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Experimental Characterization of Operating 
Bladed Rotor Using Harmonic Power Spectra 
and Stochastic Subspace Identification1

D.Tcherniak2, S. Yang3, M.S. Allen4

Abstract
The dynamic response of mechanical systems with rotating elements, such as
operating wind turbines, cannot be described using a classical linear time-invariant
(LTI) formulation because the mass and stiffness matrices can vary periodically
during rotation. Such systems belong to the class of linear periodic time-variant
(LPTV) systems and require special treatment for their experimental
identification. For instance, the Harmonic Power Spectra (HPS) method, which is
based on Floquet theory, can be applied. Afterwards, the experimental responses
are modulated exponentially using the rotational frequency. The HPS matrix is
computed between the modulated responses and is used as the input for
Operational Modal Analysis (OMA). OMA provides the frequencies of the modes
and the Fourier coefficients for reconstructing the time-periodic mode shapes. In
the authors’ prior publications, the HPS method is applied to the frequency
domain. This study extends the HPS method to the time domain and makes it
possible to use powerful stochastic subspace identification (SSI) techniques for
modal identification. This leads to more accurate parameter estimates and can be
used on modes with close frequencies. The advantage of the suggested approach is
that it allows for the use of existing implementations of SSI and thus provides a
simple tool for modal identification of periodic systems.

1 First Published in ISMA Conference 2014
2 Brüel & Kjær Sound and Vibration Measurement

Skodsborgvej 307, Nærum 2850, Denmark
3 Turbomachinery Systems, Praxair Inc. 

175 East Park Drive, Tonawanda, NY 14150
4 Department of Engineering Physics, University of Wisconsin-Madison

535 Engineering Research Building, 1500 Eng. Drive, Madison, WI 53706, USA
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Résumé
La réponse dynamique des systèmes mécaniques intégrant des éléments tournants,
par exemple des éoliennes, ne peut faire l'objet d'une formulation LTI (linear time-
invariant) puisque les matrices de masse et de rigidité peuvent varier
périodiquement pendant la rotation. Ces systèmes, dits sytèmes LPTV (linear
periodic time-variant) nécessitent un traitement particulier pour pouvoir être
identifiés expérimentalement. C'est une méthode faisant intervenir les spectres de
puissance harmoniques (méthode HPS basée sur la théorie de Floquet) qui est ici
appliquée. Ensuite, les réponses sont modulées exponentiellement en utilisant la
fréquence de rotation. La matrice HPS est calculée entre les réponses modulées
puis utilisée comme donnée d'entrée pour une analyse modale en fonctionnement
(analyse OMA). Cette analyse fournit les fréquences des différents modes et les
coefficients de Fourier pour reconstruire les déformées modales variant
périodiquement dans le temps. Dans les publications précédentes de l'auteur, la
méthode HPS était appliquée au seul domaine fréquentiel. La présente étude étend
la méthode HPS au domaine temporel, rendant possible l'utilisation de puissantes
techniques SSI (stochastic subspace identification) pour l'identification modale.
Cela conduit à des estimations plus précises des paramètres et peut être utilisé
pour les modes caractérisés par des fréquences proches. L'avantage de l'approche
ici suggérée est qu'elle permet d'utiliser des applications existantes de la technique
SSI et qu'elle constitue donc un outil simple pour l'identification des modes des
systèmes périodiques.

Zusammenfassung
Das dynamische Verhalten mechanischer Systeme mit rotierenden Elementen,
beispielsweise beim Betrieb von Windturbinen, lässt sich nicht mit einer
klassischen linearen zeitinvarianten (LTI) Formel beschreiben, weil die Masse-
und Steifigkeits-Matrix während der Rotation periodisch variieren kann. Diese
Systeme gehören zur Klasse der periodisch zeitvarianten linearen (LPTV)
Systeme und erfordern eine besondere Behandlung, um experimentell identifiziert
werden zu können. Beispielsweise kann die Methode der Harmonic Power Spectra
(HPS) verwendet werden, die auf der Floquet-Theorie beruht. Anschließend
werden die experimentell erhaltenen Antwortfunktionen mit Hilfe der
Rotationsfrequenz exponentiell moduliert. Die HPS-Matrix wird zwischen den
modulierten Antwortfunktionen berechnet und als Eingabe für die Operational
Modal Analysis (OMA) verwendet. OMA liefert die Frequenzen der Moden sowie
die Fourier-Koeffizienten zur Rekonstruktion der zeitlich periodischen
2



Modenformen. In den früheren Veröffentlichungen der Autoren wurde die HPS-
Methode auf den Frequenzbereich angewendet. Mit dieser Studie wird die HPS-
Methode auf den Zeitbereich erweitert, wodurch leistungsfähige Techniken der
Stochastic Subspace Identification (SSI) zur Modenidentifikation verwendet
werden können. Dies führt zu präziseren Parameterbestimmungen und ist für
Moden mit eng benachbarten Frequenzen geeignet. Der Vorteil des empfohlenen
Verfahrens besteht darin, dass es die Nutzung bestehender SSI-Implementierungen
ermöglicht und somit ein einfaches Werkzeug für die Modenidentifikation von
periodischen Systemen bereitstellt.

1. Introduction
Operational modal analysis (OMA) [1], a method of extracting the modes and
hence a linear dynamic model of a structure from operational measurements, has
become a mainstream technology in the past few decades. Often the structures of
interest involve rotating machinery such as operating wind turbines. This makes
the application of well established OMA techniques invalid since the structure
under test is not time-invariant and, therefore, violates the main assumption of
modal analysis. If the structural properties change periodically, the structure can
be modelled as a linear periodic time-variant (LPTV) system. Currently, the
number of studies on identification of LPTV systems is limited. Study [2] suggests
using the Coleman, or multiblade coordinate (MBC), transformation as a
preprocessing step to OMA. By changing the variables to a rotational frame, the
Coleman transformation converts the LPTV system to LTI. This allows for the
application of a wide range of classical modal identification techniques. However,
this method can only be applied to isotropic rotors, meaning all blades have
identical mass and structural properties. In additon, for rotors rotating in a verticle
plane, as in the case of horizontal axis wind turbines (HAWT), gravity introduces
forces that break symmetry and can cause the system to exhibit linear time-
periodic behaviour. This prevents the use of the Coleman transformation for in-
plane modes. Jhinaoui [3] suggests a subspace identification method that is
specially developed for rotating systems. The method identifies the underlying
Floquet eigenstructure of the rotating system and uses samples taken at the same
position of the rotor in consecutive revolutions. Allen suggests using harmonic
power spectra (HPS) for structure identification then extends experimental modal
analysis to LPTV systems [4] and, later, to OMA [5]. This framework has been
used quite extensively to extract the mode shapes from continuous-scan laser
3



vibrometer measurements [6-9], and the authors recently applied it to
measurements from an operating wind turbine [10].

The first step when computing HPS is to modulate the measured time histories
by multiplying them by e–imΩt, where Ω is the rotational frequency of the turbine
and m is some integer. Then, the theory shows that the augmented set of
measurements can be processed using standard curve-fitting techniques or peak
picking to extract the natural frequencies and damping ratios. The theory also
explains how to relate the amplitudes of the harmonics in response to the time-
varying mode shapes. The method described in [5] uses frequency-domain modal
algorithms to extract modal parameters. In this paper, the method is referred to as
H-OMA-FD and is extended to the time domain OMA; the suggested approach is
referred to as H-OMA-TD.

The consequence of the harmonic modulation process is that it makes the
modulated time series complex and, hence, is not amenable to analysis by
conventional OMA/SSI routines. This article proposes an approach that
circumvents this difficulty so that powerful and robust OMA/SSI algorithms can
be used to extract the structure’s modal parameters.

2. Theoretical Background
The state space model of a linear time-periodic system with N degrees of freedom
can be written as

(1)

where A(t) is the system matrix, B(t) is the input matrix, C(t) is the output matrix
and D(t) is the direct input matrix, and all are periodic with time. For example, the
classical system with mass, damping and stiffness matrices M, Cd and K with the
equation of motion

(2)

can be written in this form using  [6]. For any initial
state and input pair (x(t0), u(t0)), a unique solution y(t) exists and can be written in
terms of the state transition matrix Φ (t, t0) [12].

x· t( ) A t( )x t( ) B t( )u t( )+=

y t( ) C t( )x t( ) D t( )u t( )+=

M t( )z·· t( ) Cd t( )z· t( ) K t( )z·· t( )+ + f t( )=

x t( ) z t( )T[= z· t( )T ]T
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(3)

The general solution (with the direct input matrix D(t) equal to zero) is the basis
for Floquet analysis and is used to derive the harmonic transfer function and HPS
used in operational modal analysis [5, 13].

2.1 Floquet Analysis
The state transition matrix Φ(t, t0) is the key to obtaining the general solution in
Eq. (3). When the system is linear time-invariant, or A(t) = A, and the other
coefficient matrices are constant, the state transition matrix is  and can
be further decomposed as

(4)

where P is the matrix of eigenvectors of the system matrix A, and Λ is a diagonal
matrix of eigenvalues.

On the other hand, when the system is periodic and satisfies the condition
A(t) = A(t + T) where T = 2π/Ω is the fundamental period, the dynamics of the
periodic system have to be studied using Floquet theory [12, 14-16] because
Φ(t, t0) ≠ . The Floquet theory introduces a coordinate change to the
system matrix A(t) and transforms the LPTV system to an LTI system. As a result,
the state transition matrix becomes

(5)

where  is a periodic matrix. The eigenvalues of L are called Floquet
exponents [15,16], and it is important to note that they are constant even though
A(t) is time-periodic. If all Floquet exponents are non-zero and non-repeated, that
is, L is nonsingular, then there exists a nonsingular matrix R that diagonalizes L
with L = RΛR–1. Then, the state transition matrix in Eq. (5) becomes

(6)

where P(t) =  is a matrix of time-periodic eigenvectors for the LPTV system
[17]. The state transition matrix is decomposed into the modal summation form

y t( ) C t( )Φ t t0,( )x t0( ) C t( ) Φ t τ,( )B τ( )u τ( ) τ D t( )u t( )+d
t0

t

+=

e A t t0,( )×

Φ t t0,( ) e
A t t0–( )× Pe

Λ t t0–( )× P 1–
= =

e A t( ) t t0,( )×

Φ t t0,( ) P t( )e
L t t0–( )×

P t0( ) 1–
=

P t( )

Φ t t0,( ) P t( )e
Λ t t0–( )× P t0( ) 1–

=

P t( )R
5



(7)

where ψr(t) is the rth column of P(t), and Lr(t) is the rth row of P(t)–1. λr is the rth

Floquet exponent that is analogous to the rth eigenvalue of an LTI system. The rth

Floquet exponent can be written in terms of the damping ratio ζr and natural
frequencyωr as λr = −ζrωr + iωr  for an underdamped mode. Thus, the
steady state response y(t) in Eq. (3) becomes

(8)

The residue matrix Ry,r(t) is periodic and can be expanded into a Fourier series.
Assume that the residue matrix can be adequately represented using a fixed
number, 2NB + 1, of terms

(9)

where Bn, r is the nth Fourier coefficient matrix of the rth mode. So, the output y(t)
becomes

. (10)

This equation reveals that the response of each mode in the system is a sum of
damped sinusoids with several sideband harmonics around each natural frequency.

2.2 Harmonic Transfer Function
Similar to what is shown above for the transient response, when an LPTV system
is excited by a sinusoidal force at some frequency, the response will be at the same
frequency and at an infinite number of its harmonics, each separated by the
fundamental frequency Ω .  At first glance, it seems that it is impossible to use a

Φ t t0,( ) ψr t( )Lr t0( )e
λr t t0–( )

r 1=

2N

=

1 ζr–
2

y t( ) Ry r, t( )e
λr t t0–( )

r 1=

n

=

Ry r, t( ) C t( )ψr t( )Lr t0( )x t0( )=

Ry r, t( ) Bn r, e
inΩ t t0–( )

n NB–=

NB

=

y t( ) Bn r, e
λr inΩ+( ) t t0–( )

n NB–=

NB


r 1=

2N

=
6



linear transfer function for such a system. However, Wereley overcomes this
difficulty by augmenting the input and output signals with frequency shifted
copies of each. Then the couplings between the frequencies can be accounted for
in the augmented version [18]. Specifically, the mth modulated signal is given by 

(11)

for m ∈ ℕ, where m = −M … M. The Fourier transformation of each signal is
denoted as ym(ω). Y(ω) =  is the collection of
frequency shifted copies, and the harmonic transfer function (HTF) can be
established for the LPTV system. The HTF is completely analogous to the
commonly known transfer function for LTI systems.

The HTF is derived by inserting the modulated signal from (11) into the general
solution in Eq. (3), and using the modal solution from Eq. (7). The harmonic
balance approach is used to match the terms with the same frequency in the
exponent e(iω+imΩ)t. After much algebra and organization, a harmonic transfer
function

(12)

is obtained in terms of the modal parameters of the state transition matrix, where
U(ω) =  is the exponentially modulated input in
the frequency domain and

(13)

The mth term in the vector  is , which is the (m – l)th Fourier coefficient (or
vector of Fourier coefficients) of C(t)ψr(t). Note that the mode vectors 
acquired at different peaks describe the same shape, but the elements are shifted in
position for each vector. For example, suppose that the mode vector at frequency
λr is = [0 a b c 0]T. Then the mode vector at λr + Ω should be

ym t( ) y t( )e
imΩt–

=

… y[ T
1–

ω( ) yT
0 ω( ) yT

1
ω( ) … ]T

Y ω( ) G ω( )U ω( )=

… uT
1–[ ω( ) uT

0 ω( ) uT
1 ω( ) … ]T

G ω( )
cr l, br l,

iω λr ilωA–( )–
---------------------------------------

l ∞–=

∞


r 1=

2N

=

cr l, …[= cr 1– l–, cr l–, cr 1 l–, … ]T

br l, …[= br l 1+, br l, br l 1–, … ].

cr l, cr l,
cr l,

cr 0,
7



= [a b c 0 0]T multiplied by an unknown constant, and the mode vector at
λr – Ω should be proportional to = [0 0 a b c]T. A least squares approach
can be used to extract the best estimate of the mode vector  from the multiple
estimations. Similarly,  is the (l – m)th Fourier coefficient of Lr(t)

TB(t).

2.3 Harmonic Power Spectrum
In practice, there exists a measured response of an LPTV system to an excitation

that satisfies OMA assumptions where the measured responses are a collection of
time histories recorded at N0 DOFs with y(t) ∈ ℝ  and sampled with sampling
frequency FS. These time histories are then exponentially modulated by
multiplying by e–imΩt, where m = –M…M, to obtain a collection of responses
ym(t) ∈ ℂ . Then the harmonic power spectrum (HPS) matrix can be found
in the conventional manner, as in the LTI case:

(14)

where E() is the expectation, and ()H denotes the Hermitian transpose. Retaining
only the dominant terms, the HPS can be written in terms of the modes of the
LPTV system as

. (15)

The terms (λr − ilΩ) cause the HPS to have a peak near the system’s eigenvalues
(or Floquet exponents) λr and also at each eigenvalue plus some integer multiple
of the fundamental frequency l. Here, W(ω)r is related to the autospectrum of the
modulated input signal. In output-only modal analysis of LTI systems, the input is
assumed to be uncorrelated, random white noise, and the autospectrum of the
input signal becomes constant. The same assumption is used for LPTV systems.

The HPS has the same modal summation form as the power spectrum of an LTI
system, which is

 . (16)

cr 1–,
cr 1,

cr l,
br l m–,

N0

N0 2M 1+( )

SYY ω( ) E ym ω( )ym ω( )H( )=

SYY ω( )
cr l, W ω( )rcr l,

H

iω λr ilΩ–( )–[ ] iω λr ilΩ–( )–[ ]H
---------------------------------------------------------------------------------------

l ∞–=

∞


r 1=

2N

≈

SLTI
YY

ω( )
ϕr S LTI

UU
ω( )ϕr

H

iω λr–[ ] iω λr–[ ]H
------------------------------------------------

r 1=

N

=
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This function produces a peak in the spectrum when the excitation frequency ω is
near the natural frequency Im(λr), and the peak can be curve-fitted to identify the
natural frequencies, damping ratios and mode shapes of the system. Hence, the
same algorithms for LTI systems can be used to identify modal parameters of
LPTV systems, and the same intuition that is used to interpret frequency response
functions can also be used to interpret harmonic transfer functions. However, there
are a few differences that must be noted in signal processing:

• Theoretically, an LPTV system has an infinite number of peaks for each
mode. The peaks occur at the frequencies ω = Im(λr − ilΩ). If the observed
mode shapes C(t)ψr(t) are constant in time,  and  each contain only
one nonzero term:  and . Then, Eq. (13) and (15) reduce to the
familiar relationship for an LTI system.

• The mode vectors of an LTI system describe the spatial pattern of
deformation of a mode. For an LPTV system, the vectors  consist of the
Fourier coefficients that describe the time-periodic spatial deformation
pattern.

2.4 Complex Time Series: Rigorous Approach
In the approach outlined above, the measured signal y(t) is multiplied by e–imΩt.
Since e–imΩt = cos(mΩt) − isin(mΩt), it is possible to obtain the same result by
multiplying the signals by sine and cosine to form the real and imaginary parts
separately. Eq. (15) shows that the HPS is simply a sum of damped exponential
terms. It can be shown that each term leads to an exponential term in the time
domain and that they are of the form Ar,le .

The residue matrix at the l th harmonic of the rth mode is defined as

 . (17)

Hence, if the signal is modulated using sine and cosine rather than e–imΩt, and the
residues obtained are  and  for the sine and cosine cases respectively,
then the desired residues should simply be

 . (18)

The disadvantage of this approach is that the signals become twice as large (twice
as many outputs) as compared to the case where complex time series are allowed.

cr l, br l,
cr 0, br 0,

cr l,

λr ilΩ–( )t

Ar l,
cr l, W ω( )rcH

r l,
ζrωr

--------------------------------------=

Ar l,
S Ar l,

C

Ar l, Ar l,
C iAr l,

S–=
9



Also, note that the sine and cosine terms should be treated simultaneously in a
global curve-fitting algorithm to assure that the residues obtained correspond to
precisely the same poles.

2.5 Simplified Approach
This algorithm takes a different approach, seeking to produce a time series that is
real and yet has the same spectrum for all positive frequencies.  To help explain it,
first recall that when using the conventional approach, the HPS matrix SYY(ω) is
formed as Eq. (14) and SYY(ω) ∈ ℂ . Then several rows of the
matrix are selected, and peak-picking is used to determine the modal parameters.
It is important to note that for peak-picking, only the frequencies in the range
0 < ω < πFS − MΩ, or the positive part of the frequency axis, are used.

This study suggests replacing the frequency domain peak-picking method by
more robust OMA/SSI algorithms, which are available in some commercial
software packages (for example, Brüel & Kjær Type 7780). Thus, the combination
of SSI with exponential modulation will allow for traditional OMA/SSI
algorithms to be readily applied to LPTV systems.

However, the problem is that the commercial OMA/SSI does not accept
complex time histories. To circumvent this limitation, assume there is a procedure
that converts the exponentially modulated time histories ym(t) ∈ ℂ to new time
histories  with the following properties:

∈ ℝ and (19)

ℱ = ℱ  for ω ∈ [0, πFS] (20)

where ℱ denotes the Fourier transform. The first property ensures the new signals
are usable in the available implementations of the OMA/SSI algorithms, while the
second means that

 for ω ∈ [0, πFS]. (21)

In other words, the new time histories  have the same frequency content and
phase relationships as the positive half of the harmonic power spectra utilized in
the HPS method.

N0 2M 1+( ) N0× 2M 1+( )

ỹm t( )

ỹm
n( )

t( )

ỹm t( )( ) ym t( )( )

S̃YY ω( ) SYY ω( )=

ỹm t( )
10



From Eq. (19) and (20), one can readily derive the algorithm converting ym(t) to
 as follows:

1) Given exponentially modulated signals ym(t), compute their periodogram
ℱ(ym(t)) using a fast Fourier transform. The periodogram of complex ym(t)
is not a Hermitian function so its negative frequency component is not a
complex conjugate of the positive frequency component.

2) Replace the negative frequency component of the periodogram with the
complex conjugate of the positive component.

3) Using inverse FFT, generate new time signals  that satisfy Eq. (19)
and (20).

3. Results
To demonstrate the algorithm, consider a simple three-bladed rotor system which
is a rough model of a horizontal axis wind turbine (Fig. 1). Each blade is modelled
as a two-beam assembly; the beams are connected by a hinge with a linear angular
spring of stiffness kj, where j = 1, 2, 3 is the blade index. A lumped mass mj is
attached to the end of the outer beam. The azimuth angles of the blades are
ψj = Ωt + 2π(j – 1)/3, where the rotor angular speed Ω is assumed constant. The
rotor is attached to the nacelle C with mass mN. It is supported by the ‘tower’ and
is modelled by two springs with stiffnesses kH and kV. The rotor is linked to the
‘drivetrain’ with moment of inertia ID and stiffness kD.

Fig. 1. Three-bladed rotor system

For examination of the rotor modal behaviour, the following parameters are
chosen (same as in [18]):

ỹm t( )

ỹm t( )
11



• a = b = 13.1 m
• k1 = k2 = k3 = 2.006 × 108 N ⋅ m
• m1 = m2 = m3 = 41.7 × 103 kg
• Ω = 2π 0.16 rad/s
• mN = 446 × 103 kg
• kH = 2.6 × 106 N/m
• kV = 5.2 × 108 N/m
• ID = 2.6 × 107 kg · m2

• kD = 108 N · m
These parameters approximate a generic 10 MW wind turbine model.

The identical system is considered in [18], where the equations of motion are set
up and Floquet analysis is applied to investigate the influence of the rotor’s
anisotropy on the whirling components of the mode shapes.

Since this system has six degrees of freedom, six modes are expected and are
named as follows:

• the vertical and horizontal modes, dominated by vertical and horizontal
motion of the mass C

• three rotor modes: one symmetric (also called collective), where all blades
deflect in-phase, and two anti-symmetric, also called whirling

• a ‘drivetrain’ mode, where most of the potential energy is stored in the
stiffness kD.

One should not expect pure modes as there is always some degree of
interaction; the names are only given to reflect the dominating motion of the
mode. This study focuses on the rotor modes since they have the most pronounced
periodic behaviour.

In the following, three methods are applied to the system. First, it is assumed
that the equations of motion are known so Floquet analysis can be applied to
generate an (almost) exact solution. This solution serves as the baseline for
comparison with the other two methods. Next, an experimental scenario is
simulated. It is assumed that the equations of motion are unknown, but it is
possible to observe the response of the system to excitation. This satisfies OMA
assumptions that all DOFs are excited by uncorrelated broadband noise with a flat
spectrum. Last, both the conventional frequency domain HPS method and the
suggested time-domain method are applied to the observed response, and the
results are compared.
12



3.1 Floquet Analysis 
Floquet analysis (see [19] for an overview and detailed description) is applied to
the system in Fig. 1 as described in [18]. As mentioned in the theoretical
background, Floquet analysis provides a modal decomposition, but for an LPTV
system, the modes are periodic. Following the conventional approach, each
periodic mode is Fourier expanded to the harmonic (Fourier) components. The
LTI system can then be thought of as a special case of LPTV, where each mode has
only one non-zero Fourier component. It can be shown that, for an isotropic three-
bladed rotor in the absence of gravity, each mode has three non-zero Fourier
components. The Coleman transformation [20] utilizes this phenomena and allows
for the conversion of the LPTV system to an LTI system. A stronger periodicity of
the system matrix in Eq. (1) requires more Fourier components to be included for
consideration. For rotors that are almost isotopic, only a few Fourier components
have significant magnitude, and the smaller components can be neglected.

Fig. 2 (a) and (c) show the magnitudes of the harmonic components obtained
via Floquet analysis for an isotropic rotor in the absence of gravity. Two modes are
shown: forward whirling (FW) mode, which is dominated by xC but named after
its significant whirling component, and collective mode. The backward whirling
(BW) mode is explained in detail in Fig. 3. As mentioned before, the modes of a
three-bladed isotropic rotor in the absence of gravity can be fully described with
only three Fourier components.

Fig. 2. Simulated experiment for an isotropic rotor in the abscence of gravity. a,b: FW mode;
c,d: collective mode; a,c: Floquet analysis results; b, d: H-OMA-TD results
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Fig. 3 focuses on the BW mode. Fig. 3 (b) shows the magnitude of its three non-
zero Fourier components: FW component (A), motion of the center mass (B) and
BW component (C). The BW component is about one order of magnitude higher
than the FW component. It dominates the rotor dynamics, and the mode is named
after this component. Fig. 3 (a) is a complexity plot that shows the phase relation
between the three blades. The left plot is for the FW component (A), where the
phase between the consecutive blades is +120°. The right plot is for the
dominating BW component (C) with –120° phase.

Fig. 3. BW mode of an isotropic rotor with no gravity. a: Shapes of the FW (left) and BW (right)
components via Floquet analysis; b: Magnitude of the Fourier components via Floquet
analysis; c: Shapes of the FW (left) and BW (right) via H-OMA- TD; d, e, f: Magnitudes of
Fourier components for: d: n = –1, e: n = 0, f: n = +1, as in Table 1. The percent values in the
boxes are a half-width of the pointwise 95% confidence bands computed based on five
analysis, using Student’s t-distribution
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Fig. 4 (a), (c) and (f) show the BW, FW and collective modes for anisotropic
rotor in the presence of gravity. Compared to the isotropic rotor, the system matrix
of the anisotropic rotor demonstrates higher and more complex variation with
time. As a result, it requires more Fourier components to describe the periodic
mode shapes (compare with Fig. 2a, Fig. 2c and Fig. 3b). 

Fig. 4. Magnitudes of the Fourier components for anisotropic rotor: BW (top row), FW (middle
row) and collective (bottom). Left column: results of the Floquet analysis; right column: H-
OMA-TD for simulated experiment. Dashed lines show the significant components, dotted line
shows the erroneous results due to vicinity to strong rotor harmonics

c) 

e) f) 

d) 

a) 

1 2 3 4 5 6 7 –3 –2 –1 0 1 2 3
0.001

0.01

0.1

1

0.001

0.01

0.1

1

n

4 5 6 7 8 9 10
0.001

0.01

0.1

1

n

8 9 10 11 12 13 14
0.001

0.01

0.1

1

n

b) 

n

–3 –2 –1 0 1 2 3
0.001

0.01

0.1

1

n

–3 –2 –1 0 1 2 3
0.001

0.01

0.1

1

n

 

x
C

y
C

φ1

φ2

φ3

 

x
C

y
C

φ1

φ2

φ3

 

 

x
C

y
C

φ1

φ2

φ3
15



Table 1 provides the values of the Floquet exponents for both isotropic and
anisotropic rotors.

Table 1. Floquet exponents obtained analytically, by H-OMA-TD and H-OMA-FD.

3.2 Numerical Experiment
As input for the numerical experiment, the response of the rotor to uncorrelated
broadband excitation is simulated. This excitation satisfies OMA assumptions, but
it is acknowledged that the aeroelastic forces acting on the wind turbine rotor are,
in reality, different [21]. The equations of motion are numerically integrated using
fourth order Runge-Kutta method, for 7200 s (which corresponds to 1152 rotor
revolutions).

3.2.1 Results from H-OMA-FD
The simulated turbine rotates at 0.16 Hz. The responses in the edgewise direction
of all three blades (φ1, φ2, φ3) as well as the responses of the nacelle in the lateral
(Xc) and vertical (Yc) directions are collected into a response vector with 5 outputs.
The responses are then exponentially modulated according to Eq. (11) with
m = −3…3. Then the modulated signals are split into 575 sub-blocks with a block
size of 119 s (19 revolutions) with an 85% overlap. A Hanning window is applied

Mode 
Name

Floquet 
exponent 

λ /(2π)
n

Un-aliased Floquet 
exponent

(λ + nΩ)/(2π)

H-OMA-TD (n = 0)
(in Hz)

H-OMA-FD
(in Hz)

Isotropic rotor, no gravity

BW −0.0112 +
0.0764i 4 −0.0112 +

0.7164i
−0.0116(±0.0013) +

0.7162(±0.0008)i
−0.0140 +

0.7159i

FW −0.0117 –
0.0610i 7 −0.0117 −

1.0590i
−0.0113(±0.0007) +

1.0587(±0.0025)i
−0.0102 +

1.0540i

Collective −0.0348 +
0.0464i 11 −0.0348 +

1.8064i
−0.0353(±0.0014) +

1.8064(±0.0032)i
−0.0360 +

1.8006i

Anisotropic rotor, with gravity

BW −0.0111 + 
0.0716i 4 −0.0111 +

0.7116i
−0.0122(±0.0018) +

0.7121(±0.0006)i
−0.0118 +

0.7129i

FW −0.0116 −
0.0648i 7 −0.0116 −

1.0552i
−0.0113(±0.0008) +

1.0547(±0.0011)i
−0.0105 +

1.0549i

Collective −0.0345 +
0.0378i 11 −0.0345 +

1.7985i
−0.0353(±0.0019) +

1.7985(±0.0032)i
−0.0286 +

1.7858i
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to each block to reduce the leakage. The cross power spectra between the
modulated signals and the original signals (φ1, φ2, φ3) are computed respectively
in each sub-block and averaged over the whole time history. The resulting HPS
matrix has 35 outputs (5 outputs with 7 harmonics for each output) by 3
references. The complex mode indicator function (CMIF) of the HPS matrix is
shown in Fig. 5 for two cases: (a) isotropic rotor with no gravity and (b)
anisotropic rotor with kC = 0.97 and gravity. There are two dominant singular
value peaks in the CMIF with very close natural frequencies centered around
0.88 Hz. All of the other peaks, except for the peak at 1.8 Hz, are spaced at
n × 0.16 Hz from the peaks at 0.88 Hz. This indicates that the system has three
modes that dominate this frequency range, two of which have noticeable periodic
behaviour.

Fig. 5. CMIF of the HPS matrix for the 5 outputs using φ1, φ2, φ3 as references

Initially, a simple output-only extension of the algorithm of mode isolation
(AMI) is used to curve-fit the measurements. This gives a reasonable fit at all of
the peaks, but AMI does not include the multiple-input/multiple-output (MIMO),
hybrid approach [22, 23] that is necessary to separate modes that have close
natural frequencies. Hence, the only mode retained from AMI is the mode at
1.801 Hz, which is found to be the first collective mode of the rotor. The two close
modes are estimated using frequency domain decomposition (FDD) [24].
Specifically, the spectra near the peak are collected and a singular value
decomposition (SVD) is used to extract the first three dominant singular vectors.
These are used to condense the measurements to a set of three spectra as shown in
Fig. 6. This spatial condensation of the measurements effectively separates the
two close modes so that a simple single-mode fit can be applied to each curve to
estimate the modal parameters. The natural frequencies and damping for the three
rotor modes are given in Table 2, and the magnitude of the Fourier components are
shown in Fig. 10 (a) and (c).
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Fig. 6. Spatially condensed MIMO measurements

The next case considered is the case with gravity and 3% anisotropy in one of the
blades. Again, AMI identifies the collective mode at 1.79 Hz, while FDD
identifies the other two modes. The modal parameters are given in Table 2, and
the mode shapes are in Fig. 10 (e) and (g).

These results illustrate what can be done with a basic system identification
method based on HPS, and focus on the time-periodic blade modes. More
sophisticated frequency-domain methods are advisable to use, such as the AFPoly
algorithm [25] or pLSCF [26].

3.2.2 Results from H-OMA-TD
The response time histories obtained from modulation become input for the H-

OMA-TD algorithm. Fig. 7 sketches how the method is applied using
Brüel & Kjær OMA software Type 7760.

Fig. 7. Flow of the suggested method
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First, the data set of time histories for all six DOFs from the simulation (or from
measurements) is harmonically modulated using m = −3…+3, thus generating six
new data sets. The new complex time histories are converted to real time using the
algorithm described in section 2.2. With OMA software, six copies of the rotor
geometry are constructed and assigned to the modulated data sets of the copies
(Fig. 7). The unmodulated signals (m = 0) are selected as projection channels
(shown in pink). Then a standard OMA procedure is run using data driven OMA/
SSI with unweighted principal components (UPC), which extracts the modes.

A CMIF and a fragment of the stabilization diagram for the isotropic rotor in the
absence of gravity are shown in Fig. 8. In the range 0 – 1.5 Hz, OMA finds nine
modes. However, they are shifted (± Ω) realizations of the three structural periodic
modes: Horizontal, BW and FW. This is clearly seen when examining the mode
shapes. Those corresponding to the BW mode are shown in the insets.

Fig. 8. Fragment of the stabilization diagram (Brüel & Kjær Type 7760 OMA software)
showing horizontal, BW and FW modes of an isotropic rotor with no gravity

Table 2 explains the interpretation of the mode shapes using the BW mode as an
example. The rows in the table correspond to the modes found by OMA/SSI (see
Fig. 8). The middle row (BW, n = 0) shows that the periodic mode consists of
three Fourier components oscillating at different frequencies: the horizontal
component at 0.72 Hz, backward whirling component at 0.88 Hz and very weak
forward whirling component at 0.56 Hz. Upon inspection, it can be seen that the
top and bottom rows show the same components at the same frequencies.

Table 2. Isotropic rotor with no gravity. Shapes of the Fourier components for BW mode for
different n

Hor. n = –1 Hor. n = 0 FW n = 0 FW n = –1 FW n = +1 

BW n = 0BW n = –1 BW n = +1

Hor. n = +1

–Ω –Ω+Ω +Ω –Ω +Ω
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Note that the phase relationships between the DOFs are only valid inside each
Fourier component and do not make sense between the components.

The values of the Fourier exponents are given in Table 1. The magnitude of the
Fourier components are shown in Fig. 2 (b) and (d), and Fig. 3 (d), (e) and (f).
They are compared with the results of analytical Floquet analysis. The
frequencies, damping and mode shapes agree with the analytical values.

Fig. 3 explains the results of H-OMA-TD in detail using the BW mode as an
example. The simulation is conducted for five different realizations of the
excitation input, and system identification is performed for each realization. Fig. 3
(b), (d) and (f) show the mean magnitudes of the obtained Fourier components; the
confidence bounds on the results based on the five observations are also shown.
Although the H-OMA-TD algorithm produces many Fourier components, it can
be seen that the confidence of the noise components is significantly lower (the
confidence band is wider), and the false components can be readily identified and
filtered out. The true components are shown inside the dotted regions of Fig. 3 (b),
(d) and (f), and coincide with the analytical results obtained via Floquet analysis.
Fig. 3 (e) shows the scatter of the shape of the BW and FW Fourier components
(compare with the analytical plots in Fig. 3 (a)).

Name
Frequency, 

Hz

Mode Shape

m = –3 m = –2 m = –1 m = 0 m = +1 m = +2 m = +3

BW,
n = –1 0.56

0.56 − 3Ω =
0.08 Hz

0.56 − 2Ω =
0.24 Hz

0.56 − Ω =
0.40 Hz 0.56 Hz 0.56 + Ω =

0.72 Hz
0.56 + 2Ω =

0.88 Hz
0.56 + 3Ω =

1.04 Hz

BW,
n = 0 0.72

0.72 − 3Ω =
0.24 Hz

0.72 − 2Ω =
0.40 Hz

0.72 − Ω =
0.56 Hz 0.72 Hz 0.72 + Ω =

0.88 Hz
0.72 + 2Ω =

1.04 Hz
0.72 + 3Ω =

1.20 Hz

BW,
n = +1 0.88

0.88 − 3Ω =
0.40 Hz

0.88 − 2Ω =
0.56 Hz

0.88 − Ω =
0.72 Hz 0.88Hz 0.88 + Ω =

1.04 Hz
0.88 + 2Ω =

1.20 Hz
0.88 + 3Ω =

1.36 Hz
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Fig. 4 compares the results of Floquet analysis with the results of H-OMA-TD
for the anisotropic rotor in the presence of gravity. Dotted lines surround the
regions where the H-OMA-TD method catches the Fourier components well.
These components dominate the dynamics of the mode, while the others are
significantly lower in magnitude. The dashed line in Fig. 4 (b) indicates the
erroneous components that do not show up in the analytical solution (Fig. 4 (a)).
These components can be explained by the strong influence of the rotor harmonics
nearby the component frequencies (see the strong peaks in Fig. 5 (b)). Table 1
provides the Floquet exponents and compares them with the analytically obtained
ones; both agree quite well.

The complexity plots in Fig. 9 compare the dominating Fourier components for
the two whirling modes. The anisotropic property of the rotor causes the
asymmetry of the shapes. Despite the scatter, this observed asymmetry can be used
as an indicator of damage. Notice that the stiffness of Blade 3 is reduced by 3%.
This information may also be used to localize the damage [18].

Fig. 9. Complexity plots for an anisotropic rotor. Blade 3 has a 3% reduction in stiffness. For
the BW mode, the BW (dominating) component: a) exact solution, b) the H-OMA-TD results
for five simulated experiments. For the FW mode, the FW (dominating) component: c) exact
solution, d) the H-OMA-TD results for five experiments

3.2.3 Result Comparison
Table 1 shows the analytically obtained Floquet exponents and compares them
with the frequencies found by H-OMA methods in the time and frequency domain.
If damping is to be characterized with a damping ratio, then the value of the ratio
depends on the chosen natural frequency. The latter is not invariant since a shift by
an integer multiplier of Ω is also a natural frequency (Table 2). However, the real
part of the Floquet multipliers is invariant, and can be used to characterize the
damping and system stability.

  0.2

  0.4

  0.6

  0.8

30

210

60
90

240
270

120

300

330

150

180

30

210

60
90

240
270

120

300

330

150

180

30

210

60
90

240
270

120

300

330

150

180

30

210

60
90

240
270

120

300

330

150

180

  0.2

  0.4

  0.6

  0.8

  0.2

  0.4

  0.6

  0.8

  0.2

  0.4

  0.6

  0.8
b)a) c) d)
21



Fig. 10. Magnitudes of modal components obtained by H-OMA-FD (left column) and H-OMA-
TD (right column). Isotropic rotor in the absence of gravity: a,b) BW mode, c,d) FW mode.
Anisotropic rotor in the presence of gravity: e,f) BW mode, g,h) FW mode

Fig. 10 compares the magnitudes of the modal components of BW and FW
modes obtained by frequency and time domain methods for both the isotropic
rotor in the absence of gravity, Fig. 10 (a) through (d), and the anisotropic rotor
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when gravity is present, Fig. 10 (e) through (h). The dominant components of the
modes are outlined by dashed lines. Observe that the two methods provide similar
results, though the frequency domain results are slightly incorrect when reporting
the different magnitudes of φ1, φ2, φ3 for the isotropic case (outlined by dotted
lines). This might be improved by using a multi-reference technique. The same
can be said regarding the phase. The natural frequencies reported by the two
methods differ by Ω, which is natural for periodic systems. Actually, the mode
shown in Fig. 10 (a) is comparable with the representation of a BW isotropic rotor
with no gravity and n = +1 in Table 2.

It is also interesting to compare the results of H-OMA-TD with the results from
the direct application of OMA to the measured data, thus ignoring the fact that the
system is LPTV; an approach used in [18]. In the framework of the H-OMA-TD
method, it means narrowing the range of m in Eq. (11) to 0. As it follows from
Table 2, it is still possible to extract the Fourier components (each mode found will
be a Fourier component). If the LPTV nature of the system is recognized, the
mode has to be manually assembled from the found Fourier components, knowing
that they are separated by integer multipliers of Ω. It is also important to note that
the mutual scaling of the Fourier components is lost in this case.

4. Conclusion and Future Research
This study suggests a simple method of extending existing implementations of
time domain OMA SSI algorithms to time-periodic systems. The method consists
of two steps: harmonically modulate the experimentally obtained time histories
(multiply by e–imΩt) and make the obtained complex time histories real. The
preprocessed data becomes input for the standard OMA algorithm. In addition, the
authors give some advice on how to prepare the data for OMA in order to interpret
the results more easily.

The method is demonstrated on synthesized data obtained via simulation of a
simple 3-bladed rotor that is subjected to random noise excitation. The results of
this simulated experiment are validated against the analytical results from Floquet
analysis and the results provided by the conventional HPS method implemented in
the frequency domain. The suggested algorithm avoids manual peak picking and
allows for automation, which can be useful in structure health monitoring systems.

The suggested method originates from engineering practice and requires a
strong mathematical foundation. Mode shape normalization and scaling when
using acceleration measurements as well as estimation of damping ratios need to
23



be addressed. Application of the method to real measurements from a wind turbine
is a natural next step.
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Microphone Acoustic Impedance in 
Reciprocity Calibration of Laboratory 
Standard Microphones*

Erling Sandermann Olsen† and Erling Frederiksen‡

Abstract
Primary calibration of laboratory standard microphones with the reciprocity
technique is standardized in international standard, IEC Publication 61094-
2:2009. The standard describes how to calculate the acoustical transfer impedance
between pairs of microphones mounted in standardized couplers. As stated in the
standard, the acoustic impedances of the microphones form an important part of
the acoustic transfer impedance of the system. However, the standard only
describes how to determine a first approximation of the acoustic impedance
expressed as a three-component lumped parameter model with mass, compliance
and resistance in series. In this paper it is demonstrated that a better representation
of the microphone acoustic impedance is immediately available and that the
lumped parameter model is too simple. It is shown that the frequency dependence
of the acoustic impedance of the microphones is closely related to the sensitivity
of the microphones. Therefore, the frequency dependence can be determined with
an iterative procedure, but the absolute level has to be determined separately. The
influence on calibration uncertainty of using the improved impedance
representation and the determination of the absolute level of the acoustic
impedance of the microphones are discussed.

Résumé
L'étalonnage primaire des microphones étalons de laboratoire par réciprocité est
décrite par la  Publication CEI 61094-2:2009. Cette norme décrit le mode de

* First published at INTER-NOISE 2013, Innsbruck, Austria
† Brüel & Kjær Sound & Vibration A/S, Denmark
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détermination de l'impédance acoustique de transfert entre deux microphones
montés sur des coupleurs normalisés. Comme le précise cette norme, les
impédances acoustiques des microphones constituent une part importante de
l'impédance de transfert du système. Toutefois, elle ne décrit que la manière
d'obtenir une première approximation de cette impédance, exprimée par un
modèle paramétrique grossier à trois composantes, avec masse, compliance et
résistance en série. Il est démontré ici qu'une meilleure représentation de
l'impédance acoustique des microphones est possible et que le modèle
paramétrique est trop simpliste. Il est montré que la dépendance en fréquence de
l'impédance acoustique des microphones est étroitement liée à la sensibilité de ces
capteurs, et qu'elle peut donc être déterminée au moyen d'une procédure itérative,
tandis que le niveau en valeur absolue doit être déterminé séparément.  Sont
également discutées l'influence d'une représentation améliorée de l'impédance sur
l'incertitude de l'étalonnage ainsi que la détermination du niveau absolu de
l'impédance acoustique des microphones.

Zusammenfassung
Die Primärkalibrierung von Laboratoriums-Normalmikrofonen nach dem
Reziprozitätsverfahren ist in der internationalen Norm IEC 61094-2:2009
standardisiert. Die Norm beschreibt, wie die akustische Übertragungsimpedanz
zwischen Mikrofonpaaren berechnet wird, die in standardisierten Kupplern
montiert sind. Gemäß der Norm stellen die akustischen Impedanzen der
Mikrofone einen wichtigen Teil der akustischen Übertragungsimpedanz des
Systems dar. Die Norm beschreibt jedoch nur, wie eine erste Näherung der
akustischen Impedanz bestimmt wird, ausgedrückt als dreikomponentiges
Lumped-Parameter-Modell mit Masse, Nachgiebigkeit und Widerstand in Reihe.
In diesem Artikel wird nachgewiesen, dass das Lumped-Parameter-Modell zu
einfach ist und eine bessere Darstellung der akustischen Impedanz der Mikrofone
unmittelbar zur Verfügung steht. Es wird gezeigt, dass die Frequenzabhängigkeit
der akustischen Mikrofonimpedanz in engem Zusammenhang mit der
Empfindlichkeit der Mikrofone steht. Deshalb kann die Frequenzabhängigkeit mit
einem iterativen Verfahren ermittelt werden, während der absolute Wert separat
bestimmt werden muss. Es wird der Einfluss der besseren Impedanzdarstellung
auf die Kalibrierunsicherheit und die Bestimmung des Absolutwertes der
akustischen Impedanz der Mikrofone diskutiert.
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1. Introduction
As of today, the primary standard for sound pressure level is defined indirectly
through the sensitivity of laboratory standard, LS, microphones. The capability of
measuring sound pressure therefore depend on the uncertainty of measurement of
the absolute sensitivity of LS microphones and of the methods used to transfer the
sensitivity to sound measuring devices such as sound level meters and couplers
used for audiometer and telephone measurements. In order to be able to calibrate
sound measuring devices for use in different sound fields, it is necessary to know
the pressure sensitivity as well as the free-field sensitivity of LS microphones. The
subject of this paper is reciprocity calibration of pressure sensitivity of LS
microphones, and in particular the calculation of the acoustic admittance of the
diaphragms of the microphones being calibrated.

Primary pressure sensitivity calibration of laboratory standard microphones
with the reciprocity technique is standardized in international standard, IEC
Publication 61094 2:2009 [1], IEC 61094-2 for short. In IEC 61094-2 it is
described how to calculate the acoustical transfer impedance between pairs of
microphones mounted in standardized couplers. However, the standard is open for
interpretation on some points. The methods for calculation of corrections for heat
conduction and viscous losses have been discussed in a previous paper [2]. It is
suggested in the standard that the admittance of the microphone diaphragm is
calculated with a simple lumped parameter representation. It is however also
mentioned that the diaphragm compliance increases towards lower frequencies,
but it is not clear whether it is recommend or not to include it in the calculations.
As shown in the previous paper this has an influence on the results and on the
interpretation on other parts in the standard.

In this paper the calculation of the admittances of the microphone diaphragms is
discussed. A new representation of the admittances is proposed. The influence of
the measurement results and uncertainty of measurement is discussed and it is also
proposed that the representation can be used in a simplified calibration procedure
for laboratories that whishes to make calibrations with a single coupler.

It is assumed for the calculations made for this paper that the radial wave
motion correction recommended in IEC 61094-2 is valid. The correction applied
for heat conduction and viscosity is the low frequency solution for low frequencies
and the broad band solution for high frequencies with a gradual transition at
medium frequencies.
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2. Microphone Admittances in Reciprocity Calibration
The acoustic admittances of the microphone diaphragms are parts of the acoustic
transfer impedance of the coupler with the microphones, cf. equations (3) and (4)
of IEC 61094-2 [1]. It is recommended in the standard to express the impedance
(the reciprocal of the admittance) of each microphone in terms of an equivalent
series connection of compliance, mass and resistance. To the knowledge of the
authors, as of today this is the dominant model used in the context of calculation
the transfer admittance of couplers in reciprocity calibrations, if not the only one.
Although it is mentioned that the compliance increases towards lower frequencies,
that is not treated further in the standard and it is stated that the model is valid up
to 1.3 times the resonance frequency.

For the purpose of this paper, the acoustic admittance of a microphone, Y, is
separated into a fixed value, Y0, at a reasonably chosen frequency, f0, so that Y0 =
Y(f0) and its frequency dependence:

(1)

These two parts may be determined independently.
It is proposed that, instead of a assuming a specific model of the acoustic

admittance of a microphone, the frequency dependence of the admittance is
assumed to be the same as that of the sensitivity and the fixed value can be found
or known from separate measurement or knowledge, i.e.:

(2)

where S0 is the sensitivity at the frequency f0. With this approach and provided that
the fixed values are available, the acoustic admittances of the microphones in
reciprocity calibration can be determined with an iterative procedure, even when
only a single coupler is used for calibration in the full frequency range.

Below, it is discussed how well the frequency dependence of the sensitivity
represents the frequency dependence of the admittance, and it is discussed how to
obtain the fixed value and whether the approach constitutes an improvement as
compared to the simple model used today.

Y Y0
Y
Y0
-----=

Y Y0
S
S0
-----=
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3. Microphone Acoustic Admittance and Sensitivity
Laboratory standard microphones are traditional condenser microphones where
the metallic diaphragm and the backplate form a capacitor that is charged to a
predetermined voltage, Vp. Here it is assumed that the charge is constant during
operation. When the microphone is exposed to sound, the movement of the
diaphragm leads to changes in the capacitance and to corresponding (open circuit)
voltage variations:

(3)

The pressure sensitivity is the ratio of the output voltage to a uniform pressure,
p, over the diaphragm surface [3]:

(4)

The acoustic admittance of the diaphragm is the ratio of the volume velocity, q,
of the diaphragm and the uniform pressure

(5)

In the following only the capacitance formed by the diaphragm directly over the
backplate is considered. Stray capacitances and the influence of passive
capacitances, such as the capacitance of the microphone housing and the input
capacitance of the preamplifier, as well as the influence of electrostatic attraction
forces are ignored here. These simplifications are considered reasonable for the
purpose of this paper where laboratory standard microphones in pressure
sensitivity reciprocity calibration are considered.

Consider first a very simple model of the microphones where the diaphragm is
considered a moving piston. The capacitance is:

(6)
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where Sb is the surface area of the backplate, d is the distance between the
diaphragm and the backplate and ε is the permittivity of the air in the gap.

The admittance is:

(7)

where Sd is the surface area of the diaphragm.
The sensitivity is:

(8)

The admittance is:

(9)

Thus, in the simple case where the diaphragm is assumed to move like a piston
the admittance is proportional to the sensitivity. This observation was the starting
point for the considerations presented in this paper.

The diaphragm of a microphone does, however, not move as a piston, and in the
general case the deflection pattern, x(r), where x is the deflection and r is the
position on the diaphragm, is not known. In the general case the voltage generated
on the backplate is (note, integration over backplate surface):
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(10)

The approximation in the last term is made under the assumption that the
displacement of the diaphragm is very small as compared to the equilibrium
distance, d0. Under that assumption the output voltage is proportional to the
volume displacement of the part of the diaphragm that is over the backplate.

The diaphragm admittance is the ratio of the volume displacement of the entire
diaphragm to the (uniform) sound pressure (note, integration over diaphragm
surface):

(11)

Thus, the relation between the admittance and the sensitivity in the general case
for small displacements is:
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(12)

In frequency ranges where the displacement pattern of the diaphragm is
unchanged, the ratio of the two volume displacements will be the same, and
thereby the admittance will be proportional to the sensitivity. This is likely to be
the case at low frequencies where the diaphragm deflection can be assumed to be
quasi-stationary. At higher frequencies the deflection pattern is complicated and
depends on details in the microphone construction, and it is therefore not possible
to determine the ratio in general terms.

4. Investigations with Numerical Modeling
In order to determine the ratio between the volume displacement of the whole
diaphragm to that of the part of the diaphragm over the backplate the deflection
pattern must be known in some way. For the purpose of this paper the deflection
pattern has been calculated using numerical modeling.

The numerical model used for the investigations is developed using the finite
element method with COMSOL Multiphysics® [4] in collaboration between
COMSOL and Brüel & Kjær. The model includes description of the electric,
mechanic, and acoustic properties of the microphone back cavity and diaphragm,
including thermal and viscous losses of the air inside the microphone [5]. The
model has been adapted to LS2P microphone, Brüel & Kjær Type 4180, and, with
slight simplification (so as to limit calculation resource requirements), to LS1P
microphone, Brüel & Kjær Type 4160.

Below it is shown based on the model at which frequencies the proportionality
is a good approximation, and it is discussed whether the simple lumped parameter
model of the standard or assumed proportionality with the sensitivity is the
preferable admittance model at higher frequency.

In Fig. 1 the frequency dependence of the sensitivity, the admittance, the
volume displacement over the backplate, and the lumped parameter model are
shown for LS1P and LS2P microphones, all normalized to their minimum value at
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frequencies below the resonance frequency. Note that the curves for the sensitivity
and the displacement over the backplate practically speaking coincide.

In Fig. 2 the same data are shown in a way that illustrates the differences. The
normalized frequency dependence of the sensitivity, the volume displacement over
the backplate, and the lumped parameter model are shown relative to the
normalized admittance. Note that the normalization is somehow arbitrary. The
match is not necessarily best at zero, but where the slopes are closest.

Fig. 1. Normalized level of admittance, sensitivity, volume displacement over backplate
calculated with numeric model and admittance calculated with the lumped parameter model
a: LS1 microphone b: LS2 microphone
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Figures 1 and 2 clearly show that at low frequencies the frequency dependence
of the microphone admittance follows that of the sensitivity. For LS1 microphones
it is also a better representation of the admittance at higher frequencies, whereas
the frequency dependence of the sensitivity and the lumped parameter model seem
to be equally adequate for LS2 microphones. At high frequencies the lumped
parameter model as well as the proposed model overestimates the admittance of
the diaphragm. The figures also clearly demonstrate the validity of the
approximation in equation (11), as the sensitivity and the volume displacement

Fig. 2. Normalized level of sensitivity and volume displacement over backplate calculated
with numeric model and admittance calculated with the lumped parameter model relative to
the admittance calculated with numeric model. a: LS1 microphone b: LS2 microphone
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over the backplate have practically speaking exactly the same frequency
dependence.

Thus, if the value of the admittance is known at one frequency, the combination
of this fixed value and the frequency dependence of the sensitivity will in general
be a better approximation to the admittance than the lumped parameter model, in
particular at low frequencies. The fixed value must, however, be found in some
way, and as shown below it is essential for the final result that the value is correct.

5. Determination of the Fixed Value
As seen in Fig. 2, at intermediate frequencies the frequency dependence of the
lumped parameter model to a reasonable degree matches that of the numerically
calculated admittance and sensitivity. The match is indeed, however, better for
LS2 microphones than for LS1 microphones. One way to determine the fixed
value is therefore to use the same methods used hitherto for determination of the
parameters in the lumped parameter model [1, 6, 7] to find the first approximation
of the admittance. The frequency range used should be limited to the range where
the match is reasonable. The admittance of the lumped parameter model in the
center of the frequency range used can then be applied as the fixed value, Y0, in
equation (2).

The method used to determine the fixed value depends on the number of
couplers that are used for the measurements. As the methods are well know and
well established, they are only briefly summarized here.

Note that in the context of this paper it is assumed that the total volume, i.e. the
combined admittance of the front cavity volume and the equivalent volume part of
the microphone admittance, is known with high accuracy. The total volume can be
determined at medium frequencies with at least two couplers. If the equivalent
volume is changed in the calculation of the fixed impedance, the front volume of
the microphone must be changed correspondingly in order to keep the effective
volume unchanged. As the low frequency variation of the microphone admittance
is taken into account, the admittance representation presented here also leads to a
more correct determination of the front volume of the microphones in the two
following methods [2].

Many laboratories around the world use the Brüel & Kjær Reciprocity
Calibration System Type 9699 [7]. In its standard configuration the calibration
system comes with a pair of plane wave couplers for each of LS1 and LS2
microphones. One of the couplers in each pair has dimensions that minimizes the
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influence of radial wave motion and can be used at frequencies up to the first
asymmetrical mode of the couplers. The other coupler in each pair is long so as to
achieve a high volume and can only be used up to a few kilohertz. The total
volume can be determined by minimizing the difference of the results at medium
frequencies with the two couplers, the loss factor can be derived from the
measured response and the resonance frequency is the frequency of 90° phase shift
in the sensitivity. As only one of each pair can be used in the full frequency range
of the microphones, there is no way to see whether the sensitivity result at high
frequencies depends on the coupler size. In that case the value of the equivalent
volume must be estimated from the total volume and the geometrical volume of
the front cavity.

Some laboratories use two or more, typically four, couplers that can be used in
the full frequency range of the calibrations for each of LS1 and LS2 microphones.
Together with the shorter of the couplers mentioned above, Brüel & Kjær Coupler
Sets WZ-0078 and WZ-0079 [8] form such sets of four couplers. The dimensions
of the four couplers for each of LS1 and LS2 cover the range recommended in
Annex C in IEC 61094-2 and they can all be used at frequencies up to the first
asymmetrical mode. With more than one coupler covering the full frequency range
it is possible to estimate the total volume by minimizing the differences between
the results in the four different couplers at low and medium frequencies and the
parameters for calculation of the fixed point (using the the lumped parameter
model) by minimizing the differences around the resonance frequency [6].

6. Influence on Results and Uncertainty
In order to investigate the significance of changing to the proposed representation
of the microphone admittance in reciprocity calibrations, the difference between
the lumped parameter model and the proposed representation is investigated.

In Fig. 3 the difference between results calculated with the lumped parameter
admittance model and using the proposed model is shown for LS1 and LS2
microphones. The fixed point in the proposed model is the admittance of the
lumped parameter model at 0.03·fres. The parameters were determined so as to
give the best match of results of four couplers with the lumped parameter model.

As of today uncertainty components in the order of 0.01 dB contributes
significantly to the measurement of uncertainty in pressure sensitivity reciprocity
calibrations [2]. At low and high frequencies the differences shown in Fig. 3 are of
the same order of magnitude. Assuming that the proposed model is correct this
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means the difference has been an overseen uncertainty component in pressure
sensitivity calibrations and that the model must be applied in order to minimize the
uncertainty. This is evidently the case for low frequencies. At high frequencies
further validation of the method and investigation of the frequency range of
validity may need to be investigated further. Until the proposed method is
validated, the differences should be considered in calculations of uncertainty of
measurement.

The importance of a correct fixed value is illustrated in Fig. 4 where the
influence of changing the equivalent volume part of the fixed impedance by 15%
in a calculation for a single coupler is shown. The influence is clearly very small at
low and medium frequencies, but at the highest frequencies of interest the
contribution to the measurement uncertainty should be considered. A variation of

Fig. 3. Difference between results obtained using the proposed admittance representation
and the lumped parameter model.
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15% of Veq may seem exaggerated, but if the value is not determined from
measurements at high frequencies in more than one coupler the uncertainty may
reach that level. This is at present under further investigation by the authors.

7. Application in Simple Calibration Procedure
The proposed method may be used to establish a simple procedure for calibration
with a single coupler. The front volume of the microphone, Vf, and the compliance
of the diaphragm expressed as its equivalent volume, Veq, are assumed to be
known, for example from manufacturer data or from a more comprehensive initial
measurement. The calibration is made with the coupler in the usual way. The
results are calculated first with the lumped parameter model using standard values

Fig. 4. Influence of a change in Veq of 15% on results with the proposed admittance
representation
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of the resonance frequency, fres, and the loss factor, d. Based on the result new
values fres and d are calculated as described above and the calculation is repeated
using the new representation of the admittance with the fixed point calculated at a
reasonable frequency, e.g., 0.03·fres using the known values of Vf and Veq and the
new values of fres and d.

8. Conclusions
In this paper the acoustic admittance of LS microphones have been discussed. The
conclusions made are based on a new, detailed numerical model. The model is
believed by the authors to sufficiently accurate to sustain the conclusions.
Supplementary validation of the model is of course highly desirable. The
conclusions are:

• An accurate and simple to find representation of the microphone admittance
has been presented

• The complex admittance is to a good approximation proportional to complex
sensitivity

• The admittance of the microphone must be known in absolute terms at one
low or medium-low frequency. This admittance can be found with the same
methods used hitherto for the lumped parameter model

• At low and medium frequencies the new representation is an improvement as
compared to the lumped parameter model traditionally used in reciprocity
calibration of microphone pressure sensitivity. At high frequencies the
representation is an improvement for LS1 microphones and for LS2
microphones the new representation and the lumped parameter model seem
to be equally adequate

• The difference between calibration results calculated with the lumped
parameter method and the proposed representation is of the same order of
magnitude as the uncertainty of measurement that can be obtained as of
today. There is therefore a need for validation of the representation and the
differences should be accounted for in uncertainty budgets for reciprocity
calibrations

• The proposed admittance representation can be used to obtain improved
results in a simple way with the pairs of a long and a short coupler widely
used in calibration laboratories, provided the compliance of the microphone
diaphragm (the equivalent volume) is available with sufficient accuracy.
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Possible improvements of the determination the compliance are under
consideration

Acknowledgements
The authors gratefully acknowledge the work by and the many discussions with
Salvador Barrera-Figueroa and the late Knud Rasmussen, Danish Fundamental
Metrology, that has led to the considerations behind this paper. The authors also
gratefully acknowledge Brüel & Kjær Sound & Vibration Measurement A/S for
recognizing the importance of the work with primary calibration.

References
[1] IEC 61094-2:2009, Measurement microphones – Part 2: Primary method

for pressure calibration of laboratory standard microphones by the
reciprocity technique, IEC (2009)

[2] Erling Sandermann Olsen, “Heat conduction correction in reciprocity
calibration of laboratory standard microphones”, presented at INTER-
NOISE 2012, New York, (1994).

[3] IEC 61094-1:2000, Measurement microphones – Part 1: Specifications for
laboratory standard microphones, IEC (2000)

[4] COMSOL Multiphysics version 4.3a, Finite element modeling software by
COMSOL (2013)

[5] Erling Sandermann Olsen and Mads Herring Jensen, “Virtual prototyping
of condenser microphones using the finite element method for detailed
electric, mechanic, and acoustic characterization”, presented at ICA 2013,
Montreal, (2013)

[6] Knud Rasmussen, “Determination of microphone parameters by
datafitting”, DPLA Calibration Workshop, Brüel & Kjær (2003)

[7] Brüel & Kjær, “Product Data Reciprocity Calibration System Type 9699,
Reciprocity Calibration Apparatus Type 5998” (1997)

[8] Brüel & Kjær, “Product Data WZ-0078 and WZ-0079, Plane Wave
Coupler Sets for Microphone Reciprocity Calibration”
42



Previously issued numbers of
Brüel & Kjær Technical Review
1 – 2013 Noise Test of Revised Notched Nozzle Using a Jet Engine

Heat Conduction Correction in Reciprocity Calibration of Laboratory 
Standard Microphones

1 – 2012 High-resolution Fly-over Beamforming
Clustering Approaches to Automatic Modal Parameter Estimation

1 – 2011 Performance Investigation of the Dual-Layer Array (DLA) at Low 
Frequencies
Calculating the Sound Field in an Acoustic Intensity Probe Calibrator 
– A Practical Utilisation of Boundary Element Modelling
Multi-field Microphone – When the Sound Field is Unknown

1 – 2010 Time Selective Response Measurements – Good Practices and Uncertainty
Measurement of Absorption Coefficient, Radiated and Absorbed Intensity 
on the Panels of a Vehicle Cabin using a Dual Layer Array with Integrated 
Position Measurement
ISO 16063 – 11: Uncertainties in Primary Vibration Calibration by Laser 
Interferometry – Reference Planes and Transverse Motion

1 – 2009 Use of Volume Velocity Sound Sources in the Measurement of Acoustic
Frequency Response Functions
Turnkey Free-field Reciprocity System for Primary Microphone Calibration

1 – 2008 ISO 16063–11: Primary Vibration Calibration by Laser Interferometry: 
Evaluation of Sine Approximation Realised by FFT
Infrasound Calibration of Measurement Microphones
Improved Temperature Specifications for Transducers with Built-in 
Electronics

1 – 2007 Measurement of Normal Incidence Transmission Loss and Other Acoustical 
Properties of Materials Placed in a Standing Wave Tube

1 – 2006 Dyn-X Technology: 160 dB in One Input Range
Order Tracking in Vibro-acoustic Measurements: A Novel Approach
Eliminating the Tacho Probe
Comparison of Acoustic Holography Methods for Surface Velocity 
Determination on a Vibrating Panel

1 – 2005 Acoustical Solutions in the Design of a Measurement Microphone for 
Surface Mounting
Combined NAH and Beamforming Using the Same Array
Patch Near-field Acoustical Holography Using a New Statistically Optimal 
Method

1 – 2004 Beamforming
1 – 2002 A New Design Principle for Triaxial Piezoelectric Accelerometers

Use of FE Models in the Optimisation of Accelerometer Designs
System for Measurement of Microphone Distortion and Linearity from 
Medium to Very High Levels

(Continued on cover page 3)

1 – 2001 The Influence of Environmental Conditions on the Pressure Sensitivity of 
Measurement Microphones
Reduction of Heat Conduction Error in Microphone Pressure Reciprocity 
Calibration
Frequency Response for Measurement Microphones – a Question of 
Confidence
Measurement of Microphone Random-incidence and Pressure-field 
Responses and Determination of their Uncertainties

1 – 2000 Non-stationary STSF
1 – 1999 Characteristics of the vold-Kalman Order Tracking Filter
1 – 1998 Danish Primary Laboratory of Acoustics (DPLA) as Part of the National 

Metrology Organisation
Pressure Reciprocity Calibration – Instrumentation, Results and Uncertainty
MP.EXE, a Calculation Program for Pressure Reciprocity Calibration of 
Microphones

1 – 1997 A New Design Principle for Triaxial Piezoelectric Accelerometers
A Simple QC Test for Knock Sensors
Torsional Operational Deflection Shapes (TODS) Measurements

2 – 1996 Non-stationary Signal Analysis using Wavelet Transform, Short-time 
Fourier Transform and Wigner-Ville Distribution

1 – 1996 Calibration Uncertainties & Distortion of Microphones.
Wide Band Intensity Probe. Accelerometer Mounted Resonance Test

2 – 1995 Order Tracking Analysis
1 – 1995 Use of Spatial Transformation of Sound Fields (STSF) Techniques in the 

Automative Industry

Special technical literature
Brüel & Kjær publishes a variety of technical literature that can be obtained from your 
local Brüel & Kjær representative.

The following literature is presently available:

• Catalogues
• Product Data Sheets

Furthermore, back copies of the Technical Review can be supplied as listed above. 
Older issues may be obtained provided they are still in stock.

Previously issued numbers of
Brüel & Kjær Technical Review
(Continued from cover page 2)



Brüel & Kjær Sound & Vibration Measurement A/S  
DK-2850 Nærum · Denmark · Tel: +45 77 41 20 00 · Fax: +45 45 80 14 05 
www.bksv.com · info@bksv.com
Local representatives and service organisations worldwide

TECHNICAL 
REVIEW NO. 1 – 2014

Experimental Characterization of Operating Bladed Rotor  
Using HPS and SSI Techniques

Microphone Acoustic Impedance in Reciprocity Calibration

Ë
B
V
-
0
0
6
6
-
-
-
C
Î

BV
 0

06
6 

– 
11

	
20

14
-1

1

Each Brüel & Kjær Technical Review contains a collection of technical, scientific articles that 
describe theory, measurement techniques and instrumentation, which are specifically aimed at 
acousticians and vibration engineers.

See more on bksv.com/library, Technical Reviews

Front cover: Offshore wind turbines near the coast of Denmark


	Experimental Characterization of Operating Bladed Rotor Using Harmonic Power Spectra and Stochastic Subspace Identification
	Microphone Acoustic Impedance in Reciprocity Calibration of Laboratory Standard Microphones

