material considered here, it is not very large. In addition, see reference [24] for
a discussion of practical matters related to the estimation of the imaginary part of the
wave number.

Fig. 12. Wave number, k,, for three layers of THL material. Real and imaginary parts of the

wave number. Frequency range: 20 Hz— 1.6 kHz. Red curves: Large tube.
Blue curves: Small tube
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The information represented by the wave number components can be plotted in a
more immediately meaningful form. For example, the phase speed in the porous

material, c,,, can be expressed in normalised form as:

ph— O (22)
c cRe{kp}
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where Re{ } denotes the real part. The normalised phase speeds are plotted in Fig.
14, where it can be seen that the phase speed within the material approaches the
ambient sound speed in the high frequency region, but may be significantly less
than ambient at low frequencies.

Note that since the phase speed within a porous material is usually reduced
compared to that in air, higher order duct modes may “cut on” within the porous
material at frequencies lower than they would in air, approximately by the ratio of the
phase speeds in the porous material and in the ambient medium. In a dissipative
medium there is, of course, no longer a strict distinction between propagating and
non-propagating modes and hence no definite cut on frequency. Nevertheless, the
existence of higher order modes may affect the accuracy of results at frequencies
where higher order modes could propagate in the absence of dissipation.

The acoustical dissipation within a porous material may be expressed in terms of
the attenuation per wavelength, which is also plotted in Fig. 15. This quantity is
calculated as —-Im{k,} 4, where Im{ } denotes the imaginary part, and 4, = f'/c,,
(where f'is the frequency) is the wavelength within the material. The attenuation
per wavelength may thus be calculated as: —2mIm{ kp }/Re{ kp} .

It may be seen that the attenuation per wavelength decreases with frequency
owing to the relatively low flow resistivity of the THL.

The characteristic impedance of the THL material is shown in Fig. 13, where it
may be seen that the real part of the normalised characteristic impedance is only
slightly greater than unity and that the imaginary part is only slightly less than zero.
That is, the material’s characteristic impedance is very close to that of ambient air,
with the result that sound transmits into this material very easily.
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Fig. 13. Normalised characteristic impedance for three layers of THL material. (a): Frequency
range: 50 Hz—- 1.6 kHz, (b): Frequency range: 50 Hz— 6.4 kHz
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Fig. 14. Normalised phase speed, c,/c, per wavelength. Red curves: Large tube. Blue
curves: Small tube. (a): Frequency range: 20Hz— 1.6 kHz, (b): Frequency range:

20Hz—-6.4kHz
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Fig. 15. Attenuation per wavelength. Red curves: Large tube. Blue curves: Small tube.
(a): Frequency range: 20 Hz— 1.6 kHz, (b): Frequency range: 20 Hz— 6.4 kHz
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It should be emphasised in closing this sub-section that elastic porous materials
such as foams can support two longitudinal waves and a single transverse wave. 3839
Although a single airborne wave is often dominant in unfaced noise control foams, in
which case they can be modeled as effective fluids (see reference [21], for example),
the other two wave types may sometimes contribute very significantly, depending on
the details of the foams’ surface boundary conditions.> When the latter is the case, it
is no longer possible to specify a material’s properties in terms of a single
characteristic impedance and wave number. Thus, a transfer matrix representation of
a foam layer is, in principle, much more complicated than that presented here as Eq.
(1 6).13’23 The reader should, therefore, be cautious when applying the present
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method for determining characteristic impedance and wave number (and the related
properties considered in the next sub-section) to foams.

E. Complex Density and Sound Speed

As mentioned in the last sub-section, homogeneous and isotropic limp or rigid
porous materials may be modeled as fluids having complex properties. Thus,
arbitrarily-shaped porous material domains may be modeled by using existing finite
and boundary element codes so long as provision has been made for complex material
properties. The input data most often required by these programs are complex density
and the complex sound speed within the porous material. The complex density can be
calculated in normalised form as:

c )k
/_JE = (fﬂli}z (23)
Lo Py®

and the normalised complex sound speed as:
c
2 =9 (24)
c kpc

The normalised complex density of the present material is shown in Fig. 16 where it
can be seen that the real part is very close to the ambient density of air (approximately
1.2 kg/m3) and that the imaginary part asymptotes towards zero at high frequencies.
Note that the complex density used here is a bulk density in contrast to the pore-based
complex density referred to in reference [23]. The two quantities differ by a factor of
porosity.

The complex sound speed is shown in Fig. 17. It can be seen that the real part
approaches the ambient sound speed at high frequencies and that the imaginary part
asymptotes towards zero at the same time, since the dissipation per wavelength
within the material decreases with increasing frequency in this case. It should be
noted that the phase speed and the real part of the complex sound speed are not the
same in general, although for this material they are very close to one another.
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Fig. 16. Normalised complex density, p,/py, for three layers of THL material. Red curves:
Large tube. Blue curves: Small tube. (a): Frequency range: 50 Hz— 1.6 kHz,
(b): Frequency range: 50 Hz— 6.4 kHz
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Fig. 17. Normalised complex sound speed, c,/c, for three layers of THL material. Red curves:
Large tube. Blue curves: Small tube. (a): Frequency range: 20Hz— 1.6 kHz,
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Conclusions

In the present article, we have described a quick and convenient method for
determining the normal incidence acoustical properties of samples placed in a
standing wave tube. The procedure is based on well-known transfer matrix methods,
but has here been adapted to the identification of the properties of acoustical
materials. Both one- and two-load implementations of the transfer matrix method
have been described, and the conditions under which the one-load method may be
used have been specified. The practical use of the transfer matrix procedure has been
illustrated by performing measurements on a fibrous material. The transmission
losses at various densities of this material were presented along with associated
absorption coefficients and surface impedances. Further, it was shown that for porous
materials that can be modeled as effective fluids, the characteristic impedance and
wave number within the sample can be determined along with the material’s complex
density and sound speed. The latter information can be used to model limp or rigid
porous materials in existing finite element procedures, thus the present procedure
may prove a useful adjunct to modern noise control design procedures.
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