CATALOGUE

BRÜEL & KJÆR TRANSDUCERS AND CONDITIONING

WELCOME

Welcome to the Brüel & Kjær Transducer Catalogue covering our full range of transducer-based solutions including:

- Microphones
- Accelerometers
- Preamplifiers
- Hydrophones
- Pressure transducers
- Conditioning amplifiers
- Force transducers
- Impact hammers
- Impedance heads
- Non-contact transducers
- Shakers and vibration exciters
- Electroacoustic products and systems
- Calibration products and systems
- Cables and accessories

The instruments are grouped and sorted into tables that list the most important specifications to make it easy for you to select the right product for your particular measurement needs. Within the microphone and accelerometer sections, you will also find pull-out tables to give you a complete overview and possibility to compare specifications across transducer families.

The Whole Measurement Chain

Brüel & Kjær's advanced technological solutions and products cover the entire sound and vibration measurement chain, from a single transducer to complete turnkey systems.

Products

Our market-leading product portfolio covers all of the components and tools required for high-quality measurement and analysis of sound and vibration. We are unique in the industry, allowing you to source all of your components from one supplier.

Systems

Our products are designed to fit together and cooperate intelligently. This simplifies the process of creating systems optimized to solve your specific issues.

Solutions

In certain instances, we supply both the systems and highly-skilled engineers to operate them and supply analysis results – meaning you can focus on your core business without worrying about operating and maintaining equipment.

Services

We offer a full range of services for our products and systems including: installation, training, support, software updates, calibration, planned maintenance, repair and rental.

Brüel & Kjær is unique in the sound and vibration industry, producing all the elements for the most technologically advanced and complete sound and vibration solutions designed to save time and eliminate errors in the measurement process. In fact, Brüel & Kjær equipment and knowledge are behind thousands of achievements, from high-performance cars and smartphones to quieter airports, satellites and beyond – even helping with the Mars landings.

CONTENTS

	1
Our Development and Production Process	2
Our Implementation of TEDS	3
Ordering Transducers	4
Customization	4
Microphone Firsts	
Accelerometer Firsts	6
Transducer Application Examples	7
Transducers for Aerospace and Defence Solutions	8
Transducers for Automotive/Ground Vehicle Solutions	
Transducers for Telecom and Audio Solutions	12
Selecting the Right Microphone	
Microphones	
Definition of Given Microphone Specifications	
Free-field Microphones	
Diffuse-field Microphones	
Pressure-field Microphones	
Multi-field Microphone	
Array Microphones	
Low-noise Microphones	
Outdoor Microphones	
Laboratory Standard Microphones	
Special Acoustic Transducers	
•	
Transducers for Sound Intensity Analysis Microphones for High-intensity Testing	
Hydrophones	
riyurophones	
Microphone Preamplifiers	34
Microphone Preamplifiers Brüel & Kjær Range of Microphone Preamplifiers	34
	34 35
Brüel & Kjær Range of Microphone Preamplifiers	
Brüel & Kjær Range of Microphone Preamplifiers Microphone Calibration	
Brüel & Kjær Range of Microphone Preamplifiers Microphone Calibration Calibrators	34 35 37 37 38
Brüel & Kjær Range of Microphone Preamplifiers Microphone Calibration Calibrators Sound Intensity Calibrators Adaptors for Calibration	34
Brüel & Kjær Range of Microphone Preamplifiers Microphone Calibration Calibrators Sound Intensity Calibrators Adaptors for Calibration More About Microphones	34 35 37 37 38 39 40
Brüel & Kjær Range of Microphone Preamplifiers Microphone Calibration Calibrators Sound Intensity Calibrators Adaptors for Calibration More About Microphones TEDS Microphones	34 35 37 37 38 39 40 40
Brüel & Kjær Range of Microphone Preamplifiers	34 35 37 37 38 39 40 40 42
Brüel & Kjær Range of Microphone Preamplifiers	34 35 37 37 38 39 40 40 42 43
Brüel & Kjær Range of Microphone Preamplifiers Microphone Calibration Calibrators Sound Intensity Calibrators Adaptors for Calibration More About Microphones TEDS Microphones Microphone Verification and Calibration Microphone and Preamplifier Extension Cables Raw Cables	34 35 37 37 38 39 40 40 42 43 43
Brüel & Kjær Range of Microphone Preamplifiers	34 35 37 37 38 39 40 40 40 42 43 43 44
Brüel & Kjær Range of Microphone Preamplifiers	34 35 37 37 38 39 40 40 42 42 43 43 46 47 48
Brüel & Kjær Range of Microphone Preamplifiers	34 35 37 37 38 39 40 40 40 42 43 43 46 47 48
Brüel & Kjær Range of Microphone Preamplifiers Microphone Calibration Calibrators Sound Intensity Calibrators Adaptors for Calibration More About Microphones TEDS Microphones Microphone Verification and Calibration Microphone and Preamplifier Extension Cables Raw Cables More About Cables. Microphone Accessories Adaptors Corrector	34 35 37 37 38 39 40 40 40 40 42 43 46 43 48 48
Brüel & Kjær Range of Microphone Preamplifiers Microphone Calibration Calibrators Sound Intensity Calibrators Adaptors for Calibration More About Microphones TEDS Microphones Microphone Verification and Calibration Microphone and Preamplifier Extension Cables Raw Cables More About Cables. Microphone Accessories Adaptors Corrector Windscreens	34 35 37 37 38 39 40 40 40 42 40 42 43 46 43 48 48 48 48
Brüel & Kjær Range of Microphone Preamplifiers Microphone Calibration Calibrators Sound Intensity Calibrators Adaptors for Calibration More About Microphones TEDS Microphones Microphone Verification and Calibration Microphone and Preamplifier Extension Cables Raw Cables More About Cables Microphone Accessories Adaptors Corrector Windscreens Nose Cones	34 35 37 37 38 39 40 40 40 42 43 46 43 48 48 48 48 48 49 49
Brüel & Kjær Range of Microphone Preamplifiers Microphone Calibration Calibrators Sound Intensity Calibrators Adaptors for Calibration	34 35 37 37 38 39 40 40 40 42 43 46 43 46 47 48 48 48 48 48 49 50
Brüel & Kjær Range of Microphone Preamplifiers Microphone Calibration Calibrators Sound Intensity Calibrators Adaptors for Calibration More About Microphones TEDS Microphones Microphone Verification and Calibration Microphone and Preamplifier Extension Cables Raw Cables More About Cables. Microphone Accessories Adaptors Corrector Windscreens Nose Cones Outdoor Protection Preamplifier Holders	34 35 37 37 38 39 40 40 40 40 42 43 40 42 43 48 48 48 48 48 48 48 49 50 50 50
Brüel & Kjær Range of Microphone Preamplifiers Microphone Calibration Calibrators Sound Intensity Calibrators Adaptors for Calibration	34 35 37 37 38 39 40 40 40 40 42 43 46 43 48 48 48 48 48 48 48 50 50 50 50

Selecting the Right Coupler	53
Couplers	
Artificial Ears and Mastoids	56
Ear and Mouth Simulators for Telephone Testing	
Head and Torso Simulators and Telephone Test Heads	
Acoustic Test Accessories	66
Selecting the Right Accelerometer	69
Accelerometers	
Definitions of Given Accelerometer Specifications	72
Uniaxial Piezoelectric Charge Accelerometers	
Triaxial Piezoelectric Charge Accelerometers	
Uniaxial CCLD Accelerometers	
Triaxial CCLD Accelerometers	
Amplified Piezoresistive Accelerometers	
Connection Examples to Measurement and Analysis Devices	
Non-contact Transducers	
Non-contact Transducers for Speed, Velocity and Displacement	86
Force Transducers and Impact Hammers	
Force Transducers	
Force Transducer/Impact Hammer	
Impedance Heads	
Impact Hammers	
Modal and Vibration Exciters	90
Modal and Vibration Test Solutions from Brüel & Kjær	
Accelerometer Accessories	
Clip Mounting	
Mounting Blocks, Brackets and Adaptors	
Other Accessories	
Accelerometer Mounting Solutions	
Mounting Considerations	
Mounting of Type 4326-A-001	
Accelerometer Cables	
Brüel & Kjær Cables	
Coaxial Cable Assemblies for Uniaxial Accelerometers	
Coaxial Cable Assemblies for Triaxial Accelerometers	
Cable Assemblies for Industrial and Monitoring Applications	
Cable Accessories	
Raw Cables	
Accelerometer Calibration	119
Reference Accelerometers	
Calibrators and Calibration Systems	
Vibration and Shock Calibration Exciters	
Calibration Accessories	
Signal Conditioning	123
Multi-pin Signal Conditioners for Microphones	
CCLD Signal Conditioners for Microphones and Accelerometers	
Charge Signal Conditioners for Accelerometers	
What are the Benefits of Signal Conditioning?	

Calibration Systems	131
Primary Calibration Systems	
Secondary Calibration Systems	132
Brüel & Kjær Service	133
Brüel & Kjær Calibration and Repair Services	134
Calibration of Reference Equipment	
Accredited Calibration	134
Traceable Calibration	
Regular Calibration	
Service Agreements	
Rentals	
Learn More	135
Glossary of Terms	137
Compliance with Standards	143
General Compliance	143
Relevant Microphone Standards	143
Dimensions	144
Microphone Dimensions	144
Accelerometer Dimensions	147
Microphone Comparison Table	153
Charge Accelerometer Comparison Tables	155
CCLD Accelerometer Comparison Tables	157
Piezoresistive Accelerometer Comparison Table	163
Index	165

BRÜEL & KJÆR TRANSDUCERS

Transducers have been a core part of Brüel & Kjær's business for more than 70 years. The quality of our transducers is worldrenowned and is the result of our unique experience and knowledge, backed up by meticulous testing and quality control, which ensures that you get the performance and durability you expect.

But Brüel & Kjær goes beyond transducers. We are unique in the industry, producing all of the elements for complete sound and vibration test systems. Our goal is to create the most technologically advanced solutions, built to the highest quality and designed to save time and eliminate errors in the measurement process. We have an unequalled product range, but our real advantage lies within our ability to supply complete solutions that are targeted at optimizing our customers' work processes, to provide rapid, reliable results.

Creative Answers to Complex Problems

Brüel & Kjær is founded on good ideas, hard work and entrepreneurship, and it is this passion for innovation and high quality that drives the company forward. Over the past couple of years, our innovations have strongly focused on helping you work faster, smarter and easier by supporting the entire measurement and analysis process: from transducer to data acquisition, analyses and after-sales care and services.

Transducer-based innovations that support the entire measurement chain

During front-end setup and calibration

and real-time analysis

and reporting

Our Development and Production Process

Development from the Beginning

We determine the specification of a new transducer based on input from our customers, their requirements, and our own product development plans. Using modern simulation and analytical tools, such as finite element models (FEM), we can, early in the process, begin to optimize the performance of the new design and reduce development time so the first units reach customers faster.

After verifying the model, we construct several prototypes. As thorough testing ensures long-term stability, each prototype is subjected to the following tests – in addition to those against the mathematical model:

- Environmental testing heat, humidity, etc.
- EMC (electromagnetic compatibility)
- Base strain
- Measurement accuracy
- Destructive testing

Ongoing testing, verification, and artificial aging ensure that the quality of the manufactured product is always maintained and that the excellent accuracy that Brüel & Kjær transducers are known for, is ensured.

Production: Test, Test and Test Again

Every Brüel & Kjær transducer is thoroughly tested during its production to ensure that its performance is within the specified parameters. Extremely high standards are met in our production quality and this is reflected in our status as an ISO 9001 and EN 9100 certified company. Depending on the type, a transducer can be subjected to between five and ten separate test procedures.

Our extensive in-house test equipment gives our engineers the tools to quickly identify the root cause, fix the underlying problem and resume normal production to make timely delivery with the quality you expect from Brüel & Kjær.

Calibration Before Shipping

An individual calibration is performed on each transducer during production in our own calibration laboratory using a calibration technique based on FFT analysis, which provides the resolution needed to detect certain types of problems. Our unique status as the primary Danish standards lab reduces our traceability steps as well the uncertainty in our calibrations.

Sharing Our Knowledge

The information we gather during final testing is always available to you via our detailed product datasheets. Each datasheet includes the individual transducer's sensitivity to external inputs as well as other specifications.

If you need more information, a support engineer is always available by phone, on the Web or in person to answer your question and share best practices. Additionally, we have a wealth of information in our transducer handbooks, application notes and technical reviews, all available at www.bksv.com.

Our Implementation of TEDS

A wide range of TEDS (transducer electronic data sheet) transducers are available from Brüel & Kjær. TEDS is standardized by the Institute of Electrical and Electronics Engineers (IEEE) and is supported by many front ends and conditioning amplifiers including Brüel & Kjær's PULSE LAN-XI data acquisition, VC-LAN vibration controllers, 16-channel Conditioning Amplifier Type 2694, the NEXUS line of conditioning amplifiers, and many more.

TEDS offers a number of benefits:

- Plug and play facilities
- Type, S/N, sensitivity and more read directly from the transducer
- Significantly reduced setup time
- Practical elimination of cable routing errors

Example of Class I TEDS transducer as used in a CCLD TEDS microphone

Example of Class II TEDS as used in a TEDS microphone

How Does TEDS Work?

Basically the chip containing the TEDS data and TEDS interface is built into the transducer. TEDS data is updated during the measurement system's boot sequence or whenever "update TEDS" is activated.

TEDS data can be transmitted to the front-end in two different ways:

- Class I TEDS: On the same wire as the analogue signal
- Class II TEDS: Via a separate wire

Class I is always used with CCLD transducers since TEDS can be implemented using the traditional coaxial cable.

For measuring microphones, either Class I or Class II can be used depending on the preamplifier, where the actual TEDS chip is located. When Class II is used, pin 5 (often denoted as "No connection" in early product data) is used to transmit the TEDS data. This is important when using extension cables as some older cables might really not have pin 5 connected, which will break the TEDS chain.

The TEDS microphone and preamplifier bundles are assembled under controlled conditions, which means that special precautions are taken to avoid dust and contamination entering the boundary between microphone cartridge and the preamplifier. This is important in order to maintain low noise even at high temperatures and high relative humidity. It is also important that when TEDS Class I or II is used with microphones, that the microphone stays with the preamplifier it was programmed with since the preamplifier is where the TEDS information of the specific microphone is actually stored. To avoid this error, many Brüel & Kjær microphones are permanently connected to their preamplifiers.

The IEEE 1451.4 Standard

Currently the version programmed and the actual chip used to store the transducer's TEDS information is in transition. Most sound and vibration transducers (Brüel & Kjær as well as other manufacturers) conform to IEEE P1451.4 V.0.9 which is actually a standard proposal and differs slightly from the final standard IEEE 1451 V.1.0.

Re-mapping to IEEE 1451 V.1.0 is available for all Brüel & Kjær transducers at time of order or as part of after-sales service. Relevant Brüel & Kjær hardware (PULSE, NEXUS, etc.) support both the proposed and final version of the standard, and in many applications the user will not notice a difference between the two standards. The major difference between the proposed and final version concerns the memory map. In the proposed version, all data is in a R/W area of the memory, while in V.1.0 some permanent data (manufacturer, etc.) has been moved to a write once area of the memory. This leaves more space in the "user area" of the memory.

Currently, Array Microphone Types 4957, 4958 and 4959 are supplied with TEDS according to the final revision IEEE 1451.4 V.1.0.

TEDS Templates

The TEDS template defines the memory mapping of the TEDS chip and hence the "understanding" between transducer and front end.

A number of TEDS templates have been standardized by the IEEE and in addition to this, a number of non-standard vendor specific

Ordering Transducers

To order from Brüel & Kjær, you just need to know an item's order number. For transducers and signal conditioners, these will be a number preceded by the word "Type". For example:

- 1/2-inch Prepolarized Microphone Type 4188
- Miniature Triaxial CCLD Accelerometer Type 4520
- Charge to CCLD Converter Type 2647

A transducer may have several models that vary from each other (different sensitivity, interface or accessories). This is denoted by a letter after the number, by a dash (-) and three alphanumeric characters, or a combination of a letter and then three alphanumeric characters, for example:

- Charge to CCLD Converter Types 2647-A, 2647-B and 2647-C
- Miniature Triaxial CCLD Accelerometer Types 4520-001 and 4502-004
- 1/2-inch Free-field Microphone including High-temperature Preamplifier Type 1706 with TEDS Type 4189-H-041

templates exist. The different TEDS templates are differentiated by different ID numbers.

See TEDS Microphones for a listing of the templates used with Brüel & Kjær microphones and preamplifiers.

There are some general rules within transducer families relating to the letter:

- For CCLD accelerometers, a "B" in the type number indicates that the transducer contains TEDS
- For microphones:
 - "A" or "H" in the type number indicates a CCLD preamplifier with TEDS
 - "B", "C", or "L" in the type number indicates a 7-pin LEMO preamplifier with TEDS

For accessories, the order number is an alphanumeric code starting with two letters. For example:

- AO-xxxx: Extension Cables
- UA-xxxx: Adaptor and Mounting Clips
- YM-xxxx: Adhesive Mounting Pads
- YJ-xxxx: Glue and Adhesives
- QS-xxxx: Glue and Adhesives

Each transducer has a product data sheet (PD) with ordering information – including all required accessories. You can find transducer PDs on www.bksv.com.

Customization

Despite the large number of transducers available in Brüel & Kjær's standard selection, special measurement situations can occur requiring a transducer that cannot be met by our standard product range. In order to effectively meet our customers' needs, we offer customized products.

We already have a broad portfolio of non-standard products developed for special applications. For further details on what Brüel & Kjær can offer for special applications, please contact your local representative.

Microphone Firsts

		and the second s	
1956	Type 4131	THE AND	World's first volume-produced measurement microphones, Types 4131 (free- field) and 4132 (pressure-field), developed, amongst others, by Dr. Per V. Brüel
1967	Туре 4138	南	World's first 1/8" measuring microphone. Due to on-going product improvements, this type is still available
1975	Type 4160		Brüel & Kjær is requested to produce a replacement for the Western Electric WE 640 AA Reference Microphone. As a result, Type 4160 and later the ½" Type 4180 were introduced (still the world de facto acoustical standards)
		1111	
1980	Туре 4155		Brüel & Kjær launches the world's first high-stability, measurement grade, electret microphones
1984	Туре 4179	THE ALL DE LE DE L	Using advanced modelling and clever design, this microphone has a noise floor of –2.5 dB(A), still unbeaten after nearly 30 years!
1987	Туре 4182		Brüel & Kjær introduces probe microphone for measurement in extremely confined spaces and up to more than 600 °C
1993	Type 4188	4100 2	Falcon series is introduced. Featuring stainless steel, press-fitted diaphragms, these microphones result in a step change in microphone technology
1994	Type 4189	4189 5	Falcon series at peak performance. Type 4189 is probably the world's most popular ½" free-field microphone
2000	Туре 4297		The world's only one-unit Sound Intensity Calibrator enables calibration without dismantling the probe
2003	Type 4948		Surface Microphone – a Brüel&Kjær first: an "all titanium" sensor originally developed for aerospace applications
2004	Туре 4949	\bigcirc	Surface Microphones now also find their way into the automotive industry, where they break new frontiers in wind-tunnel testing
2005	Туре 4952		World's first outdoor microphone where all parts exposed to the weather are made from polymer materials
2006	Туре 4955		Continuing the "all titanium" concept, this TEDS microphone has 1.1 V/Pa sensitivity and a typical noise floor of 5.5 dB
2009	Type 4961	the same and a	Multi-field Microphone – world's first ¼" measurement microphone that guarantees accurate and error-free measurements in both free and diffuse fields and at any angle
2012	Type 1706	Contraction of the second seco	World's first microphone preamplifier that can handle temperatures up to +125 °C/+257 °F
2015	Calibration in the Cloud		Access calibration data anytime. Calibration data is stored in the cloud for every transducer serviced at a Brüel & Kjær calibration laboratory. Furthermore, correction files for each individual microphone are accessible via the Web

Accelerometer Firsts

1943	Туре 4301	Ó	World's first commercial piezoelectric accelerometer made from Rochelle salt crystals and developed by Dr. Per V. Brüel
1957	Type 4310		Brüel & Kjær's first lead zirconate titanate (PZT) accelerometer
1971	Туре 8305		Brüel & Kjær's standard reference accelerometer based on an inverted, centre- mounted compression design with quartz crystal piezoelectric element, ensured a high degree of accuracy for calibration
1974	Type 4366		This all-titanium accelerometer was the first based on Brüel & Kjær's patented DeltaShear™ design. Still in use today, the construction is regarded as one of the all-time, classic accelerometer constructions
1977	Туре 4374	-	The first miniature accelerometer with a PlanarShear design – extending the frequency range of Brüel & Kjær Shear design
1985	Туре 4390		World's first accelerometer with constant voltage line-drive (CVLD) built-in preamplifier
1985	Туре 8317		Brüel & Kjær's first and highly reliable industrial DeltaShear accelerometer suitable for permanent vibration monitoring in potentially explosive environments
1996	Types 4507 and 4508		World's first dedicated modal shear accelerometer family
1998	Туре 4506	S.	The world's first OrthoShear™ triaxial accelerometer – one seismic mass for optimized noise floor and orthogonality
1999	Туре 4507-В		Another world first – an accelerometer with integrated TEDS (transducer electronic data sheet)
2005	Туре 4524-В	A REAL PROPERTY AND A REAL	The first miniature triaxial accelerometer with integrated TEDS
2008	Type 4526		A ThetaShear™, CCLD accelerometer for applications up to 180 °C (356 °F) – the highest temperature for an accelerometer with built-in preamplifier in the industry
2012	Туре 8347-С		Wide temperature range (-321 to +900 °F (-196 to +482 °C)) industrial accelerometer with superior temperature transient performance from Shear design
2012	Туре 4527	A CONTRACT	This universal CCLD triaxial accelerometer never sits still on the shelf, and has the widest temperature (up to 180 °C (356 °F)) and dynamic range
2015	Туре 4527-С		The first triaxial charge accelerometer with one connector
2015	Types 4535-B, 4524-B and 4508-B		Some of the first accelerometers with data matrix. Used with Transducer Smart Setup for seamless transfer of transducer data to PULSE Reflex™

TRANSDUCER APPLICATION EXAMPLES

Brüel & Kjær supplies integrated solutions for the measurement and analysis of sound and vibration. As a world-leader in sound and vibration measurement and analysis, we use our core competencies to help industries and governments solve sound and vibration challenges so you can concentrate on your primary task: efficiency in commerce and administration.

The Complete Solution

As the sound and vibration challenges facing industry are diverse – from traffic or airport noise, vibration in a car engine, evaluation of building acoustics, cabin comfort in a passenger aeroplane to production quality control or wind turbine noise, Brüel & Kjær has over the years developed creative and technically advanced solutions to innumerable customer problems. Some of the work we have done with customers is published as case studies. We provide the whole measurement chain: transducers; calibration; data acquisition and measurement instruments; measurement, analysis and reporting software; and service and support. From this wide range of individual products, integrated systems and customized turnkey solutions, the test engineer can find the right tools for comprehensive evaluations, complex test setups, outdoor field measurements or simple pass/fail assessments.

Transducers in the Measurement Chain

Transducers are the vital first link in your measurement chain. As they stand on the front line and provide you with the raw data you need, it is critically important that they are trustworthy.

Brüel & Kjær has always set the standard that others have tried to follow and offers the industry's largest selection of transducers, to help you make the most accurate measurements possible.

In the following pages, you can learn about how Brüel & Kjær's wide range of transducers can be applied in fields such as Aerospace and Defence, Automotive/Ground Vehicles and Telecom/Audio – among the many other fields we serve

Transducers for Aerospace and Defence Solutions

Acoustic Test Suite

Whether your interest is exterior or interior noise, our acoustic test suite provides data acquisition and assessment systems to combat your noise problems by optimizing noise performance, improving sound quality, and ensuring compliance with environmental legislation. Solutions include:

- Noise source mapping and location
- Wind tunnel and flight testing
- Engine and aircraft certification
- Acoustic material testing
- Cabin comfort and occupational health
- Ramp noise and sonic boom
- Underwater acoustics
- Hull monitoring
- Acoustic stealth and noise signature management

Some examples of transducers used in aerospace and defence solutions

efficient testing is critical to meeting program milestones, Brüel & Kjær addresses today's engineering needs by providing quality sensor solutions.

Whether turnkey solutions or dual-use application needs, Brüel & Kjær provides the aerospace and defence sectors with transducers that comply with common industry standards:

- BS EN ISO 9001:2008
- EN 9100:2009
- AS 9100 Rev. C

Brüel & Kjær's quality management system is applicable to: development, production, sales and service of customerspecific transducers.

Environmental Test Suite

Reproducing realistic operational conditions in the laboratory is essential for qualifying the real-life integrity of structures to ensure durability. Whether for billion-dollar satellites, launchers, aircraft, instruments or structures, our comprehensive vibration test solutions provide a wealth of environmental test systems. Solutions include:

- Durability and acoustic fatigue testing
- Classical and pyro shock
- Sine, random, sine-on-random, random-on-random testing
- Shock response spectrum
- Kurtosion
- Field data replication

Rotating Test Suite

Vibration analysis of rotating machinery provides valuable information on engine health, reliability and performance. From R&D and production test cell applications to on-ground maintenance, our vibration measurement and analysis systems provide you with powerful machine analysis tools. Solutions include:

- Vibration analysis, monitoring and diagnostics
- Vibration data acquisition and analysis in engine test cells
- On-ground vibration check of aircraft engines
- Order analysis and autotracking
- Balancing and trim balancing
- HUMS transducers

Structural Test Suite

Structural dynamics testing is vital to understand and optimize the inherent dynamic properties of structures, to ensure reliable and safe operation. Our structural test suite offers complete systems for controlled excitation testing, real-life operational testing and test-FEA integration – from the smallest components to the largest assembled structures. Solutions include:

- Operating Deflection Shapes analysis
- Operational Modal Analysis
- Classical Modal Analysis
- Normal mode testing
- Structural dynamics modifications
- Model correlation and updating

Transducers for Automotive/Ground Vehicle Solutions

Interior NVH

Time Domain SPC enables engineers to calculate, listen to, and modify individual contributions to the vehicle occupants (both airborne and structure-borne), and assists with design and validation of programme NVH targets.

Sound Engineering

The NVH Simulator Suite auralises NVH data with advanced soundsimulation techniques, allowing you to efficiently communicate NVH targets to non-experts even before physical prototypes are available. The On-road Simulator allows evaluation of virtual vehicles, and even benchmarking of competitive vehicles under real driving conditions.

Some examples of transducers used in automotive and ground vehicle solutions

Passenger vehicles such as cars, trucks, motorcycles, buses and trains continuously need to be more exciting and pleasant, while becoming safer and emitting less noise. Thanks to technology, engines are quieter and vehicle bodies are better insulated. For the most part, cars are only noisy at high speeds or during acceleration when the engine roars into life. As the speed increases, the noise mix produced by the tyres, chassis and wind intensifies. For some manufacturers, the amount and character of this phenomenon is desirable, for others, less so.

Locating and identifying noise sources, creating and correcting designs, as well as ensuring company, industry and legislative standards are key to achieving the desired results. This makes noise, vibration and harshness (NVH) testing incredibly necessary for vehicle manufacturers to establish and maintain a competitive advantage.

Brüel & Kjær's expert knowledge of the industry, combined with extensive experience of customer-driven projects, allows us to cover the whole vehicle NVH development process. Our solutions range from vehicle NVH simulators for target setting, to spherical beamforming for 360-degree noise mapping.

Powertrain Testing

Brüel & Kjær provides tools for efficient powertrain testing:

- Very high-temperature triaxial accelerometers
- Crankshaft angle analysis software
- Systems for measuring sound power versus RPM
- Holography systems for locating noise sources and measuring partial sound power versus RPM and crank angle
- Wide band noise source identification systems customized to fit engine test cells
- NVH simulators to evaluate powertrain components or complete powertrains in full vehicle context

Hybrid-electrical and electrical vehicles:

- Switching noise analysis, transient analysis, high-frequency beamforming, multi-field microphone with very low magnetic sensitivity for measuring in unknown sound fields
- NVH simulator for exterior vehicle noise
- Vibration testing of large batteries

Structural Analysis

The Structural Dynamics Suite helps improve the dynamic behaviour of any structure. It includes Operating Deflection Shapes analysis covering the full set of methods (frequency, order, time), Classical Modal Analysis with a wide range of powerful curvefitters, and Operational Modal Analysis.

Squeak and Rattle

Our unique equipment range ensures that automotive components and interiors are durable and free from noise, and supports industry-standard QA practices for squeak and rattle vibration testing. Solutions include:

- Low-noise shaker systems
- Sound quality analysis software
- Array-based systems for quick localization of noise sources

Wind Tunnel Testing

Surface microphones on the exterior of a vehicle measure the pressure fluctuations at different positions, whilst beamformers placed outside the main airflow pinpoint the location of noise sources and quantify the relative noise contributions. When combined with a spherical beamformer inside the vehicle, a detailed noise cause-effect relationship is achieved using minimal testing time.

Exterior Noise

As community regulations put ever tighter restrictions on noise emission, our Vehicle Pass-by solutions offer complete support to ensure compliance with the latest standards. Adding movingsource beamforming enables noise source localization and troubleshooting during measurements. Our Indoor Simulated Pass-by Noise System enables efficient comparison of design alternatives.

Transducers for Telecom and Audio Solutions

Electroacoustic Test Systems

Our experience of providing quality acoustic solutions gives us a solid background when developing new systems for emerging technologies and markets. Our range of dedicated electroacoustic test systems is eminently suitable for acoustic design, benchmarking, prequalification and conformance testing of mobile phones, tablets, VoIP phones, headsets, loudspeakers, etc.

The test system supports the entire workflow required by typical test procedures. This covers system calibration and verification, various acoustic measurement suites for evaluating the performance of devices under testing, and reporting. Tools for easy comparison of measurements as well as tools to hear and edit recordings are also available.

Some examples of transducers used in telecom and audio solutions

Manufacturers of electroacoustic equipment such as loudspeakers, microphones, telephones, headsets, hearing aids and hydrophones deliver successively high-quality acoustical designs by continuously innovating their products and processes.

Acoustic performance has become increasingly important as users demand high-quality audio in every situation, whether reproducing sound or transmitting speech. Measuring and documenting the acoustic performance, therefore, is a key element in the product improvement process, during both its development and manufacture.

Brüel & Kjær has a long tradition of close connections with the fields of telecommunications and audio, pioneering many methods that are now standard practice all over the world.

Today, based on our accumulated knowledge and experience, we offer a variety of electroacoustic test systems, audio analyzers, and transducers for electroacoustic applications.

Audio Analyzers

With PULSE being one of the most commonly used platforms for conducting acoustic measurement, it forms a solid foundation for our audio analyzers. These offer a variety of analysis methods, covering traditional sine testing (using SSR and TSR), spectrum analysis (using FFT and CPB) for testing using real speech, and perception-based test methods.

In combination with the dedicated hardware, this supports the audio engineer in achieving the acoustic design goals setup. Besides its measurement and analysis capabilities, PULSE also offers tools to automate test procedures, as well as reporting and data management tools for easy archiving and retrieving of measurement data and related information.

Transducers

To guarantee reliable acoustic measurements, most national standards laboratories use Brüel & Kjær reference microphones. Consequently, most acoustical measurement in the world ultimately refers back to Brüel & Kjær products.

A comprehensive portfolio of transducers supports standardized testing of telephones, hearing aids, headphones, headsets, ear phones, loudspeakers, receivers and many other applications.

Our range of acoustical transducers includes ear simulators, mouth simulators and microphones. All transducers supplied by Brüel & Kjær contain information about their actual sensitivity. When the transducer is connected to the analyzer this information is automatically transferred to the analyzer, ensuring that the proper setting is always used for the specific measurement task.

SELECTING THE RIGHT MICROPHONE

Brüel & Kjær offers a broad spectrum of solutions that respond to varying needs and applications. This adaptability is evident in the range of transducers designed for specific environments, industries, tasks and conditions, as well as general purpose instruments that provide a wide operational range.

Selecting the best transducer for a given measurement task can be understandably overwhelming. Our interactive transducer selection guide on www.bksv.com can be a big help to quickly narrow your choices. Alternatively, you can use the Microphone Matrix below to help you select the right microphone to fit your needs. For a quick overview, product types are listed according to these classifications. Microphones that do not directly match one of these classes are denoted as "Special Microphones".

1/8-inch microphones are pressure types. Due to their small size, the free-field and pressure response are approximately the same up to quite high frequencies (for example, the free-field correction is less than 1 dB at 15 kHz).

For an overview of key specifications for all of our standard microphones, see the comparison table on page 153.

Condenser microphones:

- are either externally polarized or prepolarized
- come in different sizes: 1-inch, 1/2-inch, 1/4-inch, or 1/8-inch
- are optimized for either free-, pressure-, or diffuse-field

Type of M	licrophone	Type 1/8-inch	1/4-inch	1/2-inch	1-inch	Polarization
Fre	Free-field		4954	4137 4176 4188 4189 4950		Prepolarized
			4939	4190 4191	4145	Externally polarized
	Pressure-field		4944	4947 4948 4949 4956		Prepolarized
Kjanr 4197		4138	4938 4941	4192	4144	Externally polarized
	Diffuse-field			4942		Prepolarized
				4943		Externally polarized
	Special		4961 4957, 4958	4948 4949		Prepolarized
	Special		4187 4938-WH-1418 4938-W-001	4180 4193 4955	4160 4179	Externally polarized

The Microphone Matrix

For Selection Consider the Following

Which kind of input module - classical or CCLD?

CCLD (including DeltaTron and IEPE) can only work with prepolarized types; classical input works with both prepolarized and externally polarized cartridges. For more information about CCLD and classical input see the preamplifier section. For portable instruments and where high humidity is present, prepolarized microphones are preferred. For more general use in the laboratory or where high temperature is present, the use of external polarized microphones is recommended.

Does the microphone have to fulfil any specific standard?

If this is the case, see Microphone Standards under "Compliance with Standards".

Frequency range and maximum sound pressure level (SPL) will often determine which microphone size to use.

Generally a smaller microphone has a broader frequency range and a lower sensitivity. For more details, see Maximum Limits and Dynamic Range.

For which sound field should the microphone be optimized*?

For measurements made away from reflecting surfaces, for example, when making outdoor measurements, or in acoustically well-damped indoor environments, a free-field microphone is best. But for measurements made in small closed couplers, or close to hard surfaces, a pressure-field microphone is best. For measurements in enclosed areas where reverberation is likely, microphones optimized for diffuse-field (random-incidence) response are best. In some cases, pressure type microphones can also be found to have sufficiently flat random-incidence response. This is because the random-incidence response of a pressure-field microphone is much flatter across the frequency range than that of a microphone optimized for flat free-field response. A special case is the measurement of surface pressure where surface microphones would be the obvious choice.

Special application or condition?

For special applications, a special microphone can be selected, for example, laboratory standard microphones, outdoor microphones, array microphones, infrasound microphones, etc. If the microphone is to be used in extreme temperature conditions, see Effects of Temperature for guidance.

Maximum Limits and Dynamic Range

Inherent Noise: Even if a microphone is placed in a "totally quiet" room there will be some Brownian movement of the microphone back-plate and diaphragm. These movements correspond to very small pressure fluctuations and will cause changes in the cartridge capacity which – if a polarization voltage is present – cause an output voltage from the microphone. The SPL corresponding to this output voltage is defined as the inherent noise of the microphone cartridge.

3% Distortion Limit: Even though the condenser microphone is highly linear, at a certain pressure there will be some distortion of the output signal. At Brüel & Kjær we specify the 3% distortion limit as a recommended maximum limit for accurate measurements.

10% Distortion Limit: Increasing the sound pressure behind the 3% distortion limit will result in a further increase in distortion. In some cases, a 10% distortion limit is specified. In many practical cases, the 10% distortion limit is determined by the preamplifier.

Maximum SPL: Due to mechanical forces acting on the cartridge there is a maximum pressure level which should never be exceeded or the long-term stability can be influenced and/or mechanical damage can happen. The corresponding sound pressure level is called the maximum SPL.

Dynamic Range of Microphone/Preamplifier Combinations: In a practical application, the lower limit of dynamic range is determined by the combined noise from the cartridge and the preamplifier. The upper SPL limit will often be determined by the output voltage swing from the preamplifier. This is especially

important when using CCLD preamplifiers, since here the maximum voltage is limited by the input stage compliance (opencircuit) voltage.

A compliance voltage of, say, 28 V as used in many front ends will limit the maximum voltage swing to around 14 V_{pp} and this may determine the real maximum limit of a cartridge/preamplifier combination.

Brüel & Kjær defines the dynamic range as the range from the noise floor in dBA to the SPL resulting in a 3% distortion limit with a given cartridge/preamplifier combination, and nominal compliance voltage where relevant.

The table below shows the maximum SPL as determined by the preamplifier. However, it must be mentioned that in some cases the maximum SPL is limited by the cartridge. This is especially true for classical input using ± 40 V supply. On the other hand, a classical input with ± 14 V supply will reduce the maximum SPL 9 dB compared with ± 40 V supply.

Maximum measurable SPL in dB for different cartridge sensitivities, rounded to nearest integer value

Cartridge Sensitivity mV/Pa	CCLD ±7 V Output Swing	NEXUS ±40 V	PULSE ±14 V
50	134	149	140
31.6	138	153	144
12.5	146	161	152
3	158	173	164
1	168	183	174

The general formula is:

Max. SPL in dB = $[94 + 20*\log(V_{max}/S_v)]$

where V_{max} is the maximum (3% distortion) RMS output voltage of the preamplifier and S_v is the (loaded) cartridge sensitivity in V/Pa.

Measuring in Magnetic Fields

When performing sound measurements in magnetic fields like on a hybrid or electrical car, close to wind turbine generators, close to big MR scanners or other similar equipment, it may be beneficial to use the latest Brüel & Kjær microphones made out of titanium, such as Types 4948, 4949, 4955 and 4961. The titanium is much less susceptible to magnetic fields than metals normally used in microphones.

The magnetic field impact is seen as noise and increases the noise floor of the microphone. For example:

- 1/4-inch Array Microphone 4958 has a susceptibility to magnetic fields corresponding to an equivalent SPL of 40 dB for an 80 A/m, 50 Hz field
- 1/2-inch Free-field Microphone Type 4189 has a susceptibility to magnetic fields corresponding to an equivalent SPL of 6 dB SPL for an 80 A/m, 50 Hz field

Optimized means that the microphone has a flat frequency response in the specified frequency range of the particular sound field

• Titanium microphone Types 4955 and 4961 have no detectable influence from an 80 A/m, 50 Hz magnetic field

The Effects of Temperature

What happens at high temperatures (above +80 °C)?

- Electronic components may exceed their maximum junction temperature. This is very serious and should be avoided
- Prepolarized microphones may lose electret voltage. This will
 result in permanent sensitivity loss, which means, externally
 polarized microphones should always be used if hightemperature tests are performed for longer periods of time
- The diaphragm tension will reduce. This means increased sensitivity and changes in frequency response
- The cable jacket and other isolators may melt. While this is not beautiful, it is not always catastrophic
- In practically all cases, an exponential increase in the inherent electronic noise must be expected. The basic rule of thumb: Many temperature depending factors will double for every 10° temperature increase (Arrhenius' law)

Microphones are specified at 23 °C, and have a temperature coefficient that specifies how the microphone will behave with changed temperature. This parameter tells something about the microphone's stability and quality. See the microphone's product data for information about its temperature coefficient.

General purpose microphones like Type 4189 perform well within their specifications in the temperature range from -30 to +150 °C.

General purpose preamplifiers have a relatively stable DC bias up to around 80 °C. They are specified from -20 to +60 °C (-4 to +140 °F), but work very well at temperatures of up to +80 °C, with some increase in noise.

High-temperature Preamplifier Type 1706 is designed to perform up to 125 °C. At high temperatures, it has a more stable DC bias point and no reduction of maximum SPL limit. The electrical noise increases at high temperatures, which affects the lower limit of the dynamic range of the microphone/preamplifier combination and limits its ability to measure very low sound pressure levels.

In regards to the use of cables in high temperatures, you should note that PUR cables are not recommended. Consider silicone cables, which are rated at 150 °C or PFA cables which function from -75 to +250 °C, like cable AO-0406.

What if it gets really hot (+125 °C)?

- You must get the preamplifier away from the hotspot
- Flush Mounting Kits UA-0122 and UA-0123 or Swan Neck UA-0196 are good tools to use
- Sometimes Probe Microphone Type 4182 will do the job

Probe Microphone Type 4182 allows sound pressure measurements to be made in small or awkward places or in harsh environments with high temperatures (up to 700 °C). The probe microphone has a smooth frequency response from 1 Hz to 20 kHz, with a very smooth high-frequency roll-off. Measurements can be performed extremely close to the sound source due to its small size. Measurement points can be closely spaced when it is necessary to have high spatial resolution. The static pressure inside the probe microphone can be equalized to that of the measurement site.

Measuring in extremely cold temperatures (-160 °C)

Type 4944-W-005 is a special microphone that is designed to handle measurements down to -180 °C, which is perfect for use in, for example, cryogenic wind tunnels.

Replacement of Discontinued Brüel & Kjær Microphones

Most present Brüel & Kjær microphones are Falcon Range™ microphones. The Falcon Range offers a number of advantages, for example, the diaphragm mounting method (press fit mounted or laser welded) provides a higher mechanical robustness. Furthermore, the use of a stainless steel diaphragm results in an improved resistance to environmental conditions. The table can be helpful if you need to replace an older Brüel & Kjær microphone type.

Older Microphone Types	Recommended Replacement Microphone Types
4133	4191
4134	4192
4135	4939
4136	4938
4147	4193
4155	4189
4165	4190
4166	4943
4196/4935	4957
4198	4952
4951	4958
4181	4197
UA-1404	4952

MICROPHONES

Definition of Given Microphone Specifications

Standards

The following abbreviations for standards are used in the tables.

	IEC 61094		IFC 61672 [*]		ANSI			
	120 01034		IEC 61672		ANSI			
А	IEC 61094-4 WS1F	Т	IEC 61672 Class 1	К	ANSI S1.4 Type 1			
В	IEC 61094-4 WS2F	J	IEC 61672 Class 2	L	ANSI S1.4 Type 2			
С	IEC 61094-4 WS3F			М	ANSI S1.12 Type M			
D	IEC 61094-4 WS1P							
Е	IEC 61094-4 WS2P							
F	IEC 61094-4 WS3P							
G	IEC 61094-1 LS1P							
н	IEC 61094-1 LS2P							
	* IEC 61672 is the sound level meter standard and is only applicable to the microphone when it is used with a sound level meter							

Traditionally acoustical engineers work in dB SPL defined as $20 \times \log(p_a/20 \,\mu\text{Pa})$ where p_a is the actual (dynamic) pressure in pascals.

Pressure sensors often refer to PSI (pounds per square inch).

It may be good to know that dB SPL can easily be converted to pascal and after that to PSI.

1 Pa = 0.0001450 PSI and hence 1 PSI = 6.89 kPa

dB SPL	dB SPL Pressure Pascal			
94	1	0.000145		
154	10 ³	0.145		
174	10 ⁴	1.45		
194	10 ⁵	14.5		
200	2 × 10 ⁵	29		

PSI or dB?

Free-field Microphones

Free-field microphones are particularly suitable for performing measurements away from reflecting surfaces, for example, when making outdoor measurements with a sound level meter, or in an acoustically well-damped indoor environment such as an office with natural acoustic damping.

				Spar 4137	Name of Street	AND	1189 I
Type No.		4939	4954	4137 [*]	4176	4188	4189
Diameter	inch	1/4	1/4	1/2	1/2	1/2	1/2
Optimized		Free-field	Free-field	Free-field	Free-field	Free-field	Free-field
Standards		С	С	J, L	I, K	I, K	B, I, L
Nominal Open-circuit Sensitivity	mV/Pa	4	3.16	31.6	50	31.6	50
Polarization Voltage**	V	200	0	0	0	0	0
Optimized Frequency Response ±2 dB	Hz	4 to 100000	4 to 80000	8 to 12500	7 to 12500	8 to 12500	6.3 to 20000
Dynamic Range with Preamplifier (Preamplifier type number)	dB(A) to dB	35 to 164 (2670)	35 to 164 (2670)	15.8 to 146 (2669)	14 to 142 (2669)	15.8 to 146 (2669)	15.2 to 146 (2669)
Inherent Noise	dB (A)	28	<35	14.2	13.5	14.2	14.6
Capacitance	pF	6.1	5.1	12	12.5	12	13
Venting		Side	Side	Rear	Rear	Rear	Rear
Lower Limiting Frequency (-3 dB)	Hz	0.3 to 3	0.3 to 3	1 to 5	0.5 to 5	1 to 5	2 to 4
Operating Temperature Range	°C	-40 to +150	-40 to +150	-30 to +125	-30 to +100	-30 to +125	-30 to +150
Temperature Coefficient	dB/°C	+0.003	+0.009	+0.005	-0.004	+0.005	-0.006
Pressure Coefficient	dB/kPa	-0.007	-0.007	-0.021	-0.02	-0.021	-0.01

* Class 2 microphone for Type 2237 ** 0 V = Prepolarized microphone

Type No.		4190	4191	4950	4145
Diameter	inch	1/2	1/2	1/2	1
Optimized		Free-field	Free-field	Free-field	Free-field
Standards		B, I, L	B, I, L, M	I, K	A, I
Nominal Open-circuit Sensitivity	mV/Pa	50	12.5	50	50
Polarization Voltage [*]	V	200	200	0	200
Optimized Frequency Response $\pm 2 \text{ dB}$	Hz	3.15 to 20000	3.15 to 40000	4 to 16000	2.6 to 18000
Dynamic Range with Preamplifier (Preamplifier type number)	dB(A) to dB	15 to 148 (2669)	21.4 to 162 (2669)	14 to 142 (2669)	10.2 to 146 (2669)
Inherent Noise	dB (A)	14.5	20	13.5	10
Capacitance	pF	16	18	12.5	66
Venting		Rear	Side	Rear	Rear
Lower Limiting Frequency (-3 dB)	Hz	1 to 2	1 to 2	0.5 to 5	1 to 2
Operating Temperature Range	°C	-30 to +150	-30 to +300	-30 to +100	-30 to +100
Temperature Coefficient	dB/°C	-0.012	-0.002	+0.006	-0.002
Pressure Coefficient	dB/kPa	-0.01	-0.007	-0.02	-0.015

* 0 V = Prepolarized microphone

Diffuse-field Microphones

A diffuse-field microphone, also called a random-incidence microphone, is designed to have a flat response when signals arrive simultaneously from all directions. They should, therefore, not only be used for making measurements in reverberation chambers, but also in all situations where the sound field is diffuse, or where several sources contribute to the sound pressure at the measurement position. Examples include indoor measurements where the sound is reflected by walls, ceilings, and objects in the room, or measurements made inside a car.

		A KING AGA	Keyen ADDI
Type No.		4942	4943
Diameter	inch	1/2	1/2
Optimized		Diffuse-field	Diffuse-field
Standards		К	К
Nominal Open-circuit Sensitivity	mV/Pa	50	50
Polarization Voltage [*]	V	0	200
Optimized Frequency Response ±2 dB	Hz	6.3 to 16000	3.15 to 10000
Dynamic Range with Preamplifier (Preamplifier type number)	dB(A) to dB	15.2 to 146 (2669)	15.9 to 148 (2669)
Inherent Noise	dB (A)	14.6	15.5
Capacitance	pF	13	16
Venting		Rear	Rear
Lower Limiting Frequency (-3 dB)	Hz	2 to 4	1 to 2
Operating Temperature Range	°C	-40 to +150	-40 to +150
Temperature Coefficient	dB/°C	-0.006	-0.010
Pressure Coefficient	dB/kPa	-0.01	-0.008
Preamplifier Included		No	No

* 0 V = Prepolarized microphone

In many cases, the pressure- and diffuse-field responses will both be within ±2 dB up to a certain frequency. The graph shows that for Type 4943, both responses are within ±2 dB up to 10 kHz

Solid line: pressure-field response

Dashed line: diffuse-field response

Pressure-field Microphones

A pressure-field microphone is best suited for measurement of the sound pressure in a small closed couplers or close to hard reflective surfaces. A special class of pressure microphones is Brüel & Kjær's surface microphone, which due to its unique geometrical dimensions, can be mounted directly on surfaces such as the skin of an aeroplane or the surface of a car, for easy measurement of the true pressure fluctuations.

There are

		1	TT IT		New Addi	(1+3) Kuzer 419	
Type No.		4138	4938 [*]	4944	4947	4192	4144
Diameter	inch	1/8	1/4	1/4	1/2	1/2	1
Optimized		Pressure-field	Pressure-field	Pressure-field	Pressure-field	Pressure-field	Pressure-field
Standards		-	F	F	К	E, K, M	D, L
Nominal Open-circuit Sensitivity	mV/Pa	1	1.6	1	12.5	12.5	50
Polarization Voltage [†]	V	200	200	0	0	200	200
Optimized Frequency Response $\pm 2~\text{dB}$	Hz	6.5 to 140000	4 to 70000	4 to 70000	8 to 10000	3.15 to 20000	2.6 to 8000
Dynamic Range with Preamplifier (Preamplifier type number)	dB(A) to dB	52.2 to 168 (2670 + UA-0160)	42 to 172 (2670)	46 to 170 (2670)	21.4 to 160 (2669)	20.7 to 162 (2669)	11 to 146 (2669)
Inherent Noise	dB (A)	43	30	30	17.5	19	9.5
Capacitance	pF	3.5	6.1	5	14	18	55
Venting		Side	Side	Side	Rear	Side	Side
Lower Limiting Frequency (–3 dB)	Hz	0.5 to 5	0.3 to 3	0.3 to 3	1 to 5	1 to 2	1 to 2
Operating Temperature Range	°C	-30 to +100	-40 to +150	-40 to +150	-30 to +125	-30 to +150	-30 to +100
Temperature Coefficient	dB/°C	-0.01	+0.003	+0.008	+0.006	-0.002	-0.003
Pressure Coefficient	dB/kPa	-0.01	-0.003	-0.003	-0.006	-0.005	-0.016
Preamplifier Included		No	No	No	No	No	No

* Type 4938-W-001 is optimized for high static pressure

+ 0 V = Prepolarized microphone

				x.O.	63		10 00 00 00 00 00 00 00 00 00 00 00 00 0	1950 -
Туре No.		4948	4948-A	4948-B	4948-W-005	4949	4949-В	4956
Diameter	inch	0.79 *	0.79*	0.79*	0.79*	0.79*	0.79*	1/2
Optimized		Surface Pressure	Surface Pressure	Surface Pressure	Surface Pressure	Surface Pressure	Surface Pressure	Pressure
Standards		-	-	-	-	-	-	-
Nominal Open-circuit Sensitivity	mV/Pa	1.4	1.4	1.4	0.314	11.2	11.2	12.5
Polarization Voltage †	V	0	0	0	0	0	0	0
Optimized Frequency Response ±3 c	B Hz	5 to 20000	5 to 20000	5 to 20000	5 to 12500	5 to 20000	5 to 20000	3.5 to 20000
Dynamic Range with Preamplifier (Preamplifier type number)	dB(A) to dB	55 to 160	55 to 160	55 to 160	68 to 176	30 to 140	30 to 140	26.5 to 135 (2671-W-001)
Inherent Noise	dB (A)	55 (typical)	55 (typical)	55 (typical)	68	30 (typical)	30 (typical)	18.6
Capacitance	pF	N/A	N/A	N/A	N/A	N/A	N/A	13
Venting		Front	Front	Front	Front	Front	Front	Front
Lower Limiting Frequency (-3 dB)	Hz	1 to 5	1 to 5	1 to 5	1 to 5	0.5 to 5	0.5 to 5	1 to 2
Operating Temperature Range	°C	-55 to +100	-55 to +100	-55 to +100	-55 to +100	-30 to +100	-30 to +100	-30 to +70
Temperature Coefficient	dB/°C	0.013	0.013	0.013	0.013	0.013	0.013	-0.006
Pressure Coefficient	dB/kPa	-0.007	-0.007	-0.007	-0.005	-0.007	-0.007	-0.009
Preamplifier Included		CCLD	CCLD	CCLD	CCLD	CCLD	CCLD	N/A
TEDS UTID		769	769	769	769	769	769	N/A
CIC		No	Yes	Yes	No	No	Yes	N/A
* Diaphragm = 0.41 inch	t O V = Prepolarized	micronhone						

* Diaphragm = 0.41 inch

+ O V = Prepolarized microphone

Multi-field Microphone

Multi-field microphones are ideal for any situation in which the nature of the sound field is unpredictable, or the direction of the dominant noise source is difficult to pinpoint or shifts over time.

Brüel & Kjær's Multi-field Microphone Type 4961 is the world's first 1/4-inch condenser microphone with a 20 dB(A) noise floor, a maximum SPL of 130 dB and 60 mV/Pa sensitivity – which is the same basic performance you would expect from a conventional 1/ 2-inch condenser microphone. It guarantees that your measurements are accurate in free or diffuse sound fields and at any angle of incidence.

Manufacturing and Stability

The microphone and preamplifier's all-titanium construction ensures maximum resistance to corrosion. This means that you will never have to worry about pinholes in the microphone's diaphragm – a common problem with nickel foil diaphragms. And titanium's insensitivity to magnetic fields means that you do not have to worry about interference from electromagnetic sources.

		R-Brites & Kiter	
Type No.		4961	4961-В
Diameter	inch	1/4	1/4
Optimized		Multi-field	Multi-field
Standards		-	-
Nominal Open-circuit Sensitivity	mV/Pa	65	65
Polarization Voltage	V	0	0
Optimized Frequency Response ±2 dB	Hz	12 to 20000	12 to 20000
Dynamic Range with Preamplifier	dB(A) to dB	20 to 130	20 to 130
Inherent Noise	dB (A)	20	20
Capacitance	pF	N/A	N/A
Venting		Side	Side
Lower Limiting Frequency (–3 dB)	Hz	3 to 6	3 to 6
Operating Temperature Range	°C	-20 to +80	-20 to +80
Temperature Coefficient	dB/°C	0.01	0.01
Pressure Coefficient	dB/kPa	-0.013	-0.013
Preamplifier Included		CCLD	CCLD
TEDS UTID		769	769
Connector		SMB	10-32 UNF

Small Microphone, Big Performance

Because Type 4961 is so small and relatively insensitive to the angle of incidence, its response is uniform (even at high frequencies) in virtually any sound field.

It is very easy to position when setting up measurements – technicians can simply place it where they want to measure and save valuable time.

Well-suited for complex spaces with non-stationary or multiple sources that need to be measured in one go, Type 4961 is ideal for the automotive or aerospace industries, for example, during in-cabin noise measurements. In effect, a single multi-field microphone can cover many measuring scenarios that would otherwise require three different conventional 1/2-inch microphones.

Array Microphones

Array-based measurement techniques allow you to quickly map the sound intensity from a number of points across a source. Brüel & Kjær provides a wide selection of arrays to cover most measurement situations including acoustic holography and beamforming, as well as the microphones best suited for use in these systems.

- **Type 4957** is an economy type with only basic TEDS and a limited frequency range, but the same sensitivity
- **Type 4958** is a precision type with "intelligent" TEDS, that is, TEDS that contains polynomial coefficients describing the complex transfer function of the microphone. This information can be used in the array application in order to increase precision
- **Type 4959** is a very short microphone for hand-held and foldable arrays

Note that Types 4944-A and 4954-A can be also used with arrays.

		and the second se	Sector Sector	- 251 122
Type No.		4957	4958	4959
Diameter	inch	1/4	1/4	1/4
Optimized		Array	Array	Array
Standards		-	-	-
Nominal Open-circuit Sensitivity	mV/Pa	11.2	11.2	11.2
Polarization Voltage [*]	V	0	0	0
Optimized Frequency Response ±2 dB	Hz	50 to 10000	20 to 20000	50 to 20000
Dynamic Range with Preamplifier	dB(A) to dB	32 to 134	28 to 140	32 to 134
Inherent Noise	dB (A)	<32	<28	<32
Capacitance	pF	N/A	N/A	N/A
Venting		Front	Front	Front
Lower Limiting Frequency (-3 dB)	Hz	<50	<50	<50
Operating Temperature Range	°C	-10 to +55	-10 to +55	-10 to +55
Temperature Coefficient	dB/°C	-	-	-
Pressure Coefficient	dB/kPa	-	-	-
Preamplifier Included		CCLD	CCLD	CCLD
TEDS UTID/UDID		127-0-0-0U	I27-0-0-1U	I27-0-0-1U
Connector	Туре	SMB	SMB	Brüel & Kjær array
Length of Array Microphone with Plug (including plug)	-	28.0 (34.2)	28.0 (34.2)	12.0 (18.2)

* 0 V = Prepolarized microphone

Low-noise Microphones

Low-noise microphones are required for qualification of anechoic chambers for sound power measurements and test of components with low sound power ratings.

- Type 4179 is suitable for monitoring very low background noise levels down to -5.5 dB(A) and must be used with dedicated preamplifier Type 2660 or 2660-W-001. This combination has an unbeatable noise floor of -2.5 dBA
- **Type 4955** is a 1/2-inch TEDS "all titanium" microphone with an excellent noise floor of typically 5.5 dBA
- **Type 4955-A** is a dedicated unit for sound level meters, such as Types 2250 and 2270. It is optimized to work with ±18 V

Type No.41794955Diameterinch1/2OptimizedLow-noiseLow-noiseStandardsNominal Open-circuit SensitivitymV/Pa1001100Polarization VoltageV200200Optimized Frequency Response ± 2 dBHz10 to 1000010 to 16000Pynamic Range with Preamplifier (Preamplifier type number)B(A) to dB-2.5 to +102 (2660)6.5 to 110 (Built-in)
Optimized Low-noise Standards – – Nominal Open-circuit Sensitivity mV/Pa 100 1100 Polarization Voltage V 200 200 Optimized Frequency Response ± 2 dB Hz 10 to 10000 10 to 16000 Dynamic Range with Preamplifier dB(A) to dB –2.5 to +102 6.5 to 110
Standards – – Nominal Open-circuit Sensitivity mV/Pa 100 1100 Polarization Voltage V 200 200 Optimized Frequency Response ± 2 dB Hz 10 to 10000 10 to 16000 Dynamic Range with Preamplifier dB(A) to dB –2.5 to +102 6.5 to 110
Nominal Open-circuit Sensitivity mV/Pa 100 1100 Polarization Voltage V 200 200 Optimized Frequency Response ±2 dB Hz 10 to 10000 10 to 16000 Dynamic Range with Preamplifier dB(A) to dB -2.5 to +102 6.5 to 110
Polarization Voltage V 200 200 Optimized Frequency Response ± 2 dB Hz 10 to 10000 10 to 16000 Dynamic Range with Preamplifier dB(A) to dB -2.5 to +102 6.5 to 110
Optimized Frequency Response ±2 dB Hz 10 to 10000 10 to 16000 Dynamic Range with Preamplifier dB(A) to dB -2.5 to +102 6.5 to 110
Dynamic Range with Preamplifier dB(A) to dB –2.5 to +102 6.5 to 110
Inherent Noise dB (A) -5.5* <6.5*
Capacitance pF 40 N/A
Venting Side Front
Lower Limiting Frequency (– 3 dB) Hz 5 to 7 5
Operating Temperature Range °C -30 to +100 -20 to +100
Temperature Coefficient -0.004 dB/°C < ±0.01 dB/K
Pressure Coefficient dB/kPa -0.016 -0.013
Preamplifier Included No Yes
TEDS UTID 116289
Connector N/A LEMO 1B

* Cartridge alone, must be used with Type 2660 preamplifier and WH-3315 + WL-1302

+ With integral preamplifier

Every microphone has an inherent noise caused, amongst other things, by Brownian movements. This results in a noise voltage, which cannot be avoided even with the best microphone. Lownoise TEDS Microphone Type 4955 consists of a high-sensitivity ½-inch cartridge, which has been optimized for the lowest inherent noise, and a matching preamplifier. The graph shows the typical noise spectrum for Type 4955

Outdoor Microphones

Brüel & Kjær's outdoor microphones are intended for permanent or semi-permanent outdoor use. In addition to the obvious weather protection, other features can be found with all Brüel & Kjær outdoor microphones, including calibration facilities, on-site remote verification (CIC), and conformance with standards of special importance such as IEC 61672 with sound level meters such a Type 2250 and Type 2270. This particular standard defines the requirements to the directivity response of the microphone and is often overlooked or misinterpreted.

- Weatherproof Microphone Unit Type 4184 is for permanent, semi-permanent and portable noise monitoring. It features a probe type microphone for optimal protection and directivity response plus both CIC facility and a built-in acoustic sound source for verification
- Outdoor Microphone Type 4198 is for semi-permanent noise monitoring. Depending on circumstances, this well-protected

microphone can sustain several months of unattended use. Features CIC, a Falcon Range microphone and Outdoor Microphone Kit UA-1404

- Outdoor Microphone Type 4952 has outer parts constructed of carefully selected polymer materials making it suitable for longer periods of unattended outdoor use (at least one year service intervals). This microphone also features CIC. The use of separate equalization filters enables Type 4952 to fulfil the requirements of IEC 61672 both for 0° and 90° of incidence
- **Outdoor Microphone Kit UA-1404** is for the protection of your existing Type 4188, 4189, or 4190 microphones

All outdoor microphones are supported by a broad range of accessories. Please refer to the Microphone Accessories for an overview.

Type No. 4184 4198 4952
Diameter inch Probe 1/2 1/2
Optimized Outdoor Outdoor Outdoor
Standards I, K I, K I, K
Nominal Open-circuit Sensitivity mV/Pa 12.5 50 31.6
Polarization Voltage [*] V 200 0 0
Optimized Frequency Response ±2 dB Hz 20 to 8000 6.3 to 16000 8 to 12500
Dynamic Range with Preamplifier dB(A) to dB 25 to 140 15.2 to 146 15.8 to 146
Inherent Noise dB (A) 25 15.2 <16
Venting Rear Rear Rear
Lower Limiting Frequency (-3 dB) Hz <20
Operating Temperature Range °C -40 to +55 -25 to +60 -30 to +60
Temperature Coefficient dB/°C -0.005 -0.006 0.005
Pressure Coefficient dB/kPa -0.006 -0.01 -0.021
Preamplifier Included Yes Yes Yes
Connector B&K 7-pin LEMO 1B LEMO 1B

* 0 V = Prepolarized microphone

Laboratory Standard Microphones

The most used laboratory standard microphones are **Types 4160** (1-inch) and **4180** (1/2-inch). These microphones have a well-defined cavity in front of the diaphragm and are optimized for use in couplers and for maximum long-term stability under reference conditions. The proven long-term stability is well below 0.1 dB per year.

The most common way of performing primary calibration of laboratory standard microphones is to use the reciprocity calibration principle. Brüel & Kjær offers the world's most used reciprocity calibration apparatus, Type 5998, which is part of Reciprocity Calibration System Type 9699.

			Atom a tel
Type No.		4160	4180
Diameter	inch	1	1/2
Optimized		Calibration	Calibration
Standards		G	н
Nominal Open-circuit Sensitivity	mV/Pa	47	12.5
Polarization Voltage	V	200	200
Optimized Frequency Response ±2 dB	Hz	2.6 to 8000	4 to 20000
Dynamic Range with Preamplifier (Preamplifier type number)	dB(A) to dB	10 to 146 (2673)	21 to 160 (2673)
Inherent Noise	dB (A)	9.5	18
Capacitance	pF	55	17.5
Venting		Side	Side
Lower Limiting Frequency (-3 dB)	Hz	1 to 2	1 to 3
Operating Temperature Range	°C	-10 to +50	-30 to +100
Temperature Coefficient	dB/°C	-0.003	-0.002
Pressure Coefficient	dB/kPa	-0.00016	-0.00007
Preamplifier Included		No	No

Measured stability of Brüel & Kjær Laboratory Reference Microphone Type 4180 over a 22-year period

SPECIAL ACOUSTIC TRANSDUCERS

Brüel & Kjær also offers a range of special microphones, including:

- 1/2-inch Pressure-field Microphone Type 4193 is designed to measure infrasound, for example, in ship engine rooms, in helicopters and in wind-buffeted buildings
- Type 4964 brings the -3 dB limit of Hand-held Analyzer Types 2250 and 2270 down to 0.3 Hz and with UC-0211 down to 0.13 Hz
- Binaural Microphone Type 4101-A is designed especially for binaural recording where testing on a human subject is preferred and/or the use of the traditional Head and Torso Simulator (HATS) method is precluded
- Probe Microphone Type 4182 has a choice of probe tubes, stiff or flexible, making it perfect for measurements in awkward places
- Impedance Tube Microphone Type 4187 is a 1/4-inch microphone specially designed for use in Impedance Tube Kit Type 4206. The microphone features a non-detachable protection grid that forms an airtight front cavity

Alle

(The

		diverse and	10 AT23	We 4964
Type No.		4193	4193 with UC-0211	4964
Diameter	inch	1/2	1/2	1/2
Optimized		Low-frequency	Low-frequency	Low-frequency
Standards		E, K, M	E, K, M	B, I, L
Nominal Open-circuit Sensitivity	mV/Pa	12.5	2	50
Polarization Voltage	V	200	200	0
Optimized Frequency Response ±2 dB	Hz	0.07 to 20000	0.13 to 20000	0.03 to 20000
Dynamic Range with Preamplifier (Preamplifier type number)	dB(A) to dB	20.7 to 161 (2669)	29 to 148 (2669)	16.5 to 134 (2671-W-001)
Inherent Noise	dB (A)	19	29	14.6
Capacitance	pF	18	118	14
Venting		Side	Side	Rear
Lower Limiting Frequency (-3 dB)	Hz	0.01 to 0.05	<0.1	0.01 to 0.05
Operating Temperature Range	°C	-30 to 150	-30 to 150	-30 to 150
Temperature Coefficient	dB/°C	-0.002	-0.002	-0.006
Pressure Coefficient	dB/kPa	-0.005	-0.005	0.01
Preamplifier Included		No	No	No

1

Type No.		4965	4101-A	4182	4187
Diameter	inch	1/5	1/5	Probe	1/4
Optimized		Binaural recording headphones	Binaural recording with TEDS	Probe	Pressure
Standards		-	-	-	-
Nominal Open-circuit Sensitivity	mV/Pa	20	20	3.16	4
Polarization Voltage [*]	V	0	0	200	200
Optimized Frequency Response ±2 dB	Hz	20 to 20000	20 to 20000	1 to 20000	1 to 6400
Dynamic Range with Preamplifier	dB(A) to dB	23 to 134	23 to 134	42 to 164	-
Inherent Noise	dB (A)	23	23	42	-
Capacitance	pF	N/A	N/A	N/A	6.4
Venting		Rear	Rear	Selected	Rear
Lower Limiting Frequency (-3 dB)	Hz	<20	<20	<0.7	<1
Operating Temperature Range	°C	10 to 40	-30 to 70	-10 to 700	-
Temperature Coefficient	dB/°C	-	-	-0.005	-
Pressure Coefficient	dB/kPa	-	-	-0.007	-
Preamplifier Included		CCLD	CCLD	Yes	No
Connector		10-32 UNF	10-32 UNF	7-pin B&K	

* 0 V = Prepolarized microphone

Transducers for Sound Intensity Analysis

The measurement of sound intensity provides information on the magnitude and the direction of the sound energy in the sound field. The measurement technique is used for a variety of applications such as the determination of sound power, sound absorption and sound transmission. Sound intensity is calculated from the product of the sound pressure and the particle velocity; sound pressure can easily be measured directly but the particle velocity is usually determined by a finite difference approximation. This requires two phase-matched microphones in a face-to-face configuration. Brüel & Kjær provides a number of sound intensity probes that conform to Class 1 in the Sound Intensity Instrumentation Standard, IEC 61043, which describes the characteristics of microphone pairs, intensity probes and calibration techniques for intensity measurements.

Sound Intensity Probes

Two sound intensity probes are available:

- **Type 3654** for use with the sound intensity analysis system based on Hand-held Analyzer Type 2270
- **Type 3599**, suitable for use with sound intensity analyzers based on PULSE

The main difference is that Type 3654 is based on a 10-pin cabling system whereas Type 3599 is based on an 18-pin cabling system and includes a remote control unit. The acoustical specifications are the same as both use Sound Intensity 1/2-inch Microphone Pair Type 4197 and Dual Preamplifier Type 2683.

Sound Intensity Microphone Pairs

Dual Preamplifier

Type No.	2683
Phase Matching	<0.015° at 50 Hz (20 pF capacitance) f(kHz) × 0.06°: 250 to 10000 Hz
Electrical Noise re Microphone Sensitivity:	
1/4-inch 6.4 pF Dummy 1/2-inch 19.5 pF Dummy	39.2 dB SPL(A) 19.4 dB SPL(A)
Attenuation for 1/2-inch Microphones	Ch.A Typ.: 0.6 dB Ch.B Typ.: 0.3 dB
Attenuation for 1/4-inch Microphones	Ch.A Typ.: 1.7 dB Ch.B Typ.: 0.7 dB

			Peters 1
Type No.		4197	4178
Diameter	inch	1/2	1/4
Free-field Frequency Response ±1 dB	Hz	5 to 12500	6 to 14000
Free-field Frequency Response ±2 dB	Hz	0.3 to 20000	4 to 100000
Phase Response Difference (Absolute Value) 1/3-octave Centre Frequencies		<0.05°: 20 to 250 Hz <f(hz) 5000:<br="">250 to 6300 Hz</f(hz)>	±0.1° × f(kHz): 1 to 20 kHz
Amplitude Response Difference Normalized at 200 Hz		<0.2 dB: 20 to 1000 Hz <0.4 dB: 20 to 7100 Hz	<0.3 dB: 100 to 10000 Hz <0.5 dB: 100 to 20000 Hz
Accessories Included		8.5 mm Spacer: UC-5349 12 mm Spacer: UC-5269 50 mm Spacer: UC-5270	6 mm Spacer: UC-0196 12 mm Spacer: UC-0195
Polarized Capacity Difference	pF	<1.0	<0.3
Microphones for High-intensity Testing

Most noise measurements are limited to around 140 to 150 dB maximum SPL, but applications such as measurement of gunshots, airbag deployment noise, etc., require measurements of dynamic pressure fluctuations corresponding to a SPL far beyond 160 dB.*

For measurements below 110 dB, the condenser microphone will normally be the preferred transducer, while above 200 dB pressure sensors have to be used. In the intermediate range, you can select between pressure sensors or condenser microphones.

Condenser microphones benefit from a higher degree of standardization, wider frequency range, lower noise floor, and standardized calibration methods. They are readily available as TEDS microphones for direct connection to industry standard CCLD inputs.

Note: Above 160 dB air behaves highly non-linearly

Condenser microphones are normally fully specified with respect to frequency response, free-field corrections, influence of accessories, etc.

- High Static Pressure Microphone Type 4938-W-001 is specially designed for measuring in high static pressure from 1 to 10 atm. The change in response at different static pressures has been minimized
- Airbag Microphone Type 4938 + WB-1418 is designed to fulfil "Microphone and Preamplifier System for measuring acoustic impulses within vehicles – SAE J247 FEB87", but only when combined with Preamplifier Type 2670 + WB-1419
- **High Sound Pressure Microphone Type 4941** is used for gunshots, fireworks and rocket testing

Dimmeterinch1/41/41/4DptimizedHigh-pressureHigh static pressureAirbagStandardsNominal Open-circuit SensitivitymV/Pa0.091.60.4Polarization VoltageV200200200Optimized Frequency Response ± 2 dBHz4 to 20004 to 700000.5 to 70000Optimized Frequency Response ± 2 dBHz4 to 20004 to 700000.5 to 70000Optimized Frequency Response ± 2 dBHz50 to 177 (2670)50 to 177 (2670)50 to 177 (2670)Optimized Frequency Response ± 2 dBHz593030Optimized Frequency Response ± 0 dB (A)593030CapacitancepF3.36.16.1VentingSideSideSideSideCover Limiting Frequency (-3 dB)Hz0.3 to 30.3 to 30.05 to 0.2Operating Temperature Range°C-40 to 150-40 to 150-40 to 150Pressure CoefficientdB/kPa0.003-0.003			in the second	Triff	
DytimizedHigh-pressureHigh static pressureAirbagStandards–––Nominal Open-circuit SensitivitymV/Pa0.091.60.4Polarization VoltageV200200200Optimized Frequency Response ± 2 dBHz4 to 200004 to 700000.5 to 70000Optimized Frequency Response ± 2 dBHz4 to 200004 to 700000.5 to 70000Optimized Frequency Response ± 2 dBHz4 to 200004 to 700000.5 to 70000Optimized Frequency Response ± 2 dBHz50 to 177 (2670)50 to 177 (2670)50 to 177 (2670)50 to 177 (2670)Inherent NoisedB (A)59303030CapacitancepF3.36.16.16.1VentingFrequency (–3 dB)Hz0.3 to 30.05 to 0.230Operating Temperature Range°C–40 to 150–40 to 150–40 to 150Pressure CoefficientdB/kPa––0.003–0.003–0.003	Type No.		4941	4938-W-001	4938 + WB-1418
StandardsNominal Open-circuit SensitivitymV/Pa0.091.60.4Polarization VoltageV200200200Optimized Frequency Response ± 2 dBHz4 to 200004 to 700000.5 to 70000Optamic Range with Preamplifier (Preamplifier type number)dB(A) to dB73.5 to 184 (2670)42 to 172 (2670)50 to 177 (2670)Inherent NoisedB (A)593030CapacitancepF3.36.16.1VentingSideSideSideSideLower Limiting Frequency (-3 dB)Hz0.3 to 30.3 to 30.05 to 0.2Operating Temperature Range°C-40 to 150-40 to 150-40 to 150Pressure CoefficientdB/kPa0.003-0.003	Diameter	inch	1/4	1/4	1/4
Nominal Open-circuit Sensitivity mV/Pa 0.09 1.6 0.4 Polarization Voltage V 200 200 200 Optimized Frequency Response ±2 dB Hz 4 to 2000 4 to 70000 0.5 to 70000 Optimized Frequency Response ±2 dB Hz 4 to 2000 4 to 70000 0.5 to 70000 Optimized Frequency Response ±2 dB Hz 4 to 20000 4 to 70000 0.5 to 70000 Optimized Frequency Response ±2 dB Hz 4 to 20000 4 to 70000 0.5 to 70000 Optimized Frequency Response ±2 dB Hz 4 to 20000 4 to 70000 0.5 to 70000 Optimized Frequency Response ±2 dB Hz 5 to 184 (2670) 42 to 172 50 to 177 (2670 + WB-1419) Inherent Noise dB (A) 59 30 30 30 Capacitance pF 3.3 6.1 6.1 6.1 Venting Side Side Side Side 50 Operating Temperature Range °C -40 to 150 -40 to 150 -40 to 150 Pressure Coefficient <td>Optimized</td> <td></td> <td>High-pressure</td> <td>High static pressure</td> <td>Airbag</td>	Optimized		High-pressure	High static pressure	Airbag
Polarization VoltageV200200200Optimized Frequency Response ± 2 dBHz4 to 200004 to 700000.5 to 70000Optimized Frequency Response ± 2 dBHz4 to 200004 to 700000.5 to 70000Optimized Frequency Response ± 2 dBHz4 to 200004 to 700000.5 to 70000Optimized Frequency Response ± 2 dBMB(A) to dB73.5 to 1844 2 to 17250 to 177Preamplifier type number)dB(A)59303030Inherent NoisedB (A)59306.16.1CapacitancepF3.36.16.16.1VentingSideSideSideSideSideCower Limiting Frequency (-3 dB)Hz0.3 to 30.3 to 30.05 to 0.2Operating Temperature Range°C-40 to 150-40 to 150-40 to 150Pressure CoefficientdB/kPa0.003-0.003	Standards		-	-	-
Dynamic Range with Preamplifier (Preamplifier type number) Hz 4 to 2000 4 to 70000 0.5 to 70000 Dynamic Range with Preamplifier (Preamplifier type number) dB(A) to dB 73.5 to 184 (2670) 4 to 70000 (2670) 50 to 177 (2670) Inherent Noise dB (A) 59 30 30 Capacitance pF 3.3 6.1 6.1 Venting Side Side Side Lower Limiting Frequency (-3 dB) Hz 0.3 to 3 0.3 to 3 0.05 to 0.2 Operating Temperature Range °C -40 to 150 -40 to 150 -40 to 150 Pressure Coefficient dB/kPa - -0.003 -0.003 -0.003	Nominal Open-circuit Sensitivity	mV/Pa	0.09	1.6	0.4
Dynamic Range with Preamplifier (Preamplifier type number) dB(A) to dB 73.5 to 184 (2670) 42 to 172 (2670) 50 to 177 (2670 + WB-1419) Inherent Noise dB (A) 59 30 30 Capacitance pF 3.3 6.1 6.1 Venting Side Side Side Lower Limiting Frequency (-3 dB) Hz 0.3 to 3 0.3 to 3 0.05 to 0.2 Operating Temperature Range °C -40 to 150 -40 to 150 -40 to 150 Imperature Coefficient dB/kPa - -0.003 -0.003	Polarization Voltage	V	200	200	200
Preamplifier type number) dB(A) to dB (2670) (2670 + WB-1419) nherent Noise dB (A) 59 30 30 Capacitance pF 3.3 6.1 6.1 Venting Side Side Side Lower Limiting Frequency (-3 dB) Hz 0.3 to 3 0.3 to 3 0.05 to 0.2 Departing Temperature Range °C -40 to 150 -40 to 150 -40 to 150 Remperature Coefficient dB/kPa - -0.003 -0.003	Optimized Frequency Response ±2 dB	Hz	4 to 20000	4 to 70000	0.5 to 70000
Capacitance pF 3.3 6.1 6.1 Venting Side <	Dynamic Range with Preamplifier (Preamplifier type number)	dB(A) to dB			
VentingSideSideSideLower Limiting Frequency (-3 dB)Hz0.3 to 30.3 to 30.05 to 0.2Deperating Temperature Range°C-40 to 150-40 to 150-40 to 150Temperature CoefficientdB/°C-+0.003+0.003Pressure CoefficientdB/kPa0.003-0.003	Inherent Noise	dB (A)	59	30	30
Lower Limiting Frequency (-3 dB) Hz 0.3 to 3 0.3 to 3 0.05 to 0.2 Operating Temperature Range °C -40 to 150 -40 to 150 -40 to 150 Temperature Coefficient dB/°C - +0.003 +0.003 Pressure Coefficient dB/kPa - -0.003 -0.003	Capacitance	pF	3.3	6.1	6.1
Operating Temperature Range °C -40 to 150 -40 to 150 -40 to 150 Itemperature Coefficient dB/°C - +0.003 +0.003 Pressure Coefficient dB/kPa - -0.003 -0.003	Venting		Side	Side	Side
Imperature Coefficient dB/°C - +0.003 +0.003 Pressure Coefficient dB/kPa - -0.003 -0.003	Lower Limiting Frequency (-3 dB)	Hz	0.3 to 3	0.3 to 3	0.05 to 0.2
Pressure Coefficient dB/kPa – –0.003 –0.003	Operating Temperature Range	°C	-40 to 150	-40 to 150	-40 to 150
	Temperature Coefficient	dB/°C	-	+0.003	+0.003
Preamplifier Included No No No	Pressure Coefficient	dB/kPa	-	-0.003	-0.003
	Preamplifier Included		No	No	No

Hydrophones for High-intensity Measurements Although originally intended for underwater measurements, these hermetically sealed devices are also very suitable for high intensity pressure measurements in air. This is because of the low sensitivity of the hydrophone. The usable frequency range is from a few fractions of a Hz to around 20 kHz.

Hydrophones

The Brüel & Kjær range of hydrophones is a range of individually calibrated, waterborne-sound transducers that have a flat frequency response and are omnidirectional over a wide frequency range. Their construction is such that they are absolutely waterproof and have good corrosion resistance. There are four types.

- Type 8103 is suitable for laboratory and industrial use and particularly for the acoustic study of marine animals or for cavitation measurements
- **Type 8104** is ideal for calibration purposes
- Type 8105 is a robust, spherical hydrophone that can be used at an ocean depth of 1000 m. It has excellent directional characteristics, being omnidirectional over 270° in the axial plane and 360° in the radial plane
- Type 8106 has a built-in amplifier that gives a signal suitable for transmission over long underwater cables. It can be used down to an ocean depth of 1000 m

8106

Type No.		8103	8104	8105	8106
Sensitivity [*]		–211 dB re 1 V/ μ Pa ±2 dB	–205 dB re :	1 V/μPa ±2 dB	–173 dB re 1 V/μPa ±3 dB
Nominal Voltage Sensitivity		29 µV/Pa	56 j	μV/Pa	2.24 mV/Pa
Nominal Charge Sensitivity*		0.1 pC/Pa	0.44 pC/Pa	0.41 pC/Pa	N/A
Capacitance* (including standard cable)		3700 pF	7800 pF	7250 pF	N/A
		0.1 to 20000 Hz +1/-1.5 dB	0.1 to 10000 Hz ±1.5 dB	0.1 to 100000 Hz +1/-6.5 dB	10 to 10000 Hz +0.5/-3.0 dB
Frequency Response [*] (re 250 Hz)		0.1 to 100000 Hz +1.5/-6.0 dB	0.1 to 80000 Hz ±4.0 dB	0.1 to 160000 Hz	7 to 30000 Hz +0.5/–6.0 dB
		0.1 to 180000 Hz +3.5/-12.5 dB	0.1 to 120000 Hz +4/-12.0 dB	+3.5/-10.0 dB	3 to 80000 Hz +6/-10.0 dB
Horizontal Directivity (radial xy plane)			±2 dB at 100000 Hz		±2 dB at 20000 Hz
Vertical Directivity (axial xz plane)		±4 dB at 100000 Hz	±2 dB at 50000 Hz	±2 dB over 270° at 80000 Hz ±2.5 dB at 100000 Hz	±3 dB at 20000 Hz
Leakage Resistance * (at 20 °C)			>2500 MΩ		
Operating Temperature	Short-term		-30 to +120 °C		
Range	Continuous		-30 to +80 °C		-10 to +60 °C
Sensitivity Change	Charge	0 to +0.03 dB/°C	0 to +0.03 dB/°C	0 to +0.03 dB/°C	-
with Temperature	Voltage	0 to -0.03 dB/°C	0 to -0.04 dB/°C	0 to -0.03 dB/°C	0 to +0.01 dB/°C
Max. Operating Static Pressure		252 dB = 4 × 10 ⁶ Pa = 40 at	m = 400 m ocean depth	$260 \text{ dB} = 9.8 \times 10^6 \text{ Pa} = 100$	0 atm = 1000 m ocean depth
Sensitivity Change with Static Pressure		0 to -3 ×	s 10 ⁻⁷ dB/Pa (0 to -0.03 d	dB/atm)	0 to 1 × 10 ⁻⁷ dB/Pa 0 to 0.01 dB/atm
Allowable Total Radiation Dose			5 × 1	0 ⁷ Rad.	
Integral Cable		6 m waterproof low-noise double-shielded PTFE cable with standard miniature coaxial plug		ow-noise shielded cable 5 with BNC plug	
Raw Cable		AC-0043	AC-	-0034	AC-0101
Weight, including integral cable		170 g (0.37 lb)	1.6 kg	; (3.5 lb)	382 g (0.84 lb)
Dimensions	Length	50 mm (1.97")	120 mm (4.73")	93 mm (3.66")	182 mm (7.17")
* Nominal value, each hydrophone is supplied	arnothing (body)	9.5 mm (0.37")	21 mm (0.83")	22 mm (0.87")	32 mm (1.26″)

* Nominal value, each hydrophone is supplied with its own calibration data Note: Unless otherwise stated, all values below are valid at 23 °C (73 °F)

Hydrophone Cables and Connectors

951173/5

Brüel & Kjær hydrophones are available in standard variants with the following default cable lengths:

- Type 8103 default length is 6 m
- Type 8104 default length is 10 m
- Type 8105 default length is 10 m

For Type 8106, which is supplied without cable, Underwater Cable AO-0390 is available in customer specific lengths up to 200 m.

MICROPHONE PREAMPLIFIERS

A condenser microphone must be combined with a preamplifier to provide impedance conversion, some filtering, and the capability to drive relatively long cables without significant signal degradation.

Preamplifiers are designed in accordance with two principles, each has its own special features:

- Classical preamplifier design
- CCLD preamplifier design

Classical Preamplifiers

The classical preamplifier has an easy to understand concept. It is basically a unity gain amplifier with extremely high input impedance and very low input capacitance.

- The supply voltage can be either ±15 V DC or a single 80 V DC.
- The output signal has its own separate wire, as do the polarization and CIC voltage.
- Pin 5 is often used for transmission of TEDS data (so called Class II TEDS).
- CIC (Charge Injection Calibration) is possible by injecting a signal (on pin 1 of the LEMO connector).

CCLD Preamplifiers

Despite its origin in the vibration transducer world, the Constant Current Line Drive (CCLD) principle is increasing in popularity in the area of sound and measurement applications.

Different manufacturers market transducers using the CCLD principle under different names. The benefit of CCLD is that the same wire is used for both the signal and the supply current. Using Class I TEDS, even the TEDS data can be transmitted over that same wire (using a level controlled electronic switch).

This enables the use of cost-effective coaxial cables and BNC connectors popularly used in general applications.

A CCLD input can be connected to a microphone, vibration sensor, or any other sensor with CCLD output. Due to the working principle, the signal is superimposed on a DC voltage. This DC bias voltage is typically around 12 V. Bias drift (over temperature or time) will reduce the dynamic range.

Due to the lower DC supply voltage (typically 20 - 28 V DC compliance voltage out of the front end), there are some restrictions to the upper limit for a CCLD solution. Other limitations with CCLD solutions include: confined to use with prepolarized microphones only, and the unavailability of CIC. However in many practical applications, this is happily accepted in order to get the benefits of CCLD, that is, ease of use and inexpensive cables.

The DC bias voltage is often used by the front end to provide some simple means of cable monitoring. A bias voltage below a certain value is interpreted as short circuit while a DC value above a certain value as open circuit.

Classical Versus CCLD Preamplifier

	Classical	CCLD
Output Voltage	55 V _p	7 V _p
Output Current	2 to 20 mA	3 to 20 mA
Noise	<2 μV	4 μV
Distortion	≤80 dB	≤70 dB
Verification	CIC/IVC	No
IEEE 1451.4	Yes	Yes
Cable Price	Higher	Lower
Connector	LEMO	BNC
Microphone Type	Both	Prepolarized only
Accelerometer Conditioning	No	Yes

Brüel & Kjær Range of Microphone Preamplifiers

We offer a large selection of robust and acoustically optimized preamplifiers that allow operation in a wide range of environmental conditions. The high-output current capability of Brüel & Kjær preamplifiers allows the use of extremely long cables, even with high sound pressure levels present at high frequencies.

Preamplifiers are available in both 1/2-inch and 1/4-inch dimensions for direct fit with the most used microphones cartridge sizes. Adaptors are available for 1-inch and 1/8-inch cartridges.

- The most popular classical 1/2-inch preamplifier is Type 2669 which is available in several different versions
- **Type 2669-W-001** is modified for use with input modules with LEMO socket and split supply (for example, with PULSE and NEXUS). It must be used with cable WL-1302
- **Type 2670** is a Falcon Range product for precision acoustic measurements with Brüel & Kjær's wide range of condenser

microphones. It is available in different versions, each with their own special features

- CCLD preamplifier **Type 2671** is very compact and operates over a wide range of temperature, humidity and other environmental conditions
- When insert voltage calibration is required, **Type 2673** is the obvious choice
- **Type 2695**, perhaps due to its small size (half the length of the extremely popular CCLD preamplifier Type 2671), is an often overlooked unit
- **Type 2699** combines a CCLD preamplifier and an A-weighting filter in one unit. This type can be easily distinguished from other preamplifiers due to the two engraved rings

When sold alone, most preamplifers are supplied with TEDS template UTID 1025. When sold as part of a TEDS microphone combination, the template UTID is 769 or 116289.

12

		E		Harris				
Type No.		2669-B	2669-L	2669-C	2669-001	2670	2670-W-001	1706
Diameter	inch	1/2	1/2	1/2	1/2	1/4	1/4	1/2
Optimized		Acoustical [*]	Acoustical	Cylindrical	For Type 4232 only	Phase	Short, 48 mm	CCLD
Connector at Preamplifier		LEMO 0B, 7-pin	LEMO 0B, 7-pin	LEMO 1B, 7-pin	LEMO 1B, 7-pin	Fixed (2 m)	Fixed (0.6 m)	BNC
Connector at Instrument/Cable		B&K, 7-pin	LEMO 1B, 7-pin	None	None	LEMO 1B, 7-pin	0.6 m cable with LEMO 1B, 7-pin	N/A
Calibration Facility		CIC	CIC	CIC	CIC	CIC	CIC	None
Polarization Voltage Support		Yes	Yes	Yes	Yes	Yes	Yes	No
Supply Voltage	v	±14 to ±60 or 28 to 120	±5 to ±20 or 10 to 40 [†]	28				
Max. Output Voltage (Peak)	v	55 (5 below supply)	15	7				
Max. Output Current (Peak)	mA	20	20	20	20	20	17	19
Frequency Range	Hz	3 to 200000 ±0.5 dB (15 pF)	15 to 200000 ±0.5 dB (6.2 pF)	15 to 200000 ±0.5 dB (6.2 pF)	20 to 50000 ±2 dB (12 pF)			
Attenuation	dB	< 0.35	< 0.35	< 0.35	< 0.35	<0.4	<0.4	< 0.35
Noise A-weighted, typical	μV	1.9	1.9	1.9	1.9	4	9	4
Noise 22.4 Hz to 300 kHz, typical	μV	8.2	8.2	8.2	8.2	14	18	15
Input Impedance	GΩ pF	15 0.3	15 0.3	15 0.3	15 0.3	15 0.25	15 0.25	6 0.5
TEDS UTID		1025 from serial number 2221155	1025 from serial number 2221155	1025 from serial number 2221155	1025 from serial number 2221155	1025 from serial number 2248944	No	1025 from serial number 2264319

* Acoustical means a tapered preamplifier house. Other preamplifiers have cylindrical houses

⁺ Note: The warranty does **not** cover Preamplifier Type 2670-W-001 if used at a supply voltage >40 V

				A statement		Ţ	
Type No.		2670-WB-1419	2671	2671-W-001	2673	2695	2699
Diameter	inch	1/4	1/2	1/2	1/2	1/2	1/2
Optimized		Airbag	CCLD	CCLD	Calibration	Short CCLD	CCLD
Connector at Preamplifier		Fixed (2 m) cable	BNC	BNC	LEMO 0B, 7-pin	10-32 UNF	BNC
Connector at Instrument Cable		LEMO 1B, 7-pin	N/A	None	LEMO 1B, 7-pin	N/A	N/A
Calibration Facility		None	None	None	IVC	10-32 UNF	BNC
Polarization Voltage Support		Yes	No	No	Yes	No	No
Supply Voltage	V	±14 to ±60 or 28 to 120	28	28	±14 to ±60 or 28 to 120	28	28
Max. Output Voltage (Peak)	v	55 (10 below supply)	7	7	55 (10 V below sup- ply)	7	7
Max. Output Current (Peak)	mA	20	19	19	19	19	18
Frequency Range	Hz	1 to 100000 ±1 dB (6.2 pF)	20 to 50000 ±2 dB (12 pF)	3 to 50000 2 dB (12 pF)	3 to 200000 ±0.5 dB (20 pF)	20 to 50000 ±2 dB (15 pF)	A-weighted to IEC 61672 Class 1
Attenuation	dB	11	<0.35	<0.35	<0.05	<0.2	0, ±0.3 dB at 1 kHz
Noise A-weighted, typical	μV	4	4	2	1.8	4	8 Max., LIN
Noise 22.4 Hz to 300 kHz, typical	μV	14	15	4	11	12	N/A
Input Impedance	GΩ pF	15 15	1.5 0.4	10 0.4	1 0.05	1.7 0.4	10 +20 to 40% 0.5
TEDS UTID		1025 from serial number 2264319	1025 from serial number 2264319	1025 from serial number 2221155	No	1025	1025

Replacing Discontinued Brüel & Kjær Preamplifiers

Modern (Falcon Range) preamplifiers have several advantages over the older types, for example, with respect to parameters, settling time, noise immunity, physical size and connectors.

The table below can be helpful if you need a replacement for an older Brüel & Kjær type.

Older Preamplifier Types	Recommended Replacement Preamplifier Types
2619	2669
2627	2673
2633	2670
2639	2669
2645	2673

Type No.		2660	2660-W-001
Diameter	inch	1/2 and 1/1	1/2
Optimized		Low-noise	Low-noise
Connector at Preamplifier		None	None
Connector at Instrument/Cable		B&K, 7-pin	B&K, 7-pin
Calibration Facility		None	None
Polarization Voltage Support		Yes	Yes
Supply Voltage	V	120 and 12	±14 to ±16 V
Max. Output Voltage (Peak)	V	45	4
Max. Output Current (Peak)	mA	1.5	1.5
Frequency Range	Hz	20 to 200000 ±1 dB (0 dB)(47 pF)	20 to 200000 ±1 dB (0 dB)(47 pF)
Attenuation	dB	< 0.06	< 0.06
Noise A-weighted, typical	μV	0.8	0.8
Noise 22.4 Hz to 300 kHz, typical	μV	5	5
Input Impedance	GΩ pF	36 0.3	36 0.3
TEDS UTID		No	No

MICROPHONE CALIBRATION

The most important parameter for any measurement device is sensitivity. The sensitivity can be defined as the ratio of the output quantity to the input quantity. To determine the sensitivity is to calibrate the measurement device.

A calibration is performed:

- To ensure that your measurements are correct
- To prove that measurement methods and the equipment used are accurate, for example, to prove that a measurement complies with the requirements of national legislation, standard bodies or customers
- To verify the stability of the measurement equipment, including equipment used to perform calibration
- To account for local measurement conditions, for example, variations in ambient pressure and temperature
- To ensure product quality
- To build confidence in measurement results

Calibrators

Type No.		4231	4226	4228	4229
Description		Sound Calibrator	Multifunction Acoustic Calibrator	Pistonphone	Hydrophone Calibrator
Standards		EN/IEC 60942 (2003) Class LS [*] and Class 1 ANSI S1.40–1984	EN/IEC 60942 (1988) Class 1 ANSI S1.40-1984	EN/IEC 60942 (1988) Class 1 [†] ANSI S1.40–1984	-
Nominal Sound Pressure Level	dB re 20 μPa	94 and 114	94, 104 and 114	124	From 151 to 166, depending on hydrophone
Calibration Frequencies	Hz	1000	31.5 Hz to 16 kHz in octave steps plus 12.5 kHz	251.2	251.2
Level Accuracy	dB	±0.2 [‡]	±0.2 (at 94 dB, 1 kHz)	±0.2 [‡]	±0.7
Transducer		1-inch and 1/2-inch (1/4-inch and 1/8-inch with adaptor)	1/2-inch and 1/4-inch	1-inch, 1/2-inch,1/4-inch and 1/8-inch	Fits Types 8100, 8101, 8103, 8104, 8105 and 8106

* Type 4231 conforms with Class LS tolerances over the full temperature range from -10 to +50 °C

+ Type 4228 specifications meet the class LS/C requirements of IEC 60942 (2003). Formal type approval awaits new edition of the standard.

[‡] Maximum deviation from nominal sound pressure level. Deviation from individually calibrated level is less than 0.09 dB.

Sound Intensity Calibrators

Requirements for laboratory and field use are different. Brüel & Kjær, therefore, offers two instruments for sound intensity calibration:

- Type 3451-A for laboratory use •
- Type 4297 for field use ٠

Both calibrators fulfil IEC 61043, 1993 Class 1.

Type No.		3541-A	4297
Main Application		In the laboratory	In the field
Dismantling of Probe		Necessary	Unnecessary (up to 3 kHz)
Calibration of Sound Intensity Level	L	Yes	No
Calibration of Sound Pressure Level	Lp	Yes	Yes
Calibration of Particle Velocity Level	Lv	Yes	No
Pressure-Residual Intensity Index	$L_p - L_l$	250 Hz	20 to 3 kHz with spacer 20 to 6.3 kHz without spacer
Spacings Accommodated		Irrelevant as spacer must be removed from probe	Probe must be based on 12 mm spacer
Sound Pressure Source		Separate pistonphone	Integrated
Noise Generator		Sine tone at 250 Hz	Integrated pink noise generator
Microphones Accommodated	inch	1/4 and 1/2	1/2
Number of Mechanical Parts		4	1

Adaptors for Calibration

DP-0776	Adaptor for 1/2-inch microphones Use with Type 4228					
DP-0775	Adaptor for 1/4-inch microphones Use with Types 4228 and 4231					
DP-0774	Adaptor for 1/8-inch microphones Use with Types 4228 and 4231	SR 0776		09.0775		06 0334
DP-0888	Adaptor for checking sound intensity probes with Type 4231, sound pressure level 97 dB ±0.7 dB					
DP-0977	Adaptor (for un-flanged surface micro- phone)	DP-0776		DP-0775	C)P-0774
DP-0978	Adaptor for Type 4101-A					
DP-0979	Adaptor for flush-mounted surface micro- phone	DP 08-				DP 0930
DB-4009	1/4-inch Adaptor for UA-0033					\bigcirc
DB-4010	1/8-inch Adaptor for UA-0033					
UC-0210	1/2-inch Adaptor for Type 4231	DP-0977		DP-0978		DP-0979
DB-4121	1/2-inch Adaptor for Type 4961	2				51 0575
DB-4199	Adaptor for Acoustic Calibrator Type 4226 Use with Types 4184 and 4184-A					
Electrostat	ic Actuators					
UA-0023	For 1-inch microphones		1. 1922			
UA-0033	For 1/2-inch microphones		O		-	m
UA-1639	For calibration of surface microphones					
Actuator A	daptors					
DB-0264	For 1/4-inch microphones Use with UA-0033	UA-0023	UA-0033	UA-1639	DB-0264	DB-0900
DB-0900	For 1/8-inch microphones Use with UA-0033					

MORE ABOUT MICROPHONES

TEDS Microphones

A TEDS microphone consists of a microphone cartridge and its preamplifier with a memory chip, sealed to form one unit called the TEDS microphone.

TEDS Templates

The TEDS template defines the memory mapping of the TEDS chip and hence the "understanding" between transducer and front end.

A number of TEDS templates have been standardized by the IEEE and in addition to this a number of non-standard vendor-specific templates exist. The different TEDS templates are differentiated by different ID numbers. At the moment Brüel & Kjær uses the following templates for TEDS microphones and preamplifiers.

IEEE P1451.4 V.0.9 - TEDS Templates*

UTID No.	Name	Remarks
769	Microphone with integrated preamplifier	Used for most TEDS microphones
1025	Microphone preamplifier	Used for most TEDS microphone preamplifiers
116289	Microphone with integrated preamplifier extended sensitivity	Used in special cases like low- sensitivity microphones or refer- ence frequency not 250 Hz

IEEE 1451.4 V.1.0 - TEDS Templates

UDID No.	Name	Remarks
127-0-0-0U	Microphone with integrated pre- amplifier, V.1.0	This template is without transfer function
		Replaces UTID 769 and 116289
127-0-0-1U	Microphone with integrated pre- amplifier, transfer function, V.1.0	Same as UDID 127-0-0-0U but with transfer function
		Replaces UTID 34013408

* Default template for most Brüel & Kjær TEDS microphones

To find out more about TEDS, see Implementation of TEDS.

Common Specifications

For detailed specifications, please see the product data for the individual components (microphone or preamplifier). Unless otherwise stated, all specifications are valid under the following conditions:

- CCLD input types: 24 to 28 V compliance voltage
- Classical input types: 80 V DC supply⁺
- Dynamic range low limit: Noise floor dBA
- Max. SPL dB: The 3% distortion limit in dB SPL RMS rounded to nearest integer. The undistorted peak level will normally be 3 dB higher
- Cartridge sensitivity: Nominal
- TEDS microphone sensitivity: Stated as the nominal cartridge sensitivity except for 1/4-inch and 1/8-inch cartridges where the loaded sensitivity differs considerably from the open-circuit sensitivity

Temperature Range

The read/write temperature range of the TEDS chip is guaranteed by the chip manufacturer up to +85 °C only (+185 °F), but the TEDS chip will survive the full specified temperature range of the TEDS microphone/preamplifier without any damage.

Cable Length

TEDS is guaranteed to work properly with a cable length up to 100 m (328 ft).

 $^{\dagger}\,$ If, for example, the supply voltage to a classical preamplifier is reduced from 80 V to 28 V or ± 14 V, the maximum SPL may theoretically be reduced by up to 15.7 dB

Microphone Type No.	Cartridge Diameter (in)	Data CD	Field [*]	Preamplifier Type No.	Input Type	Adaptor	Sensitivity (dB re 1 V/Pa)	Sensitivity (mV/Pa)	±2 dB Frequency Range (Hz)	Noise floor (dBA)	Max. SPL (dB)
4138-A-015	1/8	No	Р	2670	Classical	UA-0160	-65	0.55	6.5 to 140 k	52.2	168
4138-C-006	1/8	No	Р	2669-C	Classical	UA-0036	-62	0.79	6.5 to 140 k	52.2	168
4138-L-006	1/8	No	Р	2669-L	Classical	UA-0036	-62	0.79	6.5 to 140 k	52.2	168
4188-A-021	1/2	No	F	2671	CCLD		-30	31.6	20 to 12.5 k	19	138
4188-C-001	1/2	No	F	2669-C	Classical		-30	31.6	8 to 12.5 k	15.8	146
4188-L-001	1/2	No	F	2669-L	Classical		-30	31.6	8 to 12.5 k	15.8	146
4189-A-021	1/2	Yes	F	2671	CCLD		-26	48	20 to 20 k	16.5	134
4189-A-031	1/2	Yes	F	2699	CCLD		-26	48	6.3 to 20 k	18	130
4189-B-001 [†]	1/2	Yes	F	2669-B	Classical		-26	49	6.3 to 20 k	15.2	146
4189-C-001	1/2	Yes	F	2669-C	Classical		-26	49	6.3 to 20 k	15.2	146

Microphone Type No.	Cartridge Diameter (in)	Data CD	Field [*]	Preamplifier Type No.	Input Type	Adaptor	Sensitivity (dB re 1 V/Pa)	Sensitivity (mV/Pa)	±2 dB Frequency Range (Hz)	Noise floor (dBA)	Max. SPL (dB)
4189-H-041	1/2	Yes	F	1706	CCLD		-26	48	6.3 to 20 k	16.5	134
4189-L-001	1/2	Yes	F	2669-L	Classical		-26	49	6.3 to 20 k	15.2	146
4189-W-003	1/2	Yes	F	2671-W-001	CCLD		-26	48	6.3 to 20 k	16.5	134
4190-B-001 [†]	1/2	Yes	F	2669-B	Classical		-26	48	3.15 to 20 k	15	148
4190-C-001	1/2	Yes	F	2669-C	Classical		-26	48	3.15 to 20 k	15	148
4190-L-001	1/2	Yes	F	2669-L	Classical		-26	48	3.15 to 20 k	15	148
4190-L-002	1/2	Yes	F	2669-L	Classical		-26	48	3.15 to 20 k	15	148
4191-B-001 [†]	1/2	Yes	F	2669-B	Classical		-38	12	3.15 to 40 k	21.4	162
4191-C-001	1/2	Yes	F	2669-C	Classical		-38	12	3.15 to 40 k	21.4	162
4191-L-001	1/2	Yes	F	2669-L	Classical		-38	12	3.15 to 40 k	21.4	162
4192-B-001 [†]	1/2	Yes	Р	2669-B	Classical		-38	12	3.15 to 20 k	20.7	162
4192-C-001	1/2	Yes	Р	2669-C	Classical		-38	12	3.15 to 20 k	20.7	162
4192-L-001	1/2	Yes	Р	2669-L	Classical		-38	12	3.15 to 20 k	20.7	162
4193-B-004 [†]	1/2	Yes	Р	2669-B	Classical	UC-0211	-54	2	0.13 to 20 k	29	148
4193-C-004	1/2	Yes	Р	2669-C	Classical	UC-0211	-54	2	0.13 to 20 k	29	148
4193-L-004	1/2	Yes	Р	2669-L	Classical	UC-0211	-54	2	0.13 to 20 k	29	148
4938-A-011	1/4	Yes	Р	2670	Classical		-57	1.4	4 to 70 k	42	172
4938-C-002	1/4	Yes	Р	2669-C	Classical	UA-0035	-57	1.4	4 to 70 k	42	172
4938-L-002	1/4	Yes	Р	2669-L	Classical	UA-0035	-57	1.4	4 to 70 k	42	172
4939-A-011	1/4	Yes	F	2670	Classical		-49	3.8	4 to 100 k	35	164
4939-C-002	1/4	Yes	F	2669-C	Classical	UA-0035	-49	3.6	4 to 100 k	35	164
4939-L-002	1/4	Yes	F	2669-L	Classical	UA-0035	-49	3.6	4 to 100 k	35	164
4941-A-011	1/4	No	Р	2670	Classical		-82	0.08	4 to 20 k	73.5	184
4941-C-002	1/4	No	Р	2669-C	Classical	UA-0035	-82	0.08	4 to 20 k	75.8	184
4942-A-021	1/2	Yes	D	2671	CCLD		-26	50	20 to 16 k	18	134
4942-A-031	1/2	Yes	D	2699	CCLD		-26	50	6.3 to 16 k	18	130
4942-B-001 [†]	1/2	Yes	D	2669-B	Classical		-26	50	6.3 to 16 k	15.2	146
4942-C-001	1/2	Yes	D	2669-C	Classical		-26	50	6.3 to 16 k	15.2	146
4942-H-041	1/2	Yes	D	1706	CCLD		-26	50	6.3 to 16 k	18	134
4942-L-001	1/2	Yes	D	2669-L	Classical		-26	50	6.3 to 16 k	15.2	146
4943-B-001 [†]	1/2	Yes	D	2669-B	Classical		-26	50	3.15 to 10 k	15.9	148
4943-C-001	1/2	Yes	D	2669-C	Classical		-26	50	3.15 to 10 k	15.9	148
4943-L-001	1/2	Yes	D	2669-L	Classical		-26	49	3.15 to 10 k	15.9	148
4944-A/B	1/4	Yes	Р	Integral	CCLD		-61	0.9	16 to 70 k	48	169
4954-A/B	1/4	Yes	F	Integral	CCLD		-51	2.8	16 to 80 k	40	159
4954-A-011	1/4	Yes	F	2670	Classical		-50.5	3	4 to 80 k	35	164
4955	1/2	Yes	F	Integral	Classical		0.8	1100	10 to 16 k	6.5	110
4955-A	1/2	Yes	F	Integral	Classical		0.8	1100	10 to 16 k	6.5	110
4956-W-001	1/2	Yes	Р	2671-W-001	CCLD		-38	12.5	3 to 20 k	26.5	135
4957	1/4	No	F	Integral	CCLD		-39	11.2	50 to 10 k	32	134
4958	1/4	No	F	Integral	CCLD		-39	11.2	10 to 20 k	28	140
4959	1/4	No	Р	Integral	CCLD		-39	11.2	50 to 20 k	32	134
4961	1/4	Yes	М	Integral	CCLD		-24.4	60	12 to 20 k	20	130

* P = Pressure, F = Free, D = Diffuse and M = Multi-field

Microphone Verification and Calibration

Charge Injection Calibration (CIC)

This is a Brüel & Kjær patented method for in situ verification of the integrity of the entire measurement chain, for example, microphone, preamplifier and cabling. Even microphones remote from the input stage/conditioning amplifier can be verified. The basic philosophy behind CIC is that if we have a known condition (for example, a properly calibrated microphone) and establish a reference measurement, then as long as the reference value does not change, nothing has changed and the microphone calibration will still be valid. Additionally CIC verifies the cable and preamplifier. Furthermore, if an error occurs, then the change in the CIC signal will very often clearly indicate which kind of problem causes the error.

The CIC technique is a great improvement over the traditional insert voltage calibration method which virtually ignores the state of the microphone. The CIC technique is very sensitive to any change in the microphone's capacitance, which is a reliable indicator of the microphone's condition.

The technique works by introducing a small but accurately defined capacitance C_c (typically 0.2 pF) with a very high leakage resistance (greater than 50000 G Ω) into the circuit of the preamplifier, see figure to the right. C_i and R_i represent the preamplifier's high input impedance and g its gain (= 1).

For a given calibration signal e_i , the output e_o of this arrangement will change considerably, even for small changes in the microphone's capacitance C_m . The CIC technique is about 100 times more sensitive than the insert voltage calibration. In the extreme case where there is a significant leakage between the microphone's diaphragm and its back plate (C_m becomes very large), the output signal will change by tens of decibels compared with only tenths of a decibel using the insert voltage method.

Another important CIC feature is that, unlike the insert voltage technique, it is far less sensitive to external electrical fields.

Insert Voltage Calibration (IVC)

This method was originally developed for calibration of the opencircuit voltage sensitivity of microphones and, for this purpose, it is still the best method. IVC requires a special preamplifier and will not detect microphone changes as easily as the CIC method. Charge injection calibration

How to Perform CIC

The CIC method can be used to monitor the measurement system at all frequencies covered by the system.

Use low frequencies to observe changes in the preamplifier input resistance or additional leakage.

Use the mid-frequency range, for example, around 1 kHz to check for changes to the microphone capacitance. The CIC output is essentially inversely proportional to the microphone capacitance.

Check the high-frequency attenuation (above 10 kHz) to monitor for changes in the microphone resonance.

When Can CIC be Used?

CIC requires use of a preamplifier and a cable that supports CIC plus a front-end input that allows CIC measurement. If the power supply does not support CIC, Brüel & Kjær can supply adaptors to inject the CIC signal:

- WB-0850 for a B&K connector
- UA-1405 for a LEMO connector

CIC is not possible when using preamplifiers with CCLD output.

Brüel & Kjær's PULSE platform and the NEXUS range of conditioning amplifiers support CIC for the microphone inputs.

Calibration

The microphone and the entire measurement chain must be calibrated at regular intervals. The calibration provides traceability and proven accuracy to your system. The intention behind CIC is not to replace the calibration, but to enable you to extend the calibration interval.

MICROPHONE AND PREAMPLIFIER EXTENSION CABLES

The best connection between A and B is a cable from Brüel & Kjær. A quality cable is so much more than just an electrical connection between two points. Cables from Brüel & Kjær are carefully selected and designed in order to offer excellent electrical properties such as high screening and low capacitance combined with maximum strength and flexibility for easy handling. Our most popular cables are marked with \blacklozenge . These offer the best delivery times and prices.

	Item No.	Connector A-end	Connector B-end	Raw Cable	Description	
◆ AO-0414		LEMO 1B, Female	LEMO 1B, Male	AC-0289	Most popular extension cable for classical preamplifier and microphone input. Also fits directly in preamplifiers with cylindrical houses. PUR cable -20 to +80 °C	
	AO-041 9	LEMO 0B, Female	LEMO 1B, Male	AC-0219	Preamplifier Cable Silicone Cable –60 to +150 °C Suits only Types 2669 and 2673 with tapered house	- Alman
	◆ AO-0428	LEMO 0B, Female	7-pin B&K, Male	AC-0219	From current classical preamplifier with tapered house to B&K input Silicone cable -60 to +150 °C	
	AO-0027	7-pin B&K, Female	7-pin B&K, Male	AC-0289	From old Brüel & Kjær preamplifier to B&K input. Single-screened PUR cable –20 to +80 °C	
	◆ AO-0028	7-pin B&K, Female	7-pin B&K, Male	Double- screened AC-3028	Similar to AO-0027, but with double-screened cable PVC –20 to +80 °C	A A A A A A A A A A A A A A A A A A A
	◆ AO-0488	7-pin B&K, Female	LEMO 1B, Male	AC-0289	Connects older Brüel & Kjær systems to modern input PUR cable −20 to +80 °C	
	◆ AO-0645	LEMO 1B, Female	LEMO 1B, 10-pin, Male	AC-0289	Connects classical microphone preamplifiers to sound level meter and other inputs (for example, Types 2250, 2270 and 3639) PUR cable –20 to +80 °C	La Contraction

lte	em No.	Connector A-end	Connector B-end	Raw Cable	Description	~
AC	D-0479	LEMO 1B, Male	BNC, Male	AC-0289	Microphone front end input cable Only LEMO pin 2 and 4 are connected to BNC, LEMO pin 2 is GND PUR cable –20 to +80 °C	Col - Manager
AC	D-0537	7-pin B&K, Female	LEMO 1B, Male	AC-0289	Adaptor cable – use only with Types 2633 and 2639 PUR cable –20 to +80 °C	San Anna
W	L-3185	7-pin B&K, Female	BNC, Male		Adaptor cable, 0.6 m (2 ft)	Color
AC	D-0463	10–32 UNF, Male	10–32 UNF, Male	AC-0208	Economy cable PVC -20 to +70 °C	S P Market
AC	D-0563	SMB (right angle), Female	SMB (right angle), Female	RG-174	When you need right angle SMB in both ends -10 to +80 °C	1 and
AC	D-0564	SMB (right angle), Female	BNC, Male	RG-174	Where space is limited, right angle SMB and BNC –10 to +80 °C	(N)
• 4	40-0587	SMB, Female	BNC, Male	AC-0189	For use with array microphones PVC cable -20 to +70 °C	
AC	D-0687	10–32 UNF, Male	10–32 UNF, Male	AC-0005	Super cable with extensive connector relief PFA cable -40 to +120 °C	

2

AO-0087BNC, MaleBNC, MaleAC-006General purpose coaxial cable with BNC single screened 5 ΩCoasianAO-0426BNC, MaleBNC, MaleAC-0299General purpose coaxial cable with BNC, double-screened 5 ΩCoasianAO-053110–32 UNF, MaleBNC, MaleAC-0299For surface microphones or 1/4-inch TEDS microphones with 10–32 UNF PVC cable 20 to +70 °CCoasian	
AO-0428 BNC, Male AC-0239 50 Ω AO-0531 10–32 UNF, Male BNC, Male AC-0208 For surface microphones or 1/4-inch TEDS microphones with 10–32 UNF PVC cable	
AO-0531 10–32 UNF, Male BNC, Male AC-0208 PVC cable	
AO-0699 SMB, Female 10–32 UNF AC-0005 Low-noise, single-screened coaxial cable PFA cable	
AR-0014 LEMO 1B, LEMO 1B, Male Shielded Signal routing through closed doors and windows Female LEMO 1B, Male flat cable 0.2 mm thick	
WL-1287 LEMO 1B, LEMO 1B,10-pin, Female Male AC-0289 Connects Type 4182 to sound level meters, for example Types 2250 and 2270, SLM input PUR cable -20 to +80 °C	A Designation
WL-1302 7-pin B&K, Female LEMO 1B, Male AC-0289 Maximum ±16 V DC supply PUR cable -20 to +80 °C -20 to +80 °C	
EL-4023 7-pin B&K, LEMO 1B, 10- Female pin,Male Cable for Type 4182 to 10-pin LEMO connector	

Raw Cables

This table provides information about the raw cables used for a temperature range for a cable with connectors can be limited number of Brüel & Kjær extension cables. Note that the compared with the specifications for the raw cable.

Raw Cable	$\varnothing{\rm mm}$	Jacket	Colour	Temperature Range, °C	Centre Conductor	Z ohms	pF/m	Description
AC-0005	2	PFA	Black	-75 to +250	Silver-plated steel 0.25 mm	50	105	Special coaxial cable with low triboelectric noise
AC-0079	3.8	PUR	Grey	-50 to +70	$7 \times 0.10 \text{ mm}^2$		115	Special braided shield microphone cable
AC-0006	4.95	PVC II Low migration	Black	-25 to +85	19 × 0.1 mm	50	101	Single shielded, braided 96% coaxial cable
AC-0208	2.1	PVC	Grey	-20 to +80	$2 \times 0.1 \emptyset$	50	95	Single shielded, braided 86% coaxial cable
AC-0219	4	Silicone	Grey	-25 to +180	$7 \times 0.06 \text{ mm}^2$		90	Special braided shield microphone cable
AC-0289	4.2	PUR	Black	-30 to +70	$10 \times 0.04 \text{ mm}^2$		95	Special braided shield microphone cable
AC-0299	5.4	PVC II Low migration	Black	-25 to +85	0.88 mm	50	101	Double shielded, braided 96% coaxial cable
AC-3028	9	PVC	Grey	-10 to +70	$8 \times 0.5 \text{ mm}^2$			Cable hybrid $8 \times 0.5 \text{ mm}^2 + 1 \times \text{coaxial cable}$
AC-0043	3.1	FEP	White	-55 to +200	Silver-plated steel 0.29 mm	50	100	Low-noise double-screen
AC-0034	9.9	Polychloro- prene	Black	-40 to +80	2 × 18 AWG			Single shielded hydrophone MIL-C-915 cable
AC-0101	11.5	Polychloro- prene	Black	-35 to +85	$4 \times 1 \text{ mm}^2$			Single shielded hydrophone cable

More About Cables

Cable Length and Current Limitations

Brüel & Kjær preamplifiers can drive very long cables. The cable length is limited though by the available output current of the preamplifier, especially in situations where high-frequency signals must be measured at high levels.

The maximum sound pressure level $(L_{p,peak})$ that can be measured with the combination of available current, cable load, frequency content of signal and microphone sensitivity can be calculated with the following expression:

$$L_{p, peak} = 94 + 20 \log \left(\frac{i_{peak}}{2 \cdot \pi \cdot f_{max} \cdot C_L \cdot 1^{pa} \cdot S_c} \right) [dB]$$

where:

ipeak = maximum available peak current, either the preamplifier's maximum output current or the supply current minus the preamplifier's current consumption, whichever is the smallest

 f_{max} = maximum frequency in the signal

 C_1 = total capacitative load presented by the connection cable in farad (F). The load is calculated by multiplying the cable length in metres with the cable capacitance in F per metre

 S_c = loaded sensitivity of the microphone in V/Pa (nominal sensitivity)

The following examples illustrate the use of the above equation.

Example 1:

Using a PULSE module with CCLD Microphone Preamplifier Type 2671, Prepolarized Free-field, 1/2-inch Microphone Type 4188 and 100 m of 95 pF/m cable:

 $i_{peak} = 4 \text{ mA} - 1 \text{ mA} = 3 \text{ mA}$

 $C_1 = 95 \text{ pF/m} \times 100 \text{ m} = 9.5 \text{ nF}$

 $S_c = 31.6 \text{ mV/Pa}$

 $f_{\rm max} = 10\,000 \, {\rm Hz}$

Example 2:

Using a PULSE module with 1/2-inch Microphone Preamplifier Type 2669, 1/2-inch Free-field Microphone Type 4191 and 1000 m of 95 pF/m cable:

 $i_{peak} = 20 \text{ mA} - 3 \text{ mA} = 17 \text{ mA}$

 $C_l = 95 \text{ pF/m} \times 1000 \text{ m} = 95 \text{ nF}$ $S_{c} = 12.5 \text{ mV/Pa}$ $f_{\rm max}$ = 20000 Hz $L_{p, peak} = 94 + 20 \log \left(\frac{0.017}{2 \cdot \pi \cdot 20000 \cdot 05 \cdot 10^{-9} \cdot 10^{-9} \cdot 0.0125} \right) = 135 \, dB$

Note: The maximum peak sound pressure level for shorter cables may be limited by the available voltage and the preamplifiers maximum slew rate. Further details about the limitations due to voltage, current, and slew rate of the preamplifiers can be found in Brüel & Kjær's Microphone Handbook.

Cable Bending Radius

As a rule of thumb the bending radius should be more than 15 times the cable diameter.

Popular Connectors Used in Acoustic Measurements

Older Brüel & Kjær equipment traditionally used a proprietary B&K coaxial connector JP-0101 and the famous B&K 7-pin microphone plugs for the preamplifier input.

Due to the long lifetime and high stability of Brüel & Kjær instruments, thousands of instruments using these traditional connectors are still on the market, and we still supply extension cables and adaptors that connect these instruments to newer types of transducers.

Eventually, these older connectors were replaced by the LEMO 7pin connector (for classical microphone input), and the industry standard BNC connector for signal input/output. BNC connectors are also a popular choice for CCLD preamplifiers.

Another popular coaxial connector (originating from the vibration world) is the 10-32 UNF, also called the "Microdot" connector. The 10–32 UNF is especially popular where vibration can be expected. SMB type connectors are often encountered in multichannel systems, where space around the connector is limited, for example, in array solutions.

JP-0101

JP-0035

7-pin microphone preamplifier plug (male)

$\left[\right]$							
LEMO 7-pin							

MICROPHONE ACCESSORIES

Adaptors

	or Mounting Preamplifiers and Extension Microphones of Different Diameters						
UA-0786	1-inch microphone to 1/2-inch preamplifier, Insert Voltage possibility						
DB-0375	1-inch microphone to 1/2-inch preamplifier			1			
UA-0035	1/4-inch microphone to 1/2-inch preamplifier (driven shield 0.33 pF) Length = 72.5 mm	•	UA-0786		DB-0375	1	UA-003
WA-0371	1/4-inch microphone to 1/2-inch preamplifier, short version (driven shield 0.08 pF), Length = 32 mm						
WA-0406	1/8-inch microphone to 1/2-inch preamplifier		-				
UA-0036	1/8-inch microphone to 1/2-inch preamplifier (driven shield 0.46 pF)	WA-0371	Canon and	WA-0406		UA-0036	UA-
UA-0160	1/8-inch microphone to 1/4-inch preamplifier (driven shield 2.44 pF)						
UA-1434	1/2-inch to 1-inch adaptor						
JA-0954	Extension for 1/4-inch microphone and angle pieces 90°						
JJ-0081	Adaptor BNC, Female to Female	9			9		
	laptors 1/4- to 1/2- inch and Flush for 1/4- and 1/2-inch Microphones		UA-0122			UA-0123	
UA-0122	Right angle (driven shield 1.25 pF) Length = 60 mm						
UA-0123	Straight (driven shield 1.25 pF) Length = 60 mm		-3				
Flexible Ext	tension Rod	5.1			1	1-0	
UA-0196	1/2-inch to 1/2-inch (driven shield 0.22 pF), length = 210 mm	11-	-0081	UA-0196		EU-4000	UA-'
Angle Piece	es						
EU-4000	1/4-inch to 1/4-inch (driven shield 0.97 pF), 90°						
UA-1260	1/2-inch to 1/2-inch (80° approximately)						

Corrector

D7-9566
DZ-3300

Random Incidence Corrector gives Types 4176/ 4188 a flat random-incidence response for measurements in diffuse sound fields

Windscreens

The windscreen is made of specially prepared, open-pored polyurethane foam attenuating wind noise 10 to 12 dB at lower wind velocities, and is suited for hand-held outdoor sound

measurements. The windscreen is simply pushed as far as it will go over the microphone (fitted with its normal protection grid) and preamplifier.

Nose Cones

Nose cones are designed to reduce the aerodynamically induced noise present when the microphone is exposed to high wind speeds in a known direction, for example, during sound measurements in wind tunnels, ducts, etc. They replace the normal protection grid of the microphone, and have a streamlined shape with a highly polished surface giving the least possible resistance to air flow and thereby reducing the noise produced by the presence of the microphone itself. The fine wire mesh around the nose cone permits sound pressure transmission to the microphone diaphragm while a truncated cone behind the mesh reduces the air volume in front of the diaphragm.

Outdoor Protection

UA-1404	Outdoor microphone kit for Preamplifier Types 2669, 2671, 2673 and Sound Level Meter Types 2236, 2250, 2260 and 2270
DB-3611	Extension for UA-1404: Makes it possible to mount the preamplifier from Sound Level Meter Type 2231 inside Outdoor Kit UA-1404
UA-0308	Dehumidifier used with back-vented 1/2-inch microphones with nickel diaphragms
UA-0393	Rain cover with built in actuator
UA-1679	Upper part with integral windscreen for Type 4952
UC-5360	Windscreen holder with bird spike for Type 4198/UA-1404
DD-0413	Rain cover for Type 4952

Preamplifier Holders

UA-1317	Preamplifier holder to be used with 1/2-inch preamplifiers together with a camera tripod. The holder can be swivelled and locked at any angle between +90° and –90° from the vertical Arm: Aluminium, length 303 mm, camera-tripod thread A1/4-20 Holder: Rugged polymer, 125 mm
UA-1588	Preamplifier holder to be used with 1/4-inch preamplifiers together with a camera tripod Arm: Aluminium, length 303 mm, camera-tripod thread A1/4-20 Holder: Rugged polymer, length 100 mm
UA-0588	Microphone holder for tripod for Types 2671, 2669-C SLM preamplifiers (1/2-inch preamplifiers) Brass and rugged polymer, max. width 46.5 mm, camera-tripod thread A3/8-16
UA-1284	Microphone stand for Type 2669-B/L (1/2-inch preamplifier) Brass, height 97.9 mm, max. diameter 50 mm
UA-2129	Microphone holder for Types 4961, 4944-A, 4954-A, 4957 and 4958 (1/4-inch microphones) Arm: Aluminium, length 303 mm, camera-tripod thread A1/4-20 Holder: Aluminium, length 120.1 mm

Tripods

UA-0587	Heavy duty tripod for Type 3923 rotating boom, max. height 1.46 m	
UA-0801	Lightweight tripod with tilt head, max. height 1332 mm	9
UA-0803	Tripod for photocells and microphones, max. height 1250 mm	
UA-0989	Tripod with pan and tilt head for Type 8329	V
UA-1251	Lightweight tripod for Type 2236, compact, max. height 1.22 m	/
UA-1577	Tripod including CAM head	/
UA-1707	Tripod adaptor for Type 4952	

Miscellaneous

ZG-0350	LEMO to 7-pin B&K adaptor for connecting cables with LEMO 1B male connector to instruments with B&K 7-pin connectors	The P	(
UA-1405	CIC adaptor, LEMO to B&K similar to ZG-0350 with a BNC to mini-jack cable of 1.5 m to inject charge to the preamplifier		
WB-0850	Insert voltage or CIC junction unit 10–32 UNF socket for signal input. Use, for example, cable AO-0038 for signal input	ZG-0350	UA-1405
ZG-0328	BNC to B&K 7-pin, provides CCLD supply from microphone 7-pin supply*		
WB-1421	BNC to LEMO, provides CCLD supply from microphone LEMO supply*	A	
WB-1452	Microdot to LEMO provides CCLD supply from microphone LEMO supply*		At the seat of the
JJ-0032	Adaptor 10–32 UNF(female) to 10–32 UNF(female)	WB-0850	ZG-0328
UA-0186	25 × JJ-0032		
JP-0144	BNC (female) to B&K coaxial banana (male)	WB-1421	WB-1452
JP-0145	10–32 UNF (female) to BNC (male)		
UA-0920	Transmitter adaptor for calibrating Probe Microphone Type 4182	Herenter	
JP-0028	B&K coaxial to 10-32 UNF	and	5
JP-0169	Grounding terminal to 10–32 UNF connector	JJ-0032 UA-092	0 JP-0144

* These units require minimum 28 V DC supply from the front end. They cannot be used with PULSE

SELECTING THE RIGHT COUPLER

Brüel & Kjær's electroacoustic solutions can help you improve your development and manufacturing efficiency in:

- Telephony
- Entertainment systems
- Hearing aids
- Headsets
- Public address systems

Brüel & Kjær's versatile test systems offer a broad range of analysis methods and are designed to ensure reliable and comparable results supporting standardized test, calibration, and documentation procedures. Our wide range of standardized couplers ensures a well-controlled acoustic interface.

The following tables give a quick overview of all Brüel & Kjær transducers optimized for electroacoustic testing.

Туре No.	4152	4153	4157	4185	4195	4195-Q 4195-Q-HL0	4195-Q-A 4195-A-HL0	4946
Description	Ear simulator	Ear simulator	Ear simulator	Ear simulator for telephonometry	Wideband ear simulator	Wideband ear simulator for production line testing of telephones	Wideband ear simulator for production line testing of telephones	2 cc click-on coupler
Coupler Acoustic Equivalent Volume	2 cm ³ / 6 cm ³	4.2 cm ³	1.26 cm ³	4.2 cm ³	1.26 cm ³	1.26 cm ³	1.26 cm ³	2 cm ³
Microphone Included	No	No	Built-in	Туре 4192	Built-in	Built-in	Built-in	No
Prepolarized Microphone	No	Yes, optional	No	No	No	No	Yes	No
Accommodates Microphone Size	1/2" and 1"	1/2″	1/2" built-in	1/2″	1/2" built-in	1/2" built-in	1/4" built-in	1/4", 1/2" and 1"
Preamplifier Included	No	No	Type 2669	Туре 2669	Туре 2669	Type 2695	Built-in	No
Relevant Standard	IEC 60318-5 ANSI S3.7	IEC 60318-1	IEC 60318–4 ANSI S3.35 ITU-T Rec. P.57 Type 2	IEC 60318–1 ITU-T Rec. P.57 Type 1	IEC 60318–4 ITU-T Rec. P.57 Type 3.2	IEC 60318–4 ANSI S3.35 ITU-T Rec. P.57 Type 3.2	IEC 60318–4 ANSI S3.35 ITU-T Rec. P.57 Type 3.2	IEC 60318-5 ANSI S3.7
TEDS Enabled Preamplifier	N/A	N/A	Yes	Yes	Yes	Yes	Yes	N/A
Test Application	Earphones (supra aural)	Earphones (circum and supra aural)	Insert earphones Hearing aids	Earphones (circum and supra aural)	Earphones Telephones	Earphones Telephones	Earphones Telephones	Insert earphones Hearing aids
Pinna Type	Simplified	Simplified	N/A	Simplified	Simplified	Simplified	4195-Q-A: N/A 4195-A-HLO: Simplified	N/A
Calibration Adaptor	_	-	DB-2012 DB-2015	-	DP-0939	UC-5366	DP-1079	-
Typical Sensitivity			12.5 mV/Pa	12.5 mV/Pa	12.5 mV/Pa	12.5 mV/Pa	11.2 mV/Pa	

Type No.	4128-C	4128-D	4227	4602-B	4930	4232	9640	2735
Description	Head and torso simulator	Head and torso simulator	Mouth simulator	Telephone test head	Artificial mastoid	Anechoic test box	Turntable system	Power amplifier
Coupler Acoustic Equivalent Volume	1.26 cm ³	1.26 cm ³						
Microphone Included	Built-in	Built-in	N/A	N/A	N/A	N/A	N/A	N/A
Prepolarized Microphone	Yes, optional	Yes, optional						
Accommodates Microphone Size	1/2" built-in	1/2" built-in	N/A	N/A	N/A	1/2" and 1"	N/A	N/A
Preamplifier Included	Туре 2669	Туре 2669	N/A	N/A	N/A	No	N/A	N/A
Relevant Standard	ITU-T Rec. P.51, P.57 Type 3.3, and P.58 IEEE 269 and 661 ANSI S3.36	ITU-T Rec. P.51, P.57, P.58 and P.64 IEEE 269 and 661 ANSI S3.36	ITU-T Rec. P.51	ITU-T Rec. P.64	IEC 60318-6 ANSI S3.13 and S3.26 BS 4009	-	-	-
TEDS Enabled Preamplifier	No	No	N/A	N/A	N/A	N/A	N/A	N/A
Test Application	All types of earphones and telephones	All types of earphones and telephones	Telephone transmitters, microphones, etc.	Telephone handsets	Bone vibrators	Hearing aids microphones and receivers	Loudspeakers	Electroacoustics and general purpose
Pinna Type	Anatomically shaped	Anatomically shaped	N/A	Adapts to all simplified pinna simulators	N/A	N/A	N/A	N/A
Calibration Adaptor	UA-1546 DP-0776	UA-1546 DP-0776	-	-	-	-	-	-
Typical Sensitivity	11.3 mV/Pa	11.3 mV/Pa						

Typical System Configurations

The figures below show different system configurations used for typical electroacoustic applications.

Many typical electroacoustic measurements are available as PULSE™ multi-analyzer projects and form an integral part of the PULSE Audio Analyzer. If more specialized measurement tasks are required, this can be accomplished within PULSE. For highly specialized measurement tasks, Visual Basic[®] for Applications can be applied. For more information on the use of PULSE in electroacoustic applications, see the product data for PULSE Electroacoustics BP 2085.

Receiver testing using ear simulator

Telephone testing using head and torso simulator (HATS)

Hearing aid testing using ear simulator and anechoic test box

Audiometer testing using ear simulator and artificial mastoid

3160-A-042 4938-A-011 Pressure-field 1/4-inch Microphone 4128-C Head and Torso Simulator WL-1324 WL-1325 4231 DP-0775 🜑 2735 Sound Calibrator Calibration Adaptor Power Amplifier 130888

Example directivity measurement setup using turntable system

Headphone and headset testing using HATS

COUPLERS

Artificial Ears and Mastoids

Type No.		4152	4153
Max. Force Applied to Top of Acoustic Coupler	N (kgf)	10 (1)	N/A
Coupler Acoustic Equivalent Volume		2 cm ³ and 6 cm ³	4.2 cm ³
Microphone Included		No	No
Prepolarized Microphone		No	No [*]
Accommodates Microphone Size		1/2" and 1"	1/2"
Preamplifier Included		No	No
Relevant Standard		IEC 60318-5 ANSI S3.7 (1995)	IEC 60318-1
Pinna Type		Simplified	Simplified
	V ₁	2 or 6 cm ³ = 1%	2.5 cm ³ = 1%
Coupler Volumes	V ₂	1.8 cm ³ = 1%	1.8 cm ³ = 1%
	V ₃	7.5 cm ³ = 1%	7.5 cm ³ = 1%
Height	mm (in)	104	(4.1)
Max. Diameter	mm (in)	123	(4.85)
Accessories Included		 2 cm³ Coupler DB-0138 6 cm³ Coupler DB-0913 Coupler Adaptor Ring DB-0111 Guard Ring Adaptor DB-1021 Adaptor for SLM DB-0962 	 1/2" Adaptor Ring DB-0742 Adaptor Plate for Headphones DB-0843 Transmitter Adaptor AQ-0015 Earcap YJ-0305
Test Applications		For measurements on hearing aids, earphones and headphones	For measurements on earphones, headphones and receivers
Other Applications		For vorification of audi	ometers using earnhones

Other Applications

For verification of audiometers using earphones

* Type 4153-W-001 available with Prepolarized Pressure-field 1/2" Microphone Type 4947

Type No.	4157	
Coupler Acoustic Equivalent Volume	1.26 cm ³	
Typical Sensitivity mV/Pa	12.5	
Resonant Frequency kHz	13.5 ±1.5	
Microphone Included	Built-in	
Prepolarized Microphone	-	
Accommodates Microphone Size	1/2" built-in	
Preamplifier Included	Туре 2669	
IEC 60318-4 (2010) Relevant Standard ANSI 53.35 (2004) ITU-T Rec. P.57, Type 2		
Height mm (in)	23 (0.91)	
Diameter mm (in)	23.77 (0.94)	
Included Accessories	 1/2" Microphone Type 4192 Preamplifier Type 2669 External Ear Simulator DB-2012 Ear Mould Simulators DB-2015 and DP-0370 Tube Stud DP-0368 Ear Mould Holders DS-0540 and DS-0541 1/4" Microphone Adaptor DP-0276 Retaining Collar DP-0286 Dust Protector DS-0535 Adaptor for ITE Hearing Aids DP-0530 	
Test Applications	For measurements on hearing aids	

Type No.		4946		
Coupler Acoustic Equivalent Volume		2 cm ³		
Supported Microphones and Preamplfiers		 1/2" Pressure-field Microphone Type 4192 (externally polarized) 1" Pressure-field Microphone Type 4144 (externally polarized) 1/2" Microphone Type 4947 (prepolarized) 1/2" Preamplifier Type 2639 1/2" CCLD Preamplifier Type 2695 1/2" CCLD Preamplifier Type 2671 		
Microphone Included		No		
Accommodates Microphone Size		1/4", 1/2" and 1"		
Preamplifier Included		No		
Relevant Standard		IEC 60318–5 (2006) [*] ANSI S3.7 (1995) [*]		
Height (with ear mould, coupler and adaptor)	mm (in)	27.6 (1.09)		
Max. Diameter	mm (in)	28 (1.10)		
Included Accessories		 2 cc Coupler Basis UA-1615 1/2" Microphone Adaptor UA-1616 1/2" Preamplifier Adaptor for 1" Microphone UA-2041 Ear Plug Simulator with Tube Stud for BTE DB-3869 Ear Mould Simulator for Insert Earphones DB-3887 Ear Mould Simulator for ITES DB-3866 Tube Stud for ITES DB-3868 		
Test Application		For measurement on hearing aids with a rugged design for repetitive use in production environment		

* Using 1" Pressure-field Microphone Type 4144

Type No.		4930	
Frequency Range	Hz	50 to 10 k	
Charge Sensitivity to Acceleration [*]		2 pC/ms ⁻² at 1.0 kHz	
Voltage Sensitivity to Acceleration*		-63 dB re 1 V/ms ⁻²	
		(0.7 mV/ms ⁻²) at 1.0 kHz	
Charge Sensitivity to Force	pC/N	300	
Voltage Sensitivity to Force [*]	mV	100	
Capacitance [*]	nF	3	
Adjustable Static Force	Ν	2 to 8	
Calibration Surface Area	mm ²	1260	
Inertial Mass	kg (lb)	3.5 (7.7)	
Max. Height	r. Height mm (in) 165 (6.5)		
Width	mm (in)	205 (8.1)	
Depth	mm (in)	134 (5.3)	
Weight	kg (lb)	3.4 (9.5)	
Relevant Standard		IEC 60373 (1990) ANSI S3.13 and S.3.26 (1987) BS 4009	
Included Accessories		 Spring Balance UA-0247 Level Indicator UA-0262 Slide Rule QH-0006, with case 	
Test Application		For measurements on bone-conducting hearing aids by simulating the mechanical impedance of human mastoid	

* Individually calibrated

Note: To calibrate Type 4930, you will need Impedance Head Type 8000, Mini Shaker Type 4810, Shaker Arm UA-0274 and Spring Arrangement UA-0263. When ordered at the same time, these components comprise Artificial Mastoid with Calibrator Type 3505. Type 3505 can also be used to take the same measurements on human mastoids and foreheads and to determine bone conduction threshold values.

Ear and Mouth Simulators for Telephone Testing

Type No.		4185	4195
Coupler Acoustic Equivalent Volume		4.2 cm ³	1.26 cm ³
Typical Sensitivity	mV/Pa	12.5	12.5
Frequency Range	Hz	100 to 4 k	100 to 8 k
Microphone Included		Туре 4192	Built-in
Prepolarized Microphone		-	_
Accommodates Microphone Size		1/2"	1/2" built-in
Preamplifier Included		Туре 2669	Туре 2669
Relevant Standard		IEC 60318–1 ITU-T Rec. P.57, Type 1	IEC 60318–4 (2010) ITU-T Rec. P.57 ITU-T Rec. P.57, Type 3.2
Height	mm (in)	103 (4.06)*	126 (5)
Max. Diameter	mm (in)	60 (2.6) [*]	60 (2.4)
TEDS Enabled Preamplifier		-	_
Pinna Type		Simplified	Simplified
Included Accessories		 1/2" Condenser Microphone Type 4134 1/2" Microphone Preamplifier Type 2669 Acoustic Coupler UA-1110[†] Ring for Acoustic Coupler DB-1160 Adaptor Sleeve for Acoustic Coupler DB-1164 Black Collar for Acoustic Coupler YJ-0430 5 × Soft Seal YJ-0431 Microphone Cable AO-0419 Accelerometer Cable AO-0122 BNC Input Adaptor JP-0145 LEMO to Brüel & Kjær 7-pin Adaptor ZG-0350 	 Low-leak Pinna Simulator UA-1304 High-leak Pinna Simulator UA-1448 1/2" Microphone Preamplifier Type 2669 IEC 60318-4-compliant Coupler UA-1305 Soft Seal YJ-0892 LEMO to Brüel & Kjær 7-pin Adaptor ZG-0350 Microphone Cable AO-0419 Calibration Adaptor DP-0939
Test Application		For measurements on handset telephones including handsets with high impedance earpieces where sealed conditions are required	For wideband measurements on handset telephones where realistic acoustical loads are needed

* Coupler and preamplifier

+ With built-in miniature sound source

As phone technology rapidly advances, designs must be tested to ensure the quality of speech transmission. Bruel & Kjær's range of couplers are designed for realistic and comparable telephone receiver response measurements both on the production line and in the laboratory. The couplers can be used in test boxes, on the production line and in standardized test heads used in the laboratory.

Perfect handset seals ensure high on-line repeatability and full measurement compatibility between production and R&D. All interfaces can be customized for specific telephone designs.

Type No.	4195-Q and 4195-Q-HL0	4195-Q-A	4195-A-HL0
Coupler Acoustic Equivalent Volume	1.26 cm ³	1.26 cm ³	1.26 cm ³
Typical Sensitivity mV/Pa	12.5	11.2	11.2
Frequency Range Hz		50 to 20 k	50 to 20 k
Microphone Included	Built-in	Built-in Type 4959	Built-in Type 4959
Prepolarized Microphone	Yes	Yes	Yes
Accommodates Microphone Size	1/2" built-in	1/4" built-in	1/4" built-in
Preamplifier Included	Туре 2695	Built-in	Built-in
Relevant Standard	IEC 60318-4 ITU-T Rec. P.57 ANSI S3.35	IEC 60318-4 ITU-T Rec. P.57 ANSI S3.35	IEC 60318–4 ITU-T Rec. P.57 ANSI S3.35
Height mm (in)	90 (3.54)	_	-
Max. Diameter mm (in)	39 (1.54)	-	-
TEDS Enabled Preamplifier	Yes	Yes	Yes
Pinna Type	Simplified	No pinna	Simplified, high-leak
Included Accessories	 Pinna Simulator DB-3800 (Type 4195-Q only) High-leak Pinna Simulator DB-3800-W-001 (Type 4195-Q-HLO only) 1/2" Microphone Preamplifier Type 2695 IEC 60318-4-compliant Coupler with Prepolarized Microphone UA-1567 Adaptor Ring for Calibration UC-5366 	• Coupler with Microphone Type 4959	 Wideband simplified pinna simulator, high-leak version DB-4339 Standard adaptor ring UC-0231
Test Application	For wideband production line measu	urements (QC) on handset telephone	S

		Mouth Simulator Type 4227	Mouth Simulator Type 4227-A		
Type No.		4227	4227-A [*]		
Continuous Output Level (measured 25 mm from lip ring)	dB SPL	200 Hz to 2 kHz: Min. 110 100 Hz to 12 kHz: Min. 100	200 Hz to 2 kHz: Min. 110 100 Hz to 12 kHz: Min. 100		
Distortion (harmonic components up to 8 kHz at 94 dB SPL, 25 mm from lip ring)		200 Hz to 250 Hz: <2% >250 Hz: <1%	200 Hz to 250 Hz: <2% >250 Hz: <1%		
Loudspeaker Max. Average Power [†]		10 W at 20 °C (68 °F)	0.8 V _{rms}		
Loudspeaker Max. Pulsed Power		50 W for 2 seconds	1.5 V _{rms} for 2 seconds		
Loudspeaker Impedance	Ω	4	-		
Relevant Standard		ITU-T P.51, IEEE 269 and IEEE 661	ITU-T P.51, IEEE 269 and IEEE 661		
Diameter	mm (in)	104 (4.1)	104 (4.1)		
Height	mm (in)	104 (4.1) to top of lip ring	104 (4.1) to top of lip ring		
Included Accessories		 Calibration Jig UA-0901 2 × Lip Ring SO-0005 1/4" Plastic Microphone Dummy DA-0150 	 Calibration Jig UA-0901 2 × Lip Ring SO-0005 1/4" Plastic Microphone Dummy DA-0150 Power Supply ZG-0426, 100 to 240 V AC 		
Test Application		For measurements on handset telephones with a realistic simulation of the human voice field			
Other Applications		Accurate reference source for near-field testing of handsets and microphones			

* Type 4227 and 4227-A are similar, but Type 4227-A has an integrated class D amplifier † With built-in overload protection circuit

Head and Torso Simulators and Telephone Test Heads

Type No.			4128-C 4128-D		
Coupler Acoustic Eq	uivalent Volume		1.26 cm ³		
Relevant Standard			ITU-T Rec. P.51, P.57 and P.58 IEEE 269 and 661 ANSI S3.36	ITU-T Rec. P.51, P.57, P.58 and P.64 IEEE 269 and 661 ANSI S3.36	
Listener Frequency Response			Conforms to ITU-T Rec. P.58 for measurements on telecommunications devices and to IEC 60318–7 and ANSI S3.36–1985 for measurements on air conducting hearing aids		
Ear Simulator			Right Ear Simulator Type 4158-C included IEC 60318–4/ITU-T Rec. P.57 Type 3.3-based calibrated ear simulator complying with ITU-T Rec. P.57, IEC 60318–4 and ANSI S3.25 standards		
Mouth Simulator			Buil	t-in	
Tunical Consitivity	Ear Simulator	mV/Pa	11.3 (–38 dB re 1	L V/Pa) at 250 Hz	
Typical Sensitivity	Mouth Simulator	dB SPL	80 (2 V/500 n	nm) at 1 kHz	
Mouth Simulator Distortion (harmonic components up to 12 kHz) at 94 dB SPL			200 Hz to 2 >250 H		
Pinna Simulators			Anatomically shaped and calibrated Dimensions similar to those specified in ITU-T Rec. P.58, IEC 60318–7 and ANSI S3.36		
Sound Pressure Distribution of Mouth Simulator			Conforms to ITU-T Rec. P.58		
Mouth Opening		mm (in)	W × H: 30 × 11 (1.18 × 0.43)		
Equivalent Lip Plane	e Position, CL		6 mm in front of the sound radiation opening		
Mouth Reference P	oint, MRP		25 mm in front of mouth CL		
Continuous Output	Level at MRP	dB SPL	200 Hz to 2 kHz: Min. 110 100 Hz to 12 kHz: Min. 100		
Max. Average Input Simulator	Power of Mouth	W	10 max. continuous average power at 20 °C (68 °F)		
Max. Pulsed Input P Simulator	Power of Mouth	w	50 for 2 seconds		
Loudspeaker Imped	ance	Ω	4	l .	
Handset Thickness [*]		mm (in)	-	Min: ≥0 (0) Max: 44 (1.73) [†]	
Handset Width [*]	Handset Width [*] mm (in)		-	Min: 26 (1.02) Max: 66 (2.6)	
Microphone Include	ed		Buil	t-in	
Prepolarized Microp	ohone		Yes, op	otional	
Accommodates Mic	rophone Size		1/2" (built-in)		
Preamplifier Included			Туре	2669	
TEDS Enabled Preamplifier			No		
Height	Head and Torso	mm (in)	695 (27.4)		
	Torso Only		460 (18)		
Head Angles			Vertical or tilted 17° forwards		

Table continues on next page

Type No.			4128-C	4128-D		
	HATS		9 (19.8)			
Weight	Handset Positioner	kg (lb)	_	1.4 (3.09) incl. cradle, excl. handset		
	Alignment Jig		-	2.4 (5.29) excl. cradle		
			 Right Pinna – soft (Shore-OO 35) 	Handset Positioner Type 4606		
			DZ-9769	 Right Pinna – soft (Shore-OO 35) DZ-9769 		
			 Left Pinna – soft (Shore-OO 35) DZ-9770 	 Left Pinna – soft (Shore-OO 35) DZ-9770 		
			 Ear Mould Simulator – short DB-2902 	 Ear Mould Simulator – short DB-2902 		
			 Ear Mould Simulator – long UC-0199 	• Ear Mould Simulator – long UC-0199		
Included Accesso	ries		 Adaptor for Calibration UA-1546 	Adaptor for Calibration UA-1546		
			Ear Mounting Tool QA-0167	Ear Mounting Tool QA-0167		
			 Preamplifier Mounting Tool QA-0223 	Preamplifier Mounting Tool QA-0223		
			 Support Feet UA-1043 	Support Feet UA-1043		
			Ref. Microphone Holder UA-2127	Ref. Microphone Holder UA-2127		
			Adaptor for Tripod UC-5290	Adaptor for Tripod UC-5290		
Test Application			For objective in situ measurements on headsets, hear-	For objective in situ measurements on telephone hand-		
			ing aids, earphones and telephones with realistic sim-	sets with realistic simulations of a human holding a		
			ulation of the human voice field as well as the human	handset telephone and of the human voice field as well		
			pinna	as the human pinna		

* Using the included Handset Positioner Type 4606. Type 4606 can be ordered as optional with Type 4128-C

⁺ Max: 90 mm with UA-1587 fork for wide handsets

With the continual expansion of the world's cellular telephone network, conversations can take place almost anywhere – in quiet offices or in a noisy outdoor environment. Therefore, the acoustic perception of handsets is becoming increasingly important as users demand high voice quality in all situations. Whether you are working with mobile phones or corded handset/headset telephones, high voice quality using advanced acoustic and electronic signal processing combined with superior design is essential.

When it comes to the actual testing of telephones two standardized test configurations are defined. One is based on Test Head equipped with a stand-alone mouth simulator and ear simulator positioned on the test head. The other is based on HATS (Head and Torso Simulator) with an integrated mouth simulator and one or two integrated ear simulators.

Type No.		4602-В
Speaking Positions		LRGP position (ITU-T Rec. P.76) HATS position (ITU-T P.58) REF position (OREM A) AEN position (ITU-T Rec. P.76)
Max. Handset Width	mm (in)	65 (2.56)
Max. Handset Length (from the centre of the earcap to the top of the handset)	mm (in)	47 (1.85) without the stop screw 59 (2.32) without the rear alignment rods
Relevant Standard		ITU-T Rec. P.64
Pinna Type		Adapts to all simplified pinna simulators
Ear Simulators		Accommodates Ear Simulators Types 4185 and 4195
Height	mm (in)	430 - 468 (16.9 - 18.4)
Width	mm (in)	170 (6.7)
Depth	mm (in)	260 (10.2)
Weight	kg (lb)	5.4 (11.9) 7.4 (16.3) with Mouth Simulator
Included Accessories		 Main column with upper and lower main plates and holder arm 2 × Handset Alignment Rods UA-1210 8 × Handset Alignment Rods UA-1400 (two sets) Rods with Offset Adjustment 40 mm Coupler Hole Ring DB-3339 50 mm Coupler Hole Ring DB-3340 Positioning Jig: LRGP, HATS, AEN and REF Mounting Bushing for Mouth Simulator DS-0884 Handset Gauge UA-1206 Handset Gauge for Non-symmetrical Handsets UA-1401
Test Application		For measurements on hearing aids and microphones

Acoustic Test Accessories

Type No.			4232*
Dynamic Range			From below 35 dB to above 110 dB SPL (re 20 $\mu\text{Pa})$
Uniformity of Sound Field			The measuring area is equivalent to the area occupied by the blue foam. The free-field sound level within the measuring area is equal to the regulated SPL within: ±1 dB from 20 Hz to 10 kHz
Insulation against Airborne Noise		Hz	>40 dB: 20 to 1500 45 to 55 dB: >1500
Sensitivity (for 1 W input)		dB SPL	110 at the test point The test point is defined as the centre of the measuring area
Distortion[†] (125 Hz to 8 kHz)	100 dB SPL		<0.5% 2nd harmonic <0.3% 3rd harmonic
	70 dB SPL		<0.1% 2nd harmonic <0.06% 3rd harmonic
Frequency Range (without electrical equalization)		Hz	100 to 8 k (±2 dB) 35 to 10 k (±3 dB) 6 dB/octave attenuation slope below 35 Hz 24 dB/octave attenuation slope above 10 kHz
Excitation Levels	Upper Limit	dB SPL	Maximum 110
	Lower Limit		Determined by ambient noise level and noise rejection
Free-field Properties of Sound Field			Approximates free-field conditions above 500 Hz. Sound radiation is in the horizontal plane
Loudspeaker Maximum Continuous Input Power		W	4.5
Loudspeaker Maximum Peak Input Power		W	40
Loudspeaker Nominal Impedance:		Ω	8 (maximum 25 Ω)
Telecoil Resistance		Ω	1
Telecoil Inductance		μН	9
Accomodates Microphone Size			1/2" and 1"
Preamplifier Included			No
Height		mm (in)	260 (10.2)
Width mn		mm (in)	365 (14.4)
Depth mm (mm (in)	400 (15.7)
Weight kg (lb)		kg (lb)	22 (48.5)
Dimensions of Measurement Char	Dimensions of Measurement Chamber mm (in)		60 × 165 × 200 (2.4 × 6.4 × 7.8)
Included Accessories			 2 × Clip for holding IEC 711 or 2 cm³ Coupler UA-1375 Clip for holding reference microphone UA-1376 Protection Bracket for external microphone preamplifier UA-1370
Test Application			For measurements on hearing aids and microphones

* All values are typical at 25 °C (77 °F), unless measurement uncertainty or tolerance field is specified. All uncertainty values are specified at 2σ (that is, expanded uncertainty using a coverage factor of 2) † Of the built-in sound source (high-quality loudspeaker)

Type No.		9640
Turntable Load	kg (lb)	Turntable plate lined up perfectly in horizontal plane: Max. 100 (220) on centre 30 (66) on periphery Turntable hung upside down: Same loads apply
Thread of Mounting Holes on Turntable		10-32 UNF and M5
Turntable Resolution		1°
Turntable Speed of Rotation	s per revolution	Cont. Mode: 22.7 to 720 Turn_abs and Turn_rel Modes: 10 (max.)
Controller Commands		Set 0 Deg: Sets the reference angle Acc.: Sets the acceleration Max_360 On/Off: Turns max. 360° on or off ('On' prevents cable wrapping)
IEEE Interface [*]		Provides remote control of all front-panel functions. Conforms with IEEE 488.1 and compatible with IEC 625–1
Turntable Cable Length	m (ft)	15 (48.5)
Turntable Plate Diameter	mm (in)	354 (13.9)
Turntable Weight	kg (lb)	12 (26)
Included Accessories		Controllable Turntable Type 5960 Turntable Controller Type 5997 Remote Control WB-1254 Turntable Cable AO-0422
Test Application		For accurate positioning during directivity measurements

* For remote control

Type No.

Type No.		2/35
Voltage Gain @ 1 kHz	dB	0 (±0.2 dB) or 20 (±0.2 dB) User selectable
Maximum Input Voltage	V _{pp}	0 dB gain: 20 20 dB gain: 3.8
Maximum Output Power	W	2 × 45 at 4 Ω, 5 Hz to 25 kHz
Continuous Output Power (at 4 Ω 5 Hz to 25 kHz)	W	at 20 °C: 2 × 35 at 50 °C: 2 × 10
Load	Ω, nF	≥3, ≤470
Frequency Response from 20 Hz – 20 kHz (typical)	dB	±0.5 at 1 W, 4 Ω
THD + Noise at 1 kHz, 1 W, 4 Ω (typical)	%	1
Common Mode Rejection (typical)	dB	80, up to 10 kHz
Input Impedance	kΩ	>20
Output Impedance (typical)	mΩ	0 dB gain: 75 20 dB gain: 25
Dynamic Range Max. Output (rms)/Noise (typical)	dB	110
Channel Separation	dB	-80 up to 10 kHz
Input Connectors		2 × BNC, isolated from chassis
Output Connectors		2 × Neutrik [®] 4-pin Speakon [®] sockets
Noise at Output (A-weighting)	μV	40
Typical Acoustical Noise (fan)	dB(A)	28 at 1 m
Dimensions	cm (in)	24.3 × 13 × 6 (9.5 × 5.1 × 2.4)
Weight	kg (lb)	0.65 (1.43)
Test Application		For driving sound sources

SELECTING THE RIGHT ACCELEROMETER

Brüel & Kjær offers a broad spectrum of solutions that respond to varying needs and applications. This adaptability is evident in the range of transducers designed for specific environments, industries, tasks and conditions, as well as general purpose instruments that provide a wide operational range.

Selecting the best transducer for a given measurement task can be understandably overwhelming. Our interactive transducer selection guide on www.bksv.com can be a big help to quickly narrow your choices. Alternatively, see below for in-depth guides and tools so that you can select the right accelerometer to fit your needs.

Start by selecting the right accelerometer technology, then you can select the right accelerometer type. From there, you can focus on the measurement parameters (frequency range, dynamic range, etc).

Technologies

Accelerometers use a spring-mass system to generate a force proportional to the vibration. Brüel & Kjær offers three types of accelerometers:

- Piezoelectric charge accelerometers
- Piezoelectric CCLD/DeltaTron/IEPE accelerometers
- Piezoresistive accelerometers

Piezoelectric Charge Accelerometers

The force is applied to a piezoelectric (PE) element that produces a charge on its terminals proportional to the acceleration.

PE charge accelerometers are self-generating and, therefore, do not require any external power sources. They are capable of operation at high temperatures, but are constrained by high output impedance requiring low-noise cables and charge amplifiers to condition the signal.

Piezoelectric CCLD Accelerometers

CCLD accelerometers are PE charge accelerometers with integral preamplifiers that have output signals in the form of low impedance voltage output.

Most Brüel & Kjær PE CCLD accelerometers are hermetically sealed to protect against environmental contamination, have low susceptibility to radio frequency electromagnetic radiation and low impedance output due to the built-in amplifier. This allows the use of inexpensive coaxial cables.

Piezoresistive Accelerometers

Piezoresistive accelerometers are based on MEMS technology. The change of electrical resistance in proportion to applied mechanical stress on the springs retaining the seismic mass generates the output. The accelerometer includes integral mechanical stops and offers outstanding ruggedness, while still maintaining an excellent signal-to-noise ratio after the built-in bridge amplifier.

This type of accelerometer, with a frequency response extending down to DC or constant acceleration, is ideal for measuring motion, low-frequency vibration and long duration low-level shock.

Compare Types

The following table compares the performance of each technology, specification by specification.

For an overview of key specifications for all of our standard accelerometers, see the comparison tables starting on page 155.

	Piezoelectric (PE) Charge	PE CCLD	Piezoresistive (PR)
Weight (relative)	Very low	Very Low	Low
Miniature Design Capability	Yes	Yes	No
Useful Frequency Range Capability	Very high	Very high	Low
Sensitivity to Vibration	High	High	Low
Suitability for High Temperature	Yes	No	No
DC Response	No	No	Yes
TEDS	No	Yes	No
Sensitivity to Environment	Low	Very low	Low
Flat Phase Response at HF	Yes	Yes	No
Suitability for Shock Measurements	Medium	Medium	Low
Long Pulse (crash testing)	No	No	Yes
High g Survivability, ruggedness	Medium	Medium	Medium
Self-generating	Yes	No	No
Long Cables (low impedance output)	No	Yes	Yes
Cryogenic Temperature	Yes	No	No
Synonym	Charge	DeltaTron [®] , IEPE	Bridge

Measurement Parameters

Generally speaking, the most important parameters to consider are frequency range and dynamic range.

The Lower Limiting Frequency Range

This is normally the frequency where the response is 10% lower than the response at 159.2 Hz. For PE charge accelerometers, it is determined by the preamplifier used. For piezoelectric CCLD and piezoresistive types, the lower limiting frequency can be specified precisely because the preamplifier is built-in.

The Upper Limiting Frequency Range

This is the frequency where the response has changed 10% compared to the response at 159.2 Hz. It is normally 1/3 of the mounted resonance frequency for undamped mass-spring systems like those in the PE transducers. Preamplifiers and damping of piezoresistive transducers can give many different responses.

With Brüel & Kjær's PULSE data acquisition systems, it is possible to use REq-X to extend the usable frequency range, mainly the upper limiting frequency range.

Residual Noise Level

This is determined by noise generated by the sensing element and the preamplifier. In most cases, this is largely determined by the electronic noise. For low-level vibration, low residual noise levels are more important than high sensitivity because the high noise floor of the sensor will mask the low-level vibration.

Maximum Range/Full Scale

This is determined by the maximum voltage swing possible if a preamplifier is included and the physical maximum stress level that can be sustained by the transducer structure without large distortion or destruction. In the graph below, we use Piezoelectric Charge Accelerometer Type 4393 as an example to explain this.

Note: Noise RMS level in 1 Hz bandwidth

It is always important to select an accelerometer that has a broader measuring range than required.

The Effects of Temperature

What happens at high temperatures?

Piezoelectric accelerometers are capable of vibration measurements over a wide temperature range. However, due to the properties of piezoelectric materials, variations of both voltage and charge sensitivities, as well as impedance, will occur when the accelerometer is operated at temperatures other than the reference.

As an example, the figure below shows the variation in capacitance, charge sensitivity and voltage sensitivity of piezoelectric material PZ23, which is the material used in many Brüel & Kjær accelerometers.

When using a piezoelectric accelerometer at high temperatures, its actual sensitivity, taking into account the change in sensitivity due to the increased operating temperature, can be determined using the "Temperature Coefficient of Sensitivity", which is available on every calibration chart.

The time required for the sensitivity to return to the one stated on the calibration chart is not easy to determine, but it will partly depend on the temperature to which the accelerometer was taken. In general, a period of 24 hours is required for an accelerometer to return to the calibrated sensitivity when it is immediately returned to room temperature from a temperature close to its maximum operating temperature.

Each accelerometer has a specified maximum operating temperature above which the piezoelectric element will begin to depolarize and cause a permanent change in sensitivity. This is 250 °C for charge accelerometers with PZ23 piezoelectric material.

It is possible to thermally isolate the base of a general purpose accelerometer from the vibrating surface using a screen made of a metal with high thermal conductivity.

Such a screen enables measurements with charge accelerometers to be made on surfaces with a temperature up to 350 °C. If, at the same time, a stream of cooling air is directed at the accelerometer,

it is possible to measure on surfaces up to 450 °C. However, remember that the stiffness at the mounting point of the accelerometer may be altered by such a fixture, which in turn will lower the resonance frequency of the accelerometer.

For high-temperature measurements, Industrial Accelerometer Type 8347-C can be used up to 482 °C on its own.

What is the lowest temperature?

The lower temperature limit for most Brüel & Kjær charge accelerometers is specified as -74 °C. While specifications have not been defined at temperatures below this, it is still possible to use general purpose accelerometers at even lower temperatures. For example, vibration measurements on structures have been made at the temperature of liquid nitrogen (-196 °C).

ACCELEROMETERS

Definitions of Given Accelerometer Specifications

Sensitivity

- At 159.2 Hz
- Units: pC/ms⁻² (pC/g) or mV/ms⁻² (mV/g)

The output of the accelerometer at 159.2 Hz (ω = 1000 s⁻¹) with 20 ms⁻² RMS acceleration at room temperature. For CCLD accelerometers the supply current is 4 mA.

Uni-Gain types have a measured sensitivity within $\pm 2\%$ of a practical nominal value. Variable gain (V types) is within $\pm 15\%$. Uni-Gain and V type accelerometers have the same specifications and long-term stability. V types just have a relaxed sensitivity tolerance.

Frequency Range

- ±10%
- Unit: Hz

The range within which the sensitivity does not deviate more than 10% from the value at 159.2 Hz. The lower usable frequency range is determined by the lower limiting frequency of the amplifier used or the frequency at which the temperature, cable and other noise sources make usage impractical (for charge types). The upper usable frequency range is normally determined by the mounted resonance frequency and in a few cases the upper frequency cut-off of the amplifier or other structural resonances.

Mounted Resonance Frequency

Unit: kHz

The resonance frequency of an accelerometer being mounted on a 180 gram steel block. For damped accelerometers no mounted resonance is given.

Operating Temperature Range

Unit: °C and °F

The temperature range within which the accelerometer can be used continuously.

Measuring Range (± peak)

• Unit: g

The peak vibration range the accelerometer can measure with less than 1% distortion. At slightly higher amplitudes clipping might occur.

Maximum Non-destructive Shock (± peak)

• Unit: g

The peak shock the accelerometer can withstand repeatedly without being damaged. The shock duration shall be longer than 10 times the reciprocal mounted resonance frequency.

Uniaxial Piezoelectric Charge Accelerometers

A charge-type piezoelectric accelerometer is a robust unit designed specifically for high-temperature vibration measurement on structures and objects. Its unique sensor design allows high dynamic range, long-term stability and ruggedness in the same package. For direct interchangeability and easy system calibration, most Brüel & Kjær piezoelectric accelerometers are Uni-Gain types.

For accelerometer dimensions go to page 147.

		1	E title				
Type No.		4374	4517-C	4517-C-003	4517-C-001	4385-C	4375 [*]
Weight	gram (oz)	0.75 (0.026)	0.6 (0.021)	0.85 (0.03)	1 (0.035)	1.9 (0.067)	2.4 (0.085)
Charge Sensitivity at 159.2 Hz	pC/ms ⁻² (pC/g)	0.15 (1.5)	0.18 (1.8)	0.18 (1.8)	0.18 (1.8)	0.005 (0.05)	0.316 (3.1)
Frequency Range (±10%) [†]	Hz	1 to 26000	1 to 10000	1 to 9000	1 to 20000	1 to 50000	0.1 to 16500
Mounted Resonance Frequency	kHz	85	80	>30	75	150000	55
Operating Temperature Range	°C °F	-74 to +250 -101 to +482	-51 to +177 -60 to +350	-51 to +177 -60 to +350	-51 to +177 -60 to +350	-74 to +180 -101 to +356	-74 to +250 -101 to +482
Measuring Range (peak)	g	5000	1000	1000	1000	12000	5000
Maximum Non-destructive Shock (± peak)	g	25000	5000	5000	5000	12000	25000
Connector		10-32 UNF	3–56 UNF	3–56 UNF	3–56 UNF	M3	10-32 UNF
Mounting		Adhesive	Adhesive	Adhesive	Adhesive	M5 Stud	M3 Stud

* Uni-Gain with ±2% sensitivity tolerance, V-type with ±15% sensitivity tolerance

+ Lower frequency limit is determined by the amplifier used

			-	Cue	and a second	
Type No.		4393**	8309	4521-C	4501-A	4500-A
Weight	gram (oz)	2.4 (0.085)	3 (0.11)	2.7 (0.1)	4.0 (0.141)	4.1 (0.145)
Charge Sensitivity at 159.2 Hz	pC/ms ⁻² (pC/g)	0.316 (3.1)	0.004 (0.04)	1.02 (10)	0.30 (2.9)	0.30 (2.9)
Frequency Range (±10%) [‡]	Hz	0.1 to 16500	1 to 54000	1 to 9000	1 to 10000	1 to 15000
Mounted Resonance Frequency	kHz	55	180	35	30	45
Operating Temperature Range	°C °F	-74 to +250 -101 to +482	-74 to +180 -101 to +356	-51 to +230 -60 to +446	-55 to +175 -67 to +347	−55 to +175 −67 to +347
Measuring Range (peak)	g	5000	15000	2000	3000	3000
Maximum Non-destructive Shock (± peak)	g	25000	100000	5000	3000	3000
Connector		M3	10-32 UNF	M3	10-32 UNF	10-32 UNF
Mounting		M3 Stud	Integral M5 Stud	Insulated M2 Screw	Clip or Adhesive	Clip or Adhesive

* Uni-Gain with ±2% sensitivity tolerance † Also available as V type with relaxed sensitivity tolerance ‡ Lower frequency limit is determined by the amplifier used

				() [*]	4505 001	P	
Type No.		4507-C	4508-C	4505-A	4505-001	4371 ^{*†}	4384 ^{*†}
Weight	gram (oz)	4.5 (0.16)	4.5 (0.16)	4.9 (0.17)	4.9 (0.17)	11 (0.39)	11 (0.39)
Charge Sensitivity at 159.2 Hz	pC/ms ⁻² (pC/g)	0.45 (4.4)	0.45 (4.4)	0.30 (2.9)	0.067 (0.66)	1.0 (9.8)	1 (9.8)
Frequency Range (±10%) [‡]	Hz	0.1 to 6000	0.1 to 8000	1 to 12000	1 to 9000	0.1 to 12600	0.1 to 12600
Mounted Resonance Frequency	kHz	18	25	45	45	42	42
Operating Temperature Range	°C °F	-74 to +250 -101 to +482	-74 to +250 -101 to +482	-55 to +230 -67 to +446	-55 to +230 -67 to +446	-55 to +250 -67 to +482	-74 to +250 -101 to +482
Measuring Range (peak)	g	2000	2000	3000	3000	6000	6000
Maximum Non-destructive Shock (± peak)	g	5000	5000	3000	3000	20000	20000
Connector		10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF
Mounting		Clip or Adhesive	Clip or Adhesive	Integral 10–32 UNF Stud	Integral 10–32 UNF Stud	10-32 UNF Stud	10-32 UNF Stud

* Uni-Gain with ±2% sensitivity tolerance
 † Also available as V type with relaxed sensitivity tolerance
 ‡ Lower frequency limit is determined by the amplifier used

Type No.		4382 ^{*†}	4383 ^{*†}	4381 ^{*†}	4370 ^{*†}	8346-C
Weight	gram (oz)	17 (0.6)	17 (0.6)	43 (1.52)	54 (1.9)	176 (6.2)
Charge Sensitivity at 159.2 Hz	pC/ms ⁻² (pC/g)	3.16 (31)	3.16 (31)	10 (98)	10 (98)	38 (372)
Frequency Range (±10%) [‡]	Hz	0.1 to 8400	0.1 to 8400	0.1 to 4800	0.1 to 4800	0.1 to 3000
Mounted Resonance Frequency	kHz	28	28	16	16	10
Operating Temperature Range	°C	-74 to +250	-74 to +250	-74 to +250	-74 to +250	-50 to +250
	°F	-101 to +482	-101 to +482	-101 to +482	-101 to +482	-58 to +482
Measuring Range (peak)	g	2000	2000	2000	2000	2000
Maximum Non-destructive Shock (± peak)	g	5000	5000	2000	2000	5000
Connector		10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF
Mounting		10-32 UNF Stud	10-32 UNF Stud	10-32 UNF Stud	10-32 UNF Stud	10-32 UNF Stud

* Uni-Gain with ±2% sensitivity tolerance

⁺ Also available as V type with relaxed sensitivity tolerance

‡ Lower frequency limit is determined by the amplifier used

Industrial Piezoelectric Charge Accelerometers

An industrial accelerometer with its rugged design is robust and reliable and covers a wide range of permanent vibration monitoring applications including operations in wet, dusty and potentially explosive areas. Charge and CCLD types are both available. Charge types are especially excellent for high-temperature measurements.

		and a second sec			
Type No.		4391 [*]	8315	8324-100	8347-C
Weight	gram (oz)	16 (0.56)	62 (2.18)	60 (2.1)	60 (2.1)
Charge Sensitivity at 159.2 Hz	pC/ms ⁻² (pC/g)	1 (9.8)	10 (98)	1 (9.8)	1 (9.8)
Frequency Range (±10%) [†]	Hz	0.1 to 10000	1 to 10000	1 to 12800	1 to 12800
Mounted Resonance Frequency	kHz	40	28	39	39
Operating Temperature Range	°C °F	-60 to +180 -76 to +356	-53 to +260 -63 to +500	-196 to +482 -321 to +900	-196 to +482 -321 to +900
Measuring Range (peak)	g	2000	2000	1000	1000
Max. Non-destructive Shock (± peak)	g	2000	2000	5000	5000
Connector		TNC	2-pin 7/16–27 UNS (2-pin TNC)	2-pin 7/16–27 UNS (2-pin TNC)	2-pin 7/16–27 UNS (2-pin TNC)
Mounting		10-32 UNF Stud	3 × M4 Screw	3 × M4 Screw 10–32 UNF Stud	3 × M4 Screw 10–32 UNF Stud

* Also available as V type with relaxed sensitivity tolerance

[†] Lower frequency limit is determined by the amplifier used

Triaxial Piezoelectric Charge Accelerometers

					00	
Type No.		4326-A	4326-A-001	4326-001	4321 ^{*†}	4527-C
Description		Triaxial	Triaxial	Dielectric rigidity >1000 V	Triaxial	Triaxial
Weight	gram (oz)	13 (0.46)	17 (0.6)	17 (0.6)	55 (1.94)	6 (0.21)
Charge Sensitivity at 159.2 Hz	pC/ms ⁻² (pC/g)	0.30 (2.9)	0.30 (2.9)	0.30 (2.9)	1 (9.8)	0.316 (3.1)
X Frequency Range (±10%) [‡]	Hz	1 to 9000	1 to 9000	1 to 9000	0.1 to 12000	1 to 10000
Y Frequency Range (±10%) [‡]	Hz	1 to 8000	1 to 8000	1 to 8000	0.1 to 12000	1 to 10000
Z Frequency Range $(\pm 10\%)^{\ddagger}$	Hz	1 to 16000	1 to 16000	1 to 16000	0.1 to 12000	1 to 12800
Mounted Resonance Frequency	kHz	X:27, Y: 24, Z: 48	X:27, Y: 24, Z: 48	X:27, Y: 24, Z: 48	X, Y, Z: 40	X, Y: 30, Z: 42
Operating Temperature Range	°C °F	-55 to +175 -67 to +347	-55 to +230 -67 to +446	-55 to +230 -67 to +446	-74 to +250 -101 to +482	-60 to +230 -76 to +446
Measuring Range (peak)	g	3000	3000	3000	500	
Maximum Non-destructive Shock (± peak)	g	3000	3000	3000	1000	5100
Connector		10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	4-pin, 1/4"–28 UNF
Mounting		M2 Screw/M3 Stud/ Clip/Adhesive	M2 Screw/M3 Stud/ Clip/Adhesive	M2 Screw/M3 Stud/ Clip/Adhesive	10-32 UNF Stud/ M4 Screw	M3 Stud/Adhesive

* Uni-Gain with ±2% sensitivity tolerance

Also available as V type with relaxed sensitivity tolerance
 Lower frequency limit is determined by the amplifier used

Frequency response of Type 4527-C using cable AO-0526 (left) and cable AO-0767 (right)

Uniaxial CCLD Accelerometers

A CCLD accelerometer is designed specifically to make vibration measurement easy because the needed preamplifier is built into the accelerometer unit. It features low impedance output enabling the use of inexpensive cable and can drive long cables. For direct interchangeability and easy system calibration, most Brüel & Kjær piezoelectric accelerometers are Uni-Gain types.

£

		and the second		1ª	1		and the second sec
Type No.		4517	4517-002	4516	4516-001	4518	4518-001
Weight (excluding cable)	gram (oz)	0.65 (0.02)	0.7 (0.035)	1.5 (0.053)	1.5 (0.053)	1.5 (0.053)	1.45 (0.051)
Sensitivity at 159.2 Hz	mV/ms ⁻² (mV/g)	1.02 (10)	1.02 (10)	1.02 (10)	0.51 (5)	1.02 (10)	10.2 (100)
Frequency Range (±10%)	Hz	1 to 20000					
Mounted Resonance Frequency	kHz	80	80	60	60	60	60
Operating Temperature Range	°C °F	-51 to +121 -60 to +250	-51 to +100 -60 to +212				
Measuring Range (± peak)	g	500	500	500	1000	500	50
Residual Noise Level [*]	μg	6000	6000	6000	6000	2000	900
Maximum Non-destructive Shock (± peak)	g	5000	5000	5000	5000	3000	3000
Connector		3-56	3-56	10–32 UNF Female	10–32 UNF Female	M3	M3
Mounting		Adhesive	Adhesive	Adhesive	Adhesive	Integral M3 Stud	Integral M3 Stud

* Measured in specified frequency range

		In the second se	III III	and the second sec	II CANO	and the second	HE COMP
Type No.		4518-002	4518-003	4519	4519-001	4519-002	4519-003
Weight	gram (oz)	1.45 (0.051)	1.45 (0.051)	1.6 (0.056)	1.6 (0.056)	1.5 (0.053)	1.5 (0.053)
Sensitivity at 159.2 Hz	mV/ms ⁻² (mV/g)	1.02 (10)	10.2 (100)	1.02 (10)	10.2 (100)	1.02 (10)	10.2 (100)
Frequency Range, (±10%)	Hz	1 to 20000	1 to 20000	1 to 20000	1 to 20000	1 to 20000	1 to 20000
Mounted Resonance Frequency	kHz	60	60	45	45	45	45
Operating Temperature Range	°C °F	-51 to +121 -60 to +250	-51 to +100 -60 to +212	-51 to +121 -60 to +250	-51 to +100 -60 to +212	-51 to +121 -60 to +250	-51 to +100 -60 to +212
Measuring Range (± peak)	g	500	50	500	50	500	50
Residual Noise Level [*]	μg	2000	900	2000	900	2000	900
Maximum Non-destructive Shock (± peak)	g	3000	3000	3000	3000	3000	3000
Connector		M3	M3	M3	M3	M3	M3
Mounting		Adhesive	Adhesive	Integral M3 Stud	Integral M3 Stud	Adhesive	Adhesive

				Cug	Ge
Type No.		4397	4394*	4521	4507
Weight	gram (oz)	2.4 (0.085)	2.9 (0.102)	2.7 (0.095)	4.8 (0.17)
Sensitivity at 159.2 Hz	mV/ms ⁻² (mV/g)	1 (9.8)	1 (9.8)	1.02 (10)	10 (98)
Frequency Range (±10%)	Hz	1 to 25000	1 to 25000	1 to 9000	0.3 to 6000
Mounted Resonance Frequency	kHz	53	52	35	18
Operating Temperature Range	°C °F	−50 to +125 −58 to +257	-50 to +125 -58 to +257	-51 to +121 -60 to +250	-54 to +121 -65 to +250
Measuring Range (± peak)	g	750	750	500	70
Residual Noise Level [†]	μg	1500	2500	6000	350
Maximum Non-destructive Shock (± peak)	g	10000	10000	2000	5000
Connector		M3	M3	M3	10-32 UNF
Mounting		M3 Stud	M3 Stud	Insulated M2 Centre Bolt	Clip/Adhesive

* With a ceramic isolated base † Measured in specified frequency range

		Te	-	-		1	
Type No.		4507-001	4507-002	4507-B	4507-B-001	4507-B-002	4507-B-003
Weight	gram (oz)	4.8 (0.17)	4.8 (0.17)	4.8 (0.17)	4.8 (0.17)	4.8 (0.17)	4.8 (0.17)
Sensitivity at 159.2 Hz	mV/ms ⁻² (mV/g)	1 (9.8)	100 (980)	10 (98)	1 (9.8)	100 (980)	10 (98)
Frequency Range (±10%)	Hz	0.1 to 6000	0.4 to 6000	0.3 to 6000	0.1 to 6000	0.4 to 6000	0.3 to 6000
Mounted Resonance Frequency	kHz	18	18	18	18	18	18
Operating Temperature Range	°C °F	-54 to +121 -65 to +250	-54 to +100 -65 to +212	-54 to +121 -65 to +250	-54 to +121 -65 to +250	-54 to +100 -65 to +212	-54 to +121 -65 to +250
Measuring Range (± peak)	g	700	7	70	700	7	70
Residual Noise Level*	μg	800	150	350	800	150	350
Maximum Non-destructive Shock (± peak)	g	5000	5000	5000	5000	5000	5000
Connector		10-32 UNF					
Mounting		Clip/Adhesive	Clip/Adhesive	Clip/Adhesive	Clip/Adhesive	Clip/Adhesive	Adhesive

Type No.		4507-B-004	4507-В-005	4507-B-006	4508	4508-001	4508-002
Weight	gram (oz)	4.6 (0.16)	4.6 (0.16)	4.6 (0.16)	4.8 (0.17)	4.8 (0.17)	4.8 (0.17)
Sensitivity at 159.2 Hz	mV/ms ⁻² (mV/g)	10 (98)	100 (980)	50 (490)	10 (98)	1 (9.8)	100 (980)
Frequency Range (±10%)	Hz	0.3 to 6000	0.4 to 6000	0.2 to 6000	0.3 to 8000	0.1 to 8000	0.4 to 8000
Mounted Resonance Frequency	kHz	18	18	18	25	25	25
Operating Temperature Range	°C	-54 to +121	-54 to +100	-54 to +100	-54 to +121	-54 to +121	-54 to +100
Operating lemperature Range	°F	-65 to +250	-65 to +212	-65 to +212	-65 to +250	-65 to +250	-65 to +212
Measuring Range (± peak)	g	70	7	14	70	700	7
Residual Noise Level**	μg	350	150	160	350	800	150
Maximum Shock (± peak)	g	5000	5000	5000	5000	5000	5000
Connector		10-32 UNF					
Mounting		Clip/Adhesive	Clip/Adhesive	Clip/Adhesive	Clip/Adhesive	Clip/Adhesive	Clip/Adhesive

* Measured in specified frequency range

				(A)	and the second s		
Type No.		4508-B	4508-B-001	4508-B-002	4508-B-003	4508-B-004	4526
Weight	gram (oz)	4.8 (0.17)	4.8 (0.17)	4.8 (0.17)	4.8 (0.17)	4.8 (0.17)	5 (0.18)
Sensitivity at 159.2 Hz	mV/ms ⁻² (mV/g)	10 (98)	1 (9.8)	100 (980)	10 (98)	50 (490)	10 (98)
Frequency Range (±10%)	Hz	0.3 to 8000	0.1 to 8000	0.4 to 8000	0.3 to 8000	0.2 to 8000	0.3 to 8000
Mounted Resonance Frequency	kHz	25	25	25	25	25	25
Operating Temperature Range	°C °F	-54 to +121 -65 to +250	-54 to +121 -65 to +250	-54 to +100 -65 to +212	−54 to +121 −65 to +250	-54 to +100 -65 to +212	-54 to +180 -65 to +356
Measuring Range (± peak)	g	70	700	7	70	14	70
Residual Noise Level [*]	μg	350	800	150	350	160	350
Maximum Non-destructive Shock (± peak)	g	5000	5000	5000	5000	5000	5000
Connector		10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF
Mounting		Clip/Adhesive	Clip/Adhesive	Clip/Adhesive	Adhesive	Clip/Adhesive	10-32 UNF Stud

			He	100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Type No.		4526-001	4526-002	8339	8339-001	4534-B	4534-B-001
Weight	gram (oz)	5 (0.18)	5 (0.18)	5.8 (0.204)	5.8 (0.204)	8.6 (0.3)	8.6 (0.3)
Sensitivity at 159.2 Hz	mV/ms ⁻² (mV/g)	1 (9.8)	10 (98)	0.025 (0.25)	0.01 (0.1)	1 (9.8)	10 (98)
Frequency Range (±10%)	Hz	0.1 to 8000	0.3 to 8000	1 to 20000	1 to 20000	0.2 to 12800	0.2 to 12800
Mounted Resonance Frequency	kHz	25	25	>130	>130	38	38
Operating Temperature Range	°C	-54 to +180	-54 to +165	-51 to +121	-51 to +121	-55 to +125	-55 to +125
	°F	-65 to +356	-65 to +329	-60 to +250	-60 to +250	-67 to +257	-67 to +257
Measuring Range (± peak)	g	700	700	20000	50000	700	70
Residual Noise Level [*]	μg	800	350	150	350	500	130
Maximum Non-destructive Shock (± peak)	g	5000	5000	80000	80000	10000	10000
Connector		10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF
Mounting		10-32 UNF Stud	Adhesive	Integral 10–32 UNF Stud	Integral 10–32 UNF Stud	10-32 UNF Stud	10-32 UNF Stud

* Measured in specified frequency range

Type No.		4534-B-002	4534-B-004	4533-В	4533-B-001	4533-B-002	4533-B-004
Weight	gram	8.6 (0.3)	8.6 (0.3)	8.6 (0.3)	8.6 (0.3)	8.6 (0.3)	8.6 (0.3)
Sensitivity at 159.2 Hz	mV/ms ⁻² (mV/g)	50 (490)	5 (49)	1 (9.8)	10 (98)	50 (490)	5 (49)
Frequency Range (±10%)	Hz	0.3 to 12800	0.2 to 12800	0.2 to 12800	0.2 to 12800	0.3 to 12800	0.2 to 12800
Mounted Resonance Frequency	kHz	38	38	38	38	38	38
Operating Temperature Bange	°C	-55 to +125					
Operating Temperature Range	°F	-67 to +257					
Measuring Range (± peak)	g	14	140	700	70	14	140
Residual Noise Level [*]	μg	100	140	500	130	100	140
Maximum Non-destructive Shock (± peak)	g	10000	10000	10000	10000	10000	10000
Connector		10-32 UNF					
Mounting		10-32 UNF Stud					

				the second
Type No.		4511-001	4511-006	4523
Weight	gram (oz)	35 (1.23)	35 (1.23)	13.3 (0.47)
Sensitivity at 159.2 Hz	mV/ms ⁻² (mV/g)	1 (9.8)	1 (9.8)	1 (9.8)
Frequency Range (±10%)	Hz	1 to 15000	2 to 25000	1 to 15000
Mounted Resonance Frequency	kHz	43	43	43
Operating Temperature Range	°C °F	-54 to +150 -65 to +302	-54 to +150 -65 to +302	-54 to +150 -65 to +302
Measuring Range (± peak)	g	500	500	500
Residual Noise Level [*]	μg	1000	1000	2000
Maximum Non-destructive Shock (± peak)	g	5000	5000	5000
Connector		3-pin HiRel	3-pin Series 800 Mighty Mouse	10-32 UNF
Mounting		M4 Centre Bolt/10-32 UNF Stud	M4 Centre Bolt	M4 Centre Bolt

* Measured in specified frequency range

Types 4511 and 4523 have been specifically designed for Health Usage Monitoring of gearboxes on helicopters, are flight-test certified, and all processes and materials comply with MIL-STD-11268. The primary design objective has been reliability under extreme conditions yielding very high robustness versus mechanical, electrical and environmental influences.

		P.	a	1		
Type No.		5958-A [*]	5958-H [*]	8340	8344	8344-B-001
Weight	gram (oz)	44 (1.55)	44 (1.55)	775 (27.33)	176 (6.2)	176 (6.2)
Sensitivity at 159.2 Hz	mV/ms ⁻² (mV/g)	1 (9.8)	1 (9.8)	1020 (10000)	250 (2450)	50 (490)
Frequency Range (±10%)	Hz	0.3 to 11000	0.3 to 11000	0.1 to 1500	0.2 to 3000	0.05 to 3000
Mounted Resonance Frequency	kHz	45	45	7	10	10
Operating Temperature Range	°C °F	-50 to +100 -58 to +212	-50 to +100 -58 to +212	-51 to +74 -60 to +165	-50 to +100 -58 to +212	-58 to +212 -58 to +212
Measuring Range (± peak)	g	500	500	0.5	2.6	14
Residual Noise Level [†]	μg	1500	1500	25	18	18
Maximum Non-destructive Shock (± peak)	g	2000	2000	100	350	350
Connector		BNC	Open End	MIL-C-5015 2-pin TNC	10-32 UNF	10-32 UNF
Mounting		Integral 1/4″–28 UNF Stud	Integral 1/4"–28 UNF Stud	1/4"–28 UNF Stud	M5 Stud	M5 Stud

* Available in four versions. Cable lengths 10, 30, 50 and 100 m

+ Measured in specified frequency range

Industrial CCLD Accelerometers

An industrial accelerometer with its rugged design is robust and reliable and covers a wide range of permanent vibration monitoring applications including operations in wet, dusty and potentially explosive areas. Charge and CCLD types are both available. Charge types are especially excellent for high-temperature measurements.

		1	- and	- the state	time .	<
Type No.		8341	8324-G	8324-G-001	8324-G-002	8345
Description		Top Connector	TEDS Side Connector	TEDS Side Connector	TEDS Side Connector	Triaxial Side Connector
Weight	gram (oz)	41 (1.44)	91 (3.15)	91 (3.15)	91 (3.15)	50 (1.76)
Sensitivity at 159.2 Hz	mV/ms ⁻² (mV/g)	10.2 (100)	1 (9.8)	1 (9.8)	1 (9.8)	10 (98)
Frequency Range (±10%)	Hz	0.3 to 10000	1 to 9000	100 to 9000	100 to 9000	2 to 2000
Mounted Resonance Frequency	kHz	27	30	30	30	18
Operating Temperature Range	°C °F	-51 to +121 -60 to +250	-196 to +250 -321 to +482	-196 to +250 -321 to +482	-196 to +250 -321 to +482	-45 to +125 -49 to +257
Measuring Range (± peak)	g	50	500	500	500	200
Max. Non-destructive Shock (± peak)	g	5000	2000	2000	2000	5000
Connector		MIL-C-5015	BNC	BNC	LEMO	4-pin Series 800 Mighty Mouse
Mounting		1/4"-28 UNF Stud	3 × M4 Screw			

Triaxial CCLD Accelerometers

Type No.		4520	4520-001	4520-002	4520-004	4524	4524-B
Weight	gram (oz)	2.9 (0.1)	4 (0.14)	3.6 (0.127)	4 (0.14)	4.4 (0.15)	4.8 (0.17)
Sensitivity at 159.2 Hz	mV/ms ⁻² (mV/g)	1.02 (10)	1.02 (10)	1.02 (10)	0.1 (1)	10 (98)	10 (98)
Frequency Range (±10%)	Hz	X: 2 to 7000 Y: 2 to 7000 Z: 2 to 7000	X: 2 to 4000 Y: 2 to 4000 Z: 2 to 7000	X: 2 to 4000 Y: 2 to 4000 Z: 2 to 7000	X: 2 to 4000 Y: 2 to 4000 Z: 2 to 7000	X: 0.2 to 5500 Y: 0.25 to 3000 Z: 0.25 to 3000	X: 0.2 to 5500 Y: 0.25 to 3000 Z: 0.25 to 3000
Mounted Resonance Frequency	kHz	X, Y: 30, Z: 40	X: 20, Y: 25, Z: 30	X: 20, Y: 25, Z: 30	X: 20, Y: 25, Z: 30	X: 18, Y: 9, Z: 9	X: 18, Y: 9, Z: 9
Operating Temperature Range	°C °F	-51 to +121 -60 to +250	-54 to +100 -65 to +212	-54 to +100 -65 to +212			
Measuring Range (± peak)	g	500	500	500	5000	50	50
Residual Noise Level [*]	μg	7000	7000	7000	56000	X: 400 Y: 200 Z: 200	X: 400 Y: 200 Z: 200
Maximum Non-destructive Shock (± peak)	g	5000	5000	5000	5000	5000	5000
Connector		4-pin, 1/4"–28 UNF	4-pin, 1/4"–28 UNF				
Mounting		Adhesive	M3/Adhesive	Clip/Adhesive	M3/Adhesive	Adhesive/Clip	Adhesive/Clip

Type No.		4524-B-001	4524-B-004	4535-B	4535-B-001	4535-B-003
Weight	gram (oz)	4.8 (0.17)	4.8 (0.17)	6 (0.21)	6 (0.21)	4.8 (0.17)
Sensitivity at 159.2 Hz	mV/ms ⁻² (mV/g)	1 (9.8)	5 (49)	1 (9.8)	10 (98)	.1 (.98)
Frequency Range (±10%)	Hz	X: 0.2 to 5500 Y: 0.25 to 3000 Z: 0.25 to 3000	X: 0.2 to 5500 Y: 0.25 to 3000 Z: 0.25 to 3000	X: 0.3 to 10000 Y: 0.3 to 10000 Z: 0.3 to 12800	X: 0.3 to 10000 Y: 0.3 to 10000 Z: 0.3 to 12800	X: 0.3 to 10000 Y: 0.3 to 10000 Z: 0.3 to 12800
Mounted Resonance Frequency	kHz	X: 18, Y, Z: 9	X: 18, Y, Z: 9	X, Y: 30, Z: 42	X, Y: 30, Z: 42	X, Y: 30, Z: 42
Operating Temperature Range	°C	-54 to +100	-54 to +100	-60 to +125	-60 to +125	-60 to +125
Operating temperature Range	°F	-65 to +212	-55 to +212	-76 to +257	-76 to +257	-76 to +257
Measuring Range (± peak)	g	500	100	700	70	5100
Residual Noise Level [*]	μg	X: 500 Y: 400 Z: 400	X: 800 Y: 600 Z: 600	900	600	6000
Maximum Non-destructive Shock (± peak)	g	5000	5000	5100	5100	5100
Connector		4-pin, 1/4"–28 UNF	4-pin, 1/4"–28 UNF	4-pin, 1/4"–28 UNF	4-pin, 1/4"–28 UNF	4-pin, 1/4"–28 UNF
Mounting		Adhesive/Clip	Adhesive/Clip	M3 Stud/Adhesive	M3 Stud/Adhesive	M3 Stud/Adhesive

* Measured in specified frequency range

		The second	The second second	The second	TEN THE	THE THE	THE T
Type No.		4527	4527-001	4527-003	4528-B	4528-B-001	4528-B-003
Weight	gram (oz)	6 (0.21)	6 (0.21)	4.8 (0.17)	6 (0.21)	6 (0.21)	4.8 (0.17)
Sensitivity at 159.2 Hz	mV/ms ⁻² (mV/g)	1 (9.8)	10 (98)	.1 (.98)	1 (9.8)	10 (98)	.1 (.98)
Frequency Range (±10%)	Hz	X: 0.3 to 10000 Y: 0.3 to 10000 Z: 0.3 to 12800	X: 0.3 to 10000 Y: 0.3 to 10000 Z: 0.3 to 12800	X: 0.3 to 10000 Y: 0.3 to 10000 Z: 0.3 to 12800	X: 0.3 to 10000 Y: 0.3 to 10000 Z: 0.3 to 12800	X: 0.3 to 10000 Y: 0.3 to 10000 Z: 0.3 to 12800	X: 0.3 to 10000 Y: 0.3 to 10000 Z: 0.3 to 12800
Mounted Resonance Frequency	kHz	X, Y: 30, Z: 42					
Operating Temperature Range	°C °F	-54 to +180 -65 to 356	-54 to +180 -65 to 356	-54 to +180 -65 to 356	-60 to +165 -76 to 329	-60 to +165 -76 to 329	-60 to +165 -76 to +329
Measuring Range (± peak)	g	510	51	5100	510	51	5100
Residual Noise Level [*]	μg	900	600	6000	900	600	6000
Maximum Non-destructive Shock (± peak)	g	5000	5000	5100	5100	5100	5100
Connector		4-pin, 1/4"–28 UNF					
Mounting		M3 Stud/Adhesive	M3 Stud/Adhesive	M3 Stud/Adhesive	M3 Stud/Adhesive	M3 Stud/Adhesive	M3 Stud/Adhesive

		Se.	Ele.				Ø
Type No.		4529-В	4529-B-001	4506-B-003	4504-A	4515-B	4515-B-002
Weight	gram (oz)	14.5 (0.51)	14.5 (0.51)	18 (0.63)	15 (0.24)	345 (12.2)	345 (12.2)
Sensitivity at 159.2 Hz	mV/ms ⁻² (mV/g)	10 (98)	1 (9.8)	50 (490)	1 (9.8)	10 (98)	10 (98)
Frequency Range (±10%)	Hz	X: 0.3 to 12800 Y: 0.3 to 6000* Z: 0.6 to 6000*	X: 0.3 to 12800 Y: 0.3 to 6000* Z: 0.6 to 6000*	X: 0.3 to 4000 Y: 0.3 to 2000 Z: 0.3 to 2000	X: 1 to 11000 Y: 1 to 9000 Z: 1 to 18000	X: 0.25 to 900 Y: 0.25 to 900 Z: 0.25 to 900	X: 0.25 to 900 Y: 0.25 to 900 Z: 0.25 to 900
Mounted Resonance Frequency	kHz	X: 39, Y, Z: 19	X: 39, Y, Z: 19	X: 14, Y, Z: 7	X: 26, Y: 23, Z: 44	>2700	2700
Operating Temperature Range	°C °F	-60 to +125 -76 to +257	-60 to +125 -76 to +257	-54 to +100 -65 to +212	−50 to +125 −58 to +257	-10 to +70 +14 to +158	-10 to +70 +14 to +158
Measuring Range (± peak)	g	71	710	14	500	50	50
Residual Noise Level [*]	μg	X: 600 Y: 300 Z: 200	X: 900 Y: 500 Z: 400	X: 120 Y: 60 Z: 60	4000	X: 400 Y: 200 Z: 200	X: 400 Y: 200 Z: 200
Maximum Non-destructive Shock (± peak)	g	5100	5100	2000	3000	5000	5000
Connector		4-pin, 1/4"–28 UNF	4-pin, 1/4"–28 UNF	4-pin, 1/4″–28 UNF	10-32 UNF	3 × 10-32 UNF	4-pin LEMO

* Measured in specified frequency range

Amplified Piezoresistive Accelerometers

Amplified piezoresistive accelerometers are designed for measuring relatively low-level accelerations in aerospace and automotive environments. Typical applications require measurement of whole body motion immediately after the accelerometer is subjected to a shock motion, and in the presence of severe vibrational inputs. Brüel & Kjær's amplified piezoresistive accelerometers, the Type 457x series, include D versions with superior temperature stability:

- 457X and 457X-D: Open-ended
- 457X-001 and 457X-D-001: 7-pin LEMO termination
- 457X-002 and 457X-D-002: 9-pin sub D termination

Type No.		4570	4571	4572	4573	4574	4575
Maximum Linear Range (peak)	g	500	200	100	30	10	2
Frequency Range (±10%)	Hz	0 to 1850	0 to 1850	0 to 1850	0 to 850	0 to 500	0 to 300
Sensitivity at 159.2 Hz	mV/ms ⁻² (mV/g)	0.4 (4)	1 (10)	2 (20)	6.7 (67)	20 (200)	100 (1000)
Residual Noise Level in Spec. Frequency Range	μg (RMS)	150000	65000	23000	11000	1800	500
Operating Temperature Range	°C	-55 to +121					
Operating remperature hange	°F	-65 to +250					
Maximum Non-destructive Shock (± peak)	g	10000	10000	10000	10000	10000	10000
Weight	gram (oz)	8 (0.28)	8 (0.28)	8 (0.28)	8 (0.28)	8 (0.28)	8 (0.28)
Cable/Connector		3 m Integral Cable					
Mounting		4–40 UNCor M3 Screws					
Accessory Included		2 × 4–40 UNC Screw, Hex Wrench QA-0013					

Connection Examples to Measurement and Analysis Devices

NON-CONTACT TRANSDUCERS

Non-contact Transducers for Speed, Velocity and Displacement

Brüel & Kjær's non-contact transducers are used for contact-free target detection, velocity and displacement detection without loading the structure under test. Another common use for the transducer signal is as an input to a tachometer to measure rotational speed (RPM). In some applications, Magnetic Transducer

MM-0002 can even be used to excite the test structure using the transducer as a miniature contact-free electromagnetic vibration exciter for non-contact vibration excitation. This is used for determination of elastic properties of materials.

Type No.		MM-0002	MM-0004	2981	2981-A [*]
Signal Outputs		Velocity or Trigger for tachometer	Displacement or Trigger for tachometer	Trigger for tachometer	Trigger for tachometer
Detection Principle		Variable reluctance	Capacitive	Visible laser and receiver	Visible laser and receiver through fibre-optic cable
Conditioning		None (self-generating)	200 V from Type 2669 or similar	CCLD	CCLD
Frequency Range	Hz	0 to 2000	20 to 200000	0 to 300000	0 to 300000
Typical Working Distances	mm	2	0.5	15 to 700	2 to 50
Operating Temperature Range	°C	-150 to +250	up to +250	-10 to +50	-60 to +130 (Fiber)
Operating remperature Range	°F	-238 to +482	up to +482	+14 to +122	-76 to +266
Dimensions	mm	21 imes 29.5	21 imes 29.5	22.5 × 91	6×21 (Fiber tip)
Connector		10-32 UNF	11.7 mm 60 UNS (1/2" microphone)	SMB	SMB
Mounting Provision		M16–1 thread with two included nuts	M16–1 thread with two included nuts	1/4'' - 20 UNC (camera tripod), $10 - 32$ UNF, M4, M22-1 thread with flange	M6–0.75 thread with two included nuts

* Type 2981-A consists of CCLD Laser Tacho Probe Type 2981, Fibre Adaptor UA-2144 and Optional Fibre AE-4003-D-020

Designed for contact-free speed measurements on rotating or reciprocating machine parts, Type 2981 produces a voltage pulse for each rotation of a shaft or cycle of a machine part.

Used with retroreflective tape like its included QS-0056, the probe has the advantage that it can be located any distance from 1.5 to at least 70 cm (0.6 to 27 inches) from the test object, thus safely separating the probe from possible contact with moving parts or an otherwise hazardous environment.

FORCE TRANSDUCERS AND IMPACT HAMMERS

Piezoelectric force transducers are designed to measure dynamic, short-duration forces in constructions. They are mounted so that the force to be measured is transmitted through the transducer. Used together with vibration or modal exciters they can measure and control the applied force, and can be used for the measurement of frequency response functions in conjunction with an accelerometer. All Brüel & Kjær force transducers are of rugged construction, with high overall stiffness ensuring that they have a high resonance frequency without changing the mechanical characteristics of the test structure. A convenient and economical means of exciting structures is an instrumented impact hammer fitted with a high-quality piezoelectric force transducer. Brüel & Kjær offers a complete range of instrumented impact hammers, capable of impacting and accurately measuring the force entering the structure under test.

Force Transducers

These transducers are designed specifically for use with vibration and modal exciters in structural dynamic testing. Their very high resonance frequency allows for the measurement of short duration, fast rise time, force transients.

		#4 Kparr 8603 8492	44 Kjaar 8402 8 491	44 Kjarr Bolgi 4 Kilo 4 Kilo Kilo Kilo Kilo Kilo Kilo Kilo Kilo	ta Kjaner Etoj te sta	4 i xjaer 6 coo3 9 482	-
Type No.		8230-003	8230-002	8230-001	8230	8230-C-003	8231-C
Transducer Type		CCLD	CCLD	CCLD	CCLD	Piezoelectric	Piezoelectric
Sensitivity	mV/N (mV/lbf)	0.2 (1)	2.2 (10)	22 (100)	110 (500)	-4 (-18)	-2 (-9)
Range, Full Scale	N (lbf)	+22000/-22000 (+5000/-5000)	+2200/-2200 (+500/-500)	+220/-220 (+50/-50)	+44/-44 (+10/-10)	22241 (5000) Compression	111205 (25000) Compression
Maximum Compression	N (lbf)	+66000 (+15000)	+44000 (+10000)	+4400 (+1000)	+880 (+200)	+67000 (+15000)	+268000 (+60000)
Maximum Tension	N (lbf)	-2200 (-500)	-2200 (-500)	-2200 (-500)	-880 (-200)	-2200 (-500)	-4448 (-1000)
Weight	gram	30	30	30	30	30	452
Operating Temperature Range	°C	-73 to +121	-73 to +121	-73 to +121	-73 to +121	-73 to +260	-73 to +260
Operating remperature Range	°F	-99 to +250	-99 to +250	-99 to +250	-99 to +250	-99 to +500	-99 to +500
Dimensions (Diameter × Height)	mm (inch)	19.05 × 15.93 (0.75 × 0.627)	19.05 × 15.93 (0.75 × 0.627)	19.05 × 15.93 (0.75 × 0.627)	19.05 × 15.93 (0.75 × 0.627)	19.05 × 15.93 (0.75 × 0.627)	50.55 × 31.75 (1.99 × 1.25)
Case Material		Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
Connector, Electrical		10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF
Mounting Provision		Top & Bottom: 1/4"-28 UNF	Top & Bottom: 1/4"-28 UNF	Top & Bottom: 1/4"-28 UNF	Top & Bottom: 1/4"-28 UNF	Top & Bottom: 1/4"-28 UNF	3/8″-16
Cables and Accessories Included		Impact Cap, 1/4"–28 UNF Mounting Stud, and 1/4"–28 UNF to 10–32 UNF Insert	Impact Cap, 1/4"–28 UNF Mounting Stud, and 1/4"–28 UNF to 10–32 UNF Insert	Impact Cap, 1/4"–28 UNF Mounting Stud, and 1/4"–28 UNF to 10–32 UNF Insert	Impact Cap, 1/4"–28 UNF Mounting Stud, and 1/4"–28 UNF to 10–32 UNF Insert	Impact Cap, 1/4"–28 UNF Mounting Stud, and 1/4"–28 UNF to 10–32 UNF Insert	Impact Cap and 2 × 3/8″–16 UNC Mounting Stud

Force Transducer/Impact Hammer Impedance Heads

C.

Force Transducer/Impact Hammer Type 8203 is a unique structural testing kit designed for use with lightweight and delicate structures. The force transducer measures the force applied to the structure. It can be connected to the hammer kit for impact testing or to a small exciter (such as Brüel & Kjær Type 4810) via the stinger kit provided.

Impedance heads offer a simple approach to the measurement of point mechanical mobilities and impedances. They can be used on a wide range of structures, including rotor blades, polymers, the human body, artificial mastoids, welds, wood and metal panels.

Туре No.		8203*
Transducer Type		Piezoelectric
Sensitivity	pC/N (pC/lbf)	3.6 (16)
Maximum Compression	N (lbf)	1000 (225) [†] 1250 (281) [‡]
Maximum Tension	N (lbf)	250 (56)
Resonance Frequency with 5 gram Load	kHz	21 [†] 30 [‡]
Head Mass	g (lb)	3.5 (0.0077) [†] 1.9 (0.0042) [‡]
Weight	g (lb)	3.2 (0.0071) [†] 1.6 (0.0035) [‡]
Operating Temperature Range	°C °F	-196 to +150 -321 to +302
Overall Length	mm (inch)	106 (4.17)
Dimensions (diameter × height)	mm (inch)	9 × 15.8 (0.35 × 0.62)
Handle Material		Anodized Aluminium
Case Material Connector		Titanium & Steel AISI 303 Coaxial M3
Mounting Provision		Top & Bottom: M3 (with pre-loading nuts)
Included Cables and Accessories		 AO-0339 Cable DB-3041 Steel Tip UC-0205 Plastic Tip YS-9202 Tip Mounting Screw UC-5322 Pre-loading Nut YM-0249 Pre-loading Nut DB-425 M3/10-32 UNF Adaptor YQ-2004 M3 Screw for DB-1425 QA-0041 Tap for M3 Thread QA-0186 5 mm Spanner QA-0042 Allen Key Complete Science Vita

Complete Stinger Accessory Kit

Type No.		8001
Transducer Type		Piezoelectric
Sensitivity, Force Gauge	pC/N (pC/lbf)	370 (1645)
Sensitivity, Accelerometer	pC/ms ⁻² (pC/g)	3 (30)
Maximum Compression	N (lbf)	2000 (449.6)
Maximum Tension	N (lbf)	300 (67.4)
Frequency Range (±10%)	kHz	0.001 to 10
Weight	g (Ib)	29 (0.064)
Operating Temperature Range	°C °F	-196 to +260 -321 to +500
Dimensions (diameter × height)	mm (inch)	18 × 32 (0.71 × 1.26)
Case Material		Titanium
Connector		Two 10-32 UNF
Mounting Provision		Top & Bottom: 10-32 UNF
Included Cables and Accessories		 2 × AO-0038 Low-noise cable, 1.2 m (4 ft) 4 × YQ-2962 Threaded Steel Stud, 10-32 UNF 3 × YO-0534 Mica Washer 2 × YP-0150 Insulated Stud, 10-32 UNF YM-0414 Nut, 10-32 UNF QA-0029 Screw Tap, 10-32 UNF QA-0013 Allen Key, 3/32" for studs 5 × YS-0514 Weakened Stud, 10-32 UNF

* Force transducer can be removed to use separately

+ With pre-loading nuts

‡ Without pre-loading nuts

Impact Hammers

Impact hammer measurements are often conducted in difficult environments where dust, temperature fluctuations and high humidity frequently pose severe demands on the electrical and mechanical integrity of the instrumentation. All Brüel & Kjær impact hammers have been meticulously designed to meet the expectations for reliability in all such environments. With the ability to excite from the smallest of structures to various civil engineering structures, Brüel & Kjær has an impact hammer to suit even the most demanding application.

Type No.		8204	8206-003	8206-002	8206-001	8206	8207	8208	8210
Transducer Type		CCLD	CCLD	CCLD	CCLD	CCLD	CCLD	CCLD	CCLD
Sensitivity	mV/N (mV/lbf)	22.5 (100)	1.12 (5)	2.25 (10)	11.2 (50)	22.5 (100)	0.225 (1)	0.225 (1)	0.225 (1)
Range, full scale	N (lbf)	222 (50)	4448 (1000)	2224 (500)	445 (100)	222 (50)	22240 (5000)	22240 (5000)	22240 (5000)
Maximum Force	N (lbf)	890 (200)	8896 (2000)	4448 (1000)	4448 (1000)	4448 (1000)	35584 (8000)	35584 (8000)	35 584 (8000)
Upper Frequency Limit, typical [*]	kHz	60	10	10	10	10	1.2	1.2	1.2
Head Mass	g (lb)	2 (0.0044)	100 (0.22)	100 (0.22)	100 (0.22)	100 (0.22)	454 (1.0)	1362 (3.0)	5448 (12)
Onersting Temperature Bange	°C	-73 to +60	–55 to +125	–55 to +125	–55 to +125	–55 to +125	-73 to +121	-73 to +121	-73 to +121
Operating Temperature Range	°F	-100 to +140	-100 to +250	-100 to +250	-100 to +250				
Overall Length	mm (inch)	122 (4.8)	223 (8.76)	223 (8.76)	223 (8.76)	223 (8.76)	300 (11.7)	390 (15.2)	900 (35.3)
Handle Material		Poly Extension	Fibreglass with Rubber Grip	Fibreglass with Rubber Grip	Fibreglass with Rubber Grip	Fibreglass with Rubber Grip	Hardwood	Hardwood	Hardwood
Case Material		Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
Connector		10-32 UNF	BNC	BNC	BNC	BNC	BNC	BNC	BNC
Accessories Included		Head Extender and Carrying Case	Various Tips and Carrying Case	Various Tips Carrying Case	Various Tips and Carrying Case				

* Upper frequency limit depends upon structure under test and tip used. Typical values stated above are for a steel tip

MODAL AND VIBRATION EXCITERS

Modal and Vibration Test Solutions from Brüel & Kjær

Brüel & Kjær offers, as a single-source supplier, a wide range of tools for measurement and analysis in the vibration and structural dynamics testing disciplines including: multichannel data acquisition hardware, measurement software, post-processing software and software for integration of test and finite element analysis. The family of exciters available through Brüel & Kjær range from small permanent magnet exciters for vibrating small test objects to larger floor-mounted types for vibrating assemblies and larger structures. They are designed for high force levels and produce a clean vibration waveform with low cross-motion and distortion.

Modal Exciters

Based upon years of practical modal test experience, the line of modal exciters has been specifically developed to ensure the best possible modal test performance with minimum setup time.

The electrodynamic exciters provide precise, reliable, stable and long-lasting operation. Highest quality materials, stringent quality control and rugged construction assure a versatile means of modal excitation for any modal test.

Features include through-hole design, high force-to-weight ratio, low-mass armatures, wide frequency range, low total weight and small physical dimensions.

The exciters are available as:

- **Stand-alone units** supplied only with the appropriate trunnion, blower (except Type 4824) and connecting cable
- Complete systems with a matching power amplifier and DC static centring and field power supply units (Types 3627 and 3628 only)

Optional accessories include traditional push/pull stingers, tension wire stingers, lateral modal exciter stands, turnbuckles, hose and cable extension kits, chuck nut assemblies and various adaptors.

Note: The table shows selected modal exciters only. Exciters above 1000 N are available.

		14 C				
Type No. for Stand-alone Product		4824	4825	4826	4827	4828
Type No. for System		3624	3625	3626	3627	3628
Max. Force [*] , Sine (peak)	N (lbf)	100 (22)	200 (45)	400 (90)	650 (146)	1000 (225)
Max. Force [*] , Random (RMS)	N (lbf)	70 (15)	140 (31)	280 (63)	420 (94)	650 (146)
Max. Displacement, Pk-Pk	mm (in)	25.4 (1)	25.4 (1)	25.4 (1)	50.8 (2)	50.8 (2)
Effective Moving Mass	kg (lb)	0.23 (0.51)	0.23 (0.51)	0.40 (0.88)	1.3 (2.87)	1.3 (2.87)
Main Resonance Frequency	Hz	>6000	>6000	>4000	>3000	>3000
Useful Frequency Range	Hz	2 to 5000	2 to 5000	2 to 5000	2 to 5000	2 to 5000
Operating Frequency Range	Hz	DC to 5000	DC to 5000	DC to 5000	DC to 5000	DC to 5000
Max. Velocity, Sine (peak)	m/s (in/s)	1.5 (59)	1.5 (59)	1.5 (59)	1.5 (59)	1.5 (59)
Max. Velocity, Random (RMS)	m/s (in/s)	1.5 (59)	1.5 (59)	1.5 (59)	1.5 (59)	1.5 (59)
Max. Acceleration, Sine (peak)	m/s ² (g)	432 (44)	863 (88)	981 (100)	500 (51)	765 (78)
Max. Acceleration, Random (RMS)	m/s ² (g)	304 (31)	608 (62)	697 (71)	343 (35)	490 (50)
Rated Current	А	5.5	11.2	18	18	18
Suspension Stiffness	N/mm (lbf/in)	4 (23)	4 (23)	4 (23)	Adjus	table [†]
Weight with Trunnion	kg (lb)	21 (46.3)	21 (46.3)	21 (46.3)	80 (176)	80 (176)
Dimensions with Trunnion	mm (in)	306 × 220 × 241.5 (12 × 8.7 × 9.5)	306 × 220 × 241.5 (12 × 8.7 × 9.5)	306 × 220 × 241.5 (12 × 8.7 × 9.5)	394 × 400 × 540 (15.5 × 15.7 × 21.3)	394 × 400 × 540 (15.5 × 15.7 × 21.3)

* With forced air cooling

+ Adjusted with DC Static Centring Unit Type 1056

Type No.	5961
Description	Hand-held Exciter Combines the advantages of an impact hammer and modal exciter for measuring on smaller structures. Has a built-in battery-operated power amplifier. Needs only to be fed with an input signal from an external generator such as via a PULSE multi-analyzer system
Frequency Range	45 Hz to 15 Hz
Sensitivity	150 mN/V _{in} (typical and broadband) where $V_{in} = 2.0$ V RMS, Load mass = 2 kg
Force Rating (RMS)	2 N (typical at resonance) 100 mN (typical at 10 kHz)
Input Voltage	2.0 V RMS (distortion < 3%) 3.5 V RMS (max. input)
Battery Lifetime	Approx. 3 hours constant use
Weight	500 g (17 oz), incl. battery
Dimensions	Length: 155 mm (6.1") Diameter: 52 mm (2.05")

Vibration Exciters

All permanent magnet exciters are versatile and can be used for a range of applications including general vibration testing, mechanical impedance and mobility measurements, modal analysis or accelerometer calibration.

Matching power amplifiers and a range of accessories are available.

For more information on the use of vibration exciters to calibrate accelerometers, see Accelerometer Calibration.

Ture No.		4808	Allon	4810
Type No.		4808	4809	
Max. Force, Sine (peak) (without cooling)	N (lbf)	112 (25)	44.5 (10)	10 (2.25) @ 65 Hz to 4 kHz 7 (1.5) @ 65 Hz to 18 kHz
Max. Force, Sine (peak) (with air cooling)	N (lbf)	187 (42)	60 (13.5)	-
Max. Displacement, Pk-Pk	mm (in)	12.7 (0.5)	8.0 (0.32)	4.0 (0.16)
Effective Moving Mass	kg (lb)	160 (5.64)	-	18 (0.63)
Frequency Range	Hz	5 to 10000	10 to 20000	DC to 18000
Max. Bare Table Acceleration (peak)	m/s ² (g)	700 (71)	736 (75) 1000 (100) with air cooling	550 (56) @ 65 Hz to 4 kHz 383 (39) @ 65 Hz to 18 kHz
Coil Impedance	Ω	Approx. 0.8 @ 500 Hz with bare table and coils in parallel	Approx. 2 @ 500 Hz with bare table	3.5 @ 500 Hz
Max. Input Current	A RMS	15 (25 with assisted air cooling)	5 (7 with forced air cooling)	1.8
Weight	kg (lb)	35 (77.1)	8.3 (18.3)	1.1 (2.4)
Dimensions: Diameter Height	mm (in)	215 (8.46) 200 (7.87)	149 (5.87) 143 (5.63)	76 (3) 75 (2.9)
Table Diameter	mm (in)	62.5 (2.45)	29 (1.14)	14 (0.55)
Power Amplifier		Type 2719	Type 2718	Туре 2718

ACCELEROMETER ACCESSORIES

Clip Mounting

For modal and other applications requiring easy, flexible, and fast mounting, Brüel & Kjær has specifically developed a line of mounting clips. The housing of some accelerometers has slots that allow the use of mounting clips. The clips are attached to the object with glue or double-sided adhesive tape and can be easily fitted and moved to or from a number of different test objects. With glass reinforced polycarbonate clips, the upper frequency limit will be reduced depending on the accelerometer. For detailed mounting techniques and specifications, see the individual accelerometer product data sheets.

Type No.	Description	Used with		
UA-1407	Set of 100 small mounting clips			
UA-1475	Set of 100 small thick-base mounting clips			
UA-1564	Set of 5 small high-temperature mounting clips, insulated with 10 – 32 UNF holes	Types 4507, 4508, 4524, 4500-A, 4501-A		
UA-1478	Set of 100 small swivel bases			
DV-0459	Small calibration clip			
UA-1408	Set of 100 big mounting clips			
UA-1474	Set of 100 big thick-base mounting clips			
UA-1563	Set of 5 big high-temperature mounting clips, insulated with 10–32 UNF holes	Types 4504, 4506, 4326-A, 4326-A-001, 4573, 4574, 4575, 4535, 4528, 4527 with adaptor UA-2219		
UA-1473	Set of 100 big swivel bases			
DV-0460	Big calibration clip			
UA-1480	Spirit level for swivel base	All swivel bases		

Item No.		UA-1408	UA-1474	UA-1473			
Description		Large clip for mounting directly on object Large clip with thick base that can be filed surface down to suit your mounting surface		Large clip with swivel base			
Weight		3.9 g (0.13 oz)	3.9 g (0.13 oz)	5 g (0.18 oz)			
Temperature Range		Fo	-54 to +50 °C (-65 to +122 °F) For brief use (<1 hour): up to +80 °C (+176 °F)				
Maximum Accelerat	tion	10 <i>g</i> peak Perpendicular to mounting surface: 70 <i>g</i> peak					
Material			Glass reinforced polycarbonate				
	with Type 4506	Mounted with grease on the accelerometer: 2 kHz Mounted dry: 1.2 kHz	Mounted with grease on the accelerometer: 2 kHz				
Upper Limiting Frequency, 10%:	with Type 4506-B			Mounted with grease: Excited along one of the accelerometer's axes of sensitivity and with mounting surface of hemisphere at 45° to excitation direction: 1 kHz			
	with Type 4506-B-003	Mounted with grease: 1.2 kHz	Mounted with grease: 1.2 kHz	Mounted with grease: Excited along one of the accelerometer's axes of sensitivity and with mounting surface of hemisphere at 45° to excitation direction: 0.8 kHz			

Item No.		UA-1407	UA-1475	UA-1478		
Description		Small clips for mounting directly on object surface	Small clips with thick base that can be filed down to suit your mounting surface	Small clips with a swivel base		
Weight		0.4 g (0.014 oz)	0.7 g (0.02 oz)	0.8 g (0.03 oz)		
Temperature Range	2	-54 to +50 °C (-65 to +122 °F) For brief use (<1 hour): up to +80 °C (+176 °F)				
Maximum Accelera	tion	10 g peak Perpendicular to mounting surface: 70 g peak				
Material		Glass reinforced polycarbonate				
	with Type 4507	Mounted with grease: 3 kHz Mounted dry: 1.5 kHz	Mounted with grease: 3 kHz Mounted dry: 1.5 kHz	Mounted with grease: Excited along one of the accelerometer's axes of sensitivity and with mounting surface of hemisphere at 45° to excitation direction: 2.3 kHz		
Upper Limiting Frequency, 10%	with Type 4508	Mounted with grease: 4 kHz Mounted dry: 2 kHz	Mounted with grease: 3 kHz Mounted dry: 1.5 kHz	Mounted with grease: Excited along one of the accelerometer's axes of sensitivity and with mounting surface of hemisphere at 45° to excitation direction: 1.7 kHz		
	with Type 4524	Mounted with grease: X: 2.7 kHz, Y and Z: 2.0 kHz	Mounted with grease: X: 2.7 kHz, Y and Z: 2.0 kHz	Mounted with grease: Excited along one of the accelerometer's axes of sensitivity and with mounting surface of hemisphere at 45° to excitation direction: X: 2.5 kHz, Y and Z: 1.9 kHz		

Item No.	UA-1564	UA-1563	
Description	High-temperature mounting clips		
Temperature Range	-55 to +175 °C (-67 to +347 °F) If discolouring is acceptable: up to +250 °C (+482 °F)		
Maximum Acceleration (5 gram accelerometer)	50 <i>g</i> peak Perpendicular to mounting surface: 250 <i>g</i> peak	10 g peak Perpendicular to mounting surface: 50 g peak	
Material Base Spring	Anodized aluminium Stainless steel spring		
Weight	5.7 g (0.20 oz) 11 g (0.38 oz)		
Mounting Thread	10-32 UNF		

Item No.	DV-0459	DV-0460		
Description	Calibration clip for mounting ac	Calibration clip for mounting accelerometers during calibration		
Mounting Surface Diameter	21 mm (0.83") 29 mm (1.14")			
Mounting Thread	10-32 UNF	10-32 UNF		
Weight	17 g (0.59 oz) 44 g (1.55 oz)			
Base Material	Hardened stainless steel Hardened stainless steel			
Spring Material	Stainless steel	Stainless steel		

Item No.	UA-2219
Description	Adaptor for clip mounting of accelerometers (25 pcs) For use with mounting clips UA-1407, UA-1475, UA-1478, UA-1564 and DV-0459
Material	Black anodized aluminium
Weight	0.4 g (0.014 oz)
Mounting Surface	10 × 10 mm (0.39 × 0.39")
Mounting Provision	M3 × 15 mm stud, Adhesive
	with Accelerometer Type 4393 stud-mounted: 2 kHz
Upper Limiting Frequency, 10% (using	with Accelerometer Type 4533 or 4534 adhesive- mounted: 3 kHz
mounting clip UA-1407)	with Accelerometer Type 4527, 4528 or 4535 stud/ adhesive-mounted: 1 kHz

Item No.	UA-1480	
Description	Spirit level for swivel bases To align accelerometers in order to retain coordinate system	
Maximum Dimensions	85 × 23 × 17 mm (3.3 × 0.9 × 0.6")	
Material	Black anodized aluminium	

Example of an accelerometer mounted on Calibration Exciter Type 4294 using a calibration clip

Mounting Blocks, Brackets and Adaptors

For specific applications, such as hand-arm and whole body vibration, or with relation to specific designs, Brüel & Kjær offers a range of blocks and brackets developed with customers to ease mounting or dismounting and obtain the best possible measurement results. The products shown are just some of the solutions developed over the years. So if your need is not addressed please ask our sales personnel for other available options.

		€ • • • •	
Item No.	UA-2083	UA-2079	UA-3014
Description	Adaptor for clip mounting of DC Response Accelerometers (Type 4571 – 4575) Includes 5 thin mounting clips	Triaxial Mounting Block for DC Response Accelerometers (Type 4571 – 4575) The adaptor includes a 10–32 UNF mounting stud and 4–40 UNC screws (25 pcs)	High-temperature mounting block (cooling unit) This water-cooled unit is specifically designed for use on high-temperature surfaces up to 600 °C (1112 °F), such as exhaust manifold including lambda probe position. Compatible with: Type 4326-A-001 and can be used at reduced temperatures with Types 4505-A and 4326-A
Material	Black anodized aluminium	Clear anodized aluminium	Stainless steel, AISI 304
Mounting Surface	26 × 15 mm (1 × 0.5″)	26 × 26 mm (1 × 1″)	The cooling water is suspended above the unit and led through the hose by gravity (pumps or similar vibration generating devices are not recommended)
Mounting Provision	Tapped Holes: 2 × 4–40 UNC	10-32 UNF stud, 6-32 UNF, M4 screw, Adhesive	1 m hoses (5.5 mm (0.2") outer \oslash) (2 pcs) M2 × 10 screws (6 pcs)

Mounting an accelerometer using UA-3014

Mounting an accelerometer using UA-2079

Blocks and Brackets for Human Vibration

Item No.	Туре 4392	Туре 4447
Description	Hand-arm Transducer Set The Hand-arm Transducer Set includes hand and handle adaptors designed for the included accelerometer Type 4374. The accelerometer has a very wide frequency and dynamic range enabling both low level vibration and/or high percussive vibration	Human Vibration Analyzer A complete portable system for acquisition, measurement and evaluation of human vibration and comfort, and includes a range of adaptors for sensor mounting and appropriate accelerometers
Uses	Hand-arm vibration measurements (2 to 1250 Hz)	 Hand-arm vibration measurements (2 to 1250 Hz) Whole-body vibration measurements (1 to 80 Hz) Low-frequency, whole-body vibration measurements down to 0.4 Hz Linear mode (0.4 to 1250 Hz) for calibration
Standards	ISO 5349	 ISO 8041.2005 Technical specification ISO 5349.2: 2001 Hand-arm ISO 2631.1: 1997 Whole-body EN 1032.2003: Mechanical vibration EU Directive 2002/44/EC

These accessories are specifically designed to enable mounting of a transducer for quick and easy hand-arm and/or whole body vibration analysis.

Using UA-3015

Using Type 4447

Using UA-3016

UA-3016

Item No. UA-3015 UA-3017 Handle Adaptor (L-shaped) **Direct Mounting Adaptor** Hand Adaptor (T-shaped) The handle adaptor is placed on a tool grip/ This block features accelerometer clip The hand adaptor is designed to be hand fixed mounting and is fastened to the test object by handle and accommodates accelerometers Description between two fingers and the grip surface. for clip mounting. The handle adaptor is use of strips. This makes for very versatile Mounting and dismounting are easily done by specifically recommended for percussive tools mounting options, including steering wheels, using the clip principle. with high g-levels. handles, pipes, etc. Types 4520-002, 4524-B, 4507-B-001 and Types 4520-002, 4524-B, 4507-B-001 and Types 4520-002, 4524-B, 4507-B-001 and Compatible with 4508-B-001 4508-B-001 4508-B-001 Useful Frequency Range: 0 to >5000 Hz Useful Frequency Range: 0 to >5000 Hz Useful Frequency Range: 0 to >5000 Hz Performance Max. Acceleration: 2500 m/s2 (\sim 25 q) Max. Acceleration: 2500 m/s² (~250 g) Max. Acceleration: 2500 m/s² (~250 g) Standards ISO 8041, ISO 5349 ISO 8041, ISO 5349 ISO 8041, ISO 5349 Material Anodized aluminium Anodized aluminium Anodized aluminium Weight 15 g (0.5 oz) 30 g (1 oz) 12 g (0.4 oz)

Other Accessories

Studs

Thread	Item No.	Description
	UA-2063	Set of 10 pieces, fully threaded 10–32 UNF steel stud, length 7.9 mm (0.31"); see Fig. 1
10–32 UNF	UA-2064	Set of 10 pieces, double end threaded 10–32 UNF steel stud, with flange, length 5.3 mm (0.21"); see Fig. 2
	UA-2068	Set of 10 pieces, fully threaded 1/4–28 UNF, length 9.7 mm (0.38"); see Fig. 3
1/4"-28 UNF	UA-2056	Set of 10 pieces, fully threaded 1/4–28 UNF with flange, length 8.7 mm (0.34"); see Fig. 4
3/8″–16 UNF	UA-2061	Set of 10 pieces, fully threaded 3/8–16 UNF, length 12.7 mm (0.5"); see Fig. 5
M3	UA-2065	Set of 10 pieces, fully threaded M3 steel studs, length 5.0 mm (0.2"); see Fig. 6
	UA-1221	Set of 10 pieces, double end threaded M3 steel studs, with flange, length 3.5 mm (0.13"); see Fig. 7

Magnets

U		
Thread	Item No.	Description
10-32 UNF	UA-0643	Set of 5 mounting magnets, \emptyset 24 mm (0.9"), stud length 3.1 mm (0.1"). Each magnet comes with 2 insulating discs; see Fig. 16
М3	UA-1075	Set of 5 mounting magnets, \varnothing 10 mm (0.3"), stud length 1.6 mm (0.06"). Each magnet comes with 1 insulating disc; see Fig. 17
1/4"–28 UNF to 10–32 UNF	UA-1281	Mounting Magnet; see Fig. 18

Adaptors

Thread	Item No.	Description
10-32 UNF to M3	DB-1425	Berylco adaptor, M3 internal threaded; see Fig. 19
10-32 UNF to	UA-2062	Set of 10 mounting studs with flange; see Fig. 20
1/4"-28 UNF	UA-2052	Set of 10 stud adaptors; see Fig. 21
	UA-2054	Set of 20 bushing adaptors; see Fig. 22
10-32 UNF to M6	WA-1668	Stainless steel adaptor, M6 internal threaded; see Fig. 23
10-32 UNF to M8	WA-1667	Stainless steel adaptor, M8 internal threaded; see Fig. 24
10-32 UNF to M10	WA-1666	Stainless steel adaptor, M10 internal threaded; see Fig. 25
10-32 UNF to M12	WA-1665	Stainless steel adaptor, M12 internal threaded; see Fig. 26
Flat to M3	UA-2219	Anodized aluminium adaptor, used to mount M3 threaded accelerometers to mounting clip, see Fig. 27

Insulated Studs

Thread	Item No.	Description
10-32 UNF	YP-0150	Insulated fully threaded stud, length 13 mm (0.5"); see Fig. 8
10-32 UNF	UA-1192	Set of 10 insulated studs, double-end threaded with flange, length 10 mm (0.4"), 200 °C (392 °F); see Fig. 9
10-32 UNF	UA-1444	Set of 10 insulated studs, thread with flange, length 2.1 mm (0.08"); 120 °C/248 °F see Fig. 10
М3	UA-1193	Set of 10 insulated studs, double-end threaded with flange, length 5.4 mm (0.2"), 200 °C (392 °F); see Fig. 11

Cement Studs

Thread	Item No.	Description
10-32 UNF	UA-0866	Set of 25 cement studs with flange; \varnothing 14 mm (0.55"); see Fig. 12
M3	UA-0867	Set of 25 studs with flange; \varnothing 8 mm (0.3"); see Fig. 13

Mechanical Filters

Thread	Item No.	Description
10–32 UNF stud/ hole	UA-0553	Set of 5 mechanical filters Temperature range: -50 to +100 °C (- 58 to +212 °F) Material: Stainless steel AISI 303, Butyl rubber See Fig. 14
M3 stud/hole	WA-0224	Mechanical filter; see Fig. 15

Nuts

Thread	Item No.	Description
10-32 UNF	UA-2066	Set of 20 nuts
M3	UA-2067	Set of 20 nuts

Probes

Item No.	Description
YP-0080	Probe with sharp tip, 10–32 UNF; Test pin
DB-0544	Probe with round tip

O-rings

e		
Used With	Item No.	Description
Accelerometers with 10–32 UNF connector	UA-2222	Set of 100 ∅ 3.10 mm × ∅ 1.60 mm Black, SIL 50
Accelerometers with M3 connector	UA-2221	Set of 100 \varnothing 2.25 mm × \varnothing 0.65 mm Black, NBR 70
Accelerometers with 1/4"–28 UNF connector (Triaxial)	UA-2220	∅ 5.00 mm × ∅ 1.00 mm Black, FPM 75

Adhesives

Used With	Item No.	Description		
General purpose accelerometers	YJ-0216	Beeswax for mounting		
General purpose accelerometers	QS-0007	Tube of cyanoacrylate adhesive		
	QS-0003	Loctite 222 threadlocker, purple, low strength, 10 ml (0.34 oz)		
	EL-2019 EL-2330	HBM-X-60 Bonds		
Types 4374, 4375, 4393, 4394, 4397-A	YO-0073	25 × Double adhesive mounting disc; \emptyset 5 mm (0.2")		
	DU-0079	1 × Double adhesive mounting disc; ∅ 40 mm (1.6")		
Calibration ÆX-9133		Grease, for vacuum or low pressure use, 0 to 150 °C		

Impact Tips and Caps

Used with	Item No.	Description
Туре 8207	UA-2057	Set of four impact tips
Туре 8208	UA-2058	Set of four impact tips
Types 8206, 8206-001, 8206-002, 8206-003	UA-2059	Set of three impact tips
Type 8210	UA-2060	Set of four impact tips
Types 8230, 8230-001, 8230-002, 8230-003, 8230-C-003	DB-3989	Impact cap with 1/4"-28 UNF threaded stud, stainless steel

Tools

Item No.	Description
QA-0029	Tap for 10–32 UNF thread
QA-0231	Tap for 2–56 UNF thread
QA-0041	Tap for M3 thread
QA-0068	Tap for M5 thread
QA-0141	Tap for M8 thread
QA-0013	Hexagonal key for 10–32 UNF studs
QA-0042	Hexagonal key for M3 studs
QA-0038	Hexagonal key for M4 studs
QA-0121	Hexagonal key for M8 studs
QA-0220	Cable connecting/removal tool
QA-0230	Removal wrench for teardrop type accelerometers

Screws

M2 × 10 mmYQ-8941Steel screw, hex socket head cap, D Used with Types 4326-A, 4326-A0 4326-001M4 × 16 mmYQ-0093Steel screw, hex socket head cap, D Used with Types 4321, 4321-VM4 × 22 mmYS-9901Stainless steel screw with hole for fastening Used with Type 4511-001M4 × 15 mmpartially threadedYS-0449Screw, socket head cap, titanium for 3.0 mm hex Used with Type 4523M4 × 12 mmYS-8406Screw, with lock wire holes, hex sock cap, stainless steel Used with Type 8347-C2-56 UNFUA-2055Set of 10 mounting screws, length 0.37") Used with Types 4521, 4521-C4-40 inUA-2069Set of 25 head cap screws, length 0.37") Used with Types 4570, 4571, 4572, 4574, 4575 $M2 \times 10 mm$ UA-2069Set of 10 mounting screws, length 0.39")M2 × 10 mmYK-2106Screw, pan head, Pozidriv* DIN 798 stainless steelM3 × 5 mmYQ-2003Screw, hex socket set with cup poir DIN 916, steelM3 × 8 mmYQ-2007Screw, hex socket set with cup poir DIN 916, steelM4 × 10 mmYK-1410Screw, hex socket set with cup poir DIN 916, steelM4 × 10 mmYG-909Screw, hex socket low head cap, DI stainless steelM4 × 10 mmYG-9209Screw, hex socket low head cap, DI stainless steelM5 × 10 mmYQ-9209Screw, hex socket low head cap, DI stainless steelM5 × 10 mmYQ-9215Screw, hex socket head cap, DI 918 stainless steelM5 × 16 mmYQ-9215Screw, hex socket head cap, DI 918 stainless steel	Description			
M4 × 16 mmYQ-0093Used with Types 4321, 4321-VM4 × 22 mmYS-9901Stainless steel screw with hole for tastening Used with Type 4511-001M4 × 15 mm partially threadedYS-0449Screw, socket head cap, titanium for 3.0 mm hex Used with Type 4523M4 × 12 mmYS-8406Screw, with lock wire holes, hex sock cap, stainless steel Used with Type 8347-C2-56 UNFUA-2055Set of 10 mounting screws, length 0.37") Used with Type 4521, 4521-C4-40 inUA-2080Set of 25 head cap screws, length 1 (0.42") with washer Used with Types 4570, 4571, 4572, 4574, 4575M2 × 10 mmUA-2069Screw, pan head, Pozidriv* DIN 798 stainless steelM2 × 4 mmYS-0290Screw, special PH, blackM2 × 4 mmYS-0290Screw, hex socket set with cup poir DIN 916, steelM3 × 5 mmYQ-2003Screw, hex socket set with cup poir DIN 916, steelM3 × 8 mmYQ-2007Screw, pan head, Pozidriv DIN 798 stainless steelM4 × 10 mmYK-1410Screw, pan head, Pozidriv DIN 798 stainless steelM4 × 10 mmYK-1410Screw, pan head, Pozidriv DIN 798 stainless steelM4 × 10 mmYQ-2007Screw, hex socket set with cup poir DIN 916, steelM4 × 10 mmYK-1410Screw, pan head, Pozidriv DIN 798 stainless steelM5 × 10 mmYQ-9209Screw, hex socket lead cap, DI steelM5 × 16 mmYQ-9215Screw, hex socket head cap, DI steelM5 × 16 mmYQ-9215Screw, hex socket head cap, DI 915 stainless steel				
M4 × 22 mmYS-9901fastening Used with Type 4511-001M4 × 15 mm partially threadedYS-0449Screw, socket head cap, titanium for 3.0 mm hex Used with Type 4523M4 × 12 mmYS-8406Screw, with lock wire holes, hex sock cap, stainless steel Used with Type 8347-CM4 × 12 mmYS-8406Set of 10 mounting screws, length 0.37") Used with Types 4521, 4521-C2-56 UNFUA-2055Set of 10 mounting screws, length 0.37") Used with Types 4521, 4521-C4-40 inUA-2069Set of 25 head cap screws, length 1 0.42") with washer Used with Types 4570, 4571, 4572, 4574, 4575M2 × 10 mmUA-2069Set of 10 mounting screws, length (0.39")M2 × 4 mmYS-0290Screw, pan head, Pozidriv* DIN 798 stainless steelM2 × 4 mmYS-0290Screw, flat head, Pozidriv* DIN 955 / stainless steelM3 × 5 mmYQ-2003Screw, hex socket set with cup poir DIN 916, steelM3 × 8 mmYK-1410Screw, pan head, Pozidriv DIN 798 stainless steelM4 × 10 mmYK-1410Screw, pan head, Pozidriv DIN 798 stainless steelM4 × 10 mmYK-1410Screw, pan head, Pozidriv DIN 798 stainless steelM4 × 10 mmYQ-2007Screw, hex socket set with cup poir DIN 916, steelM4 × 10 mmYQ-9209Screw, hex socket low head cap, DI steelM5 × 10 mmYQ-9215Screw, hex socket head cap, DI 91 stainless steelM5 × 16 mmYQ-9215Screw, hex socket head cap, DI 91 stainless steelM5 × 16 mmYQ-9215Screw, hex socket head cap, DI 91 stai	IN 912			
M4 × 15 mmpartially threadedYS-04493.0 mm hex Used with Type 4523M4 × 12 mmYS-8406Screw, with lock wire holes, hex soch cap, stainless steel Used with Type 8347-C2-56 UNFUA-2055Set of 10 mounting screws, length 0.37") Used with Types 4521, 4521-C $4-40$ inUA-2080Set of 25 head cap screws, length 1 (0.42") with washer Used with Types 4570, 4571, 4572, 4574, 4575 $M2 \times 10$ mmUA-2069Set of 10 mounting screws, length 1 (0.39")M2 × 10 mmVK-1110Screw, pan head, Pozidriv* DIN 798 stainless steelM2 × 4 mmYS-0290Screw, pan head, Pozidriv* DIN 798 stainless steelM2 × 4 mmYS-0290Screw, pan head, Pozidriv DIN 965 / stainless steelM3 × 5 mmYQ-2003Screw, hex socket set with cup poir DIN 916, steelM3 × 8 mmYQ-2007Screw, pan head, Pozidriv DIN 798 stainless steelM4 × 10 mmYK-1410Screw, pan head, Pozidriv DIN 798 stainless steelM4 × 10 mmYQ-909Screw, hex socket set with cup poir DIN 916, steelM5 × 10 mmYQ-9209Screw, hex socket low head cap, DI steelM5 × 16 mmYQ-9215Screw, hex socket head cap, DIN 91 stainless steelM5 × 16 mmYQ-9215Screw, hex socket head cap, DIN 91 stainless steelM5YS-0810Inset screw	hread			
M4 × 12 mmYS-8406cap, stainless steel Used with Type 8347-C $2-56$ UNFUA-2055Set of 10 mounting screws, length 0.37") Used with Types 4521, 4521-C $4-40$ inUA-2080Set of 25 head cap screws, length 1 $(0.42")$ with washer Used with Types 4570, 4571, 4572, 4574, 4575 $M2 \times 10$ mmUA-2069Set of 10 mounting screws, length $(0.39")$ M2 × 10 mmVK-1110Screw, pan head, Pozidriv* DIN 798 stainless steelM2 × 4 mmYS-0290Screw, special PH, blackM2.5 × 6 mmYK-2206Screw, flat head, Pozidriv DIN 965 / stainless steelM3 × 5 mmYQ-2003Screw, hex socket set with cup poir DIN 916, steelM4 × 10 mmYK-1410Screw, pan head, Pozidriv DIN 798 stainless steelM4 × 10 mmYK-1410Screw, pan head, Pozidriv DIN 798 stainless steelM4 × 10 mmYC-2007Screw, hex socket set with cup poir DIN 916, steelM4 × 10 mmYC-9209Screw, hex socket low head cap, DI stainless steelM5 × 10 mmYQ-9209Screw, hex socket low head cap, DI steelM5 × 16 mmYQ-9215Screw, hex socket head cap, DIN 916 stainless steelM5 × 16 mmYQ-9215Screw, hex socket head cap, DI Stainless steelM5Y5-0810Inset screw	r tool			
$2-56$ UNFUA-20550.37") Used with Types 4521, 4521-C $4-40$ inUA-2080Set of 25 head cap screws, length 1 $(0.42")$ with washer Used with Types 4570, 4571, 4572, 4574, 4575 $M2 \times 10$ mmUA-2069Set of 10 mounting screws, length $(0.39")$ $M2 \times 10$ mmYK-1110Screw, pan head, Pozidriv [®] DIN 798 stainless steel $M2 \times 4$ mmYS-0290Screw, special PH, black $M2.5 \times 6$ mmYK-2206Screw, flat head, Pozidriv DIN 965 / stainless steel $M3 \times 5$ mmYQ-2003Screw, hex socket set with cup poir DIN 916, steel $M3 \times 8$ mmYQ-2007Screw, hex socket set with cup poir DIN 916, steel $M4 \times 10$ mmYK-1410Screw, pan head, Pozidriv DIN 798 stainless steel $M4 \times 10$ mmYQ-9209Screw, hex socket low head cap, DI stainless steel $M5 \times 10$ mmYQ-9215Screw, hex socket low head cap, DI stainless steel $M5 \times 16$ mmYQ-9215Screw, hex socket head cap, DIN 916 steel $M5 \times 16$ mmYQ-9215Screw, hex socket head cap, DIN 916 steel	et head			
$4-40$ inUA-2080 $(0.42'')$ with washer Used with Types 4570, 4571, 4572, 4574, 4575 $M2 \times 10$ mmUA-2069Set of 10 mounting screws, length $(0.39'')$ $M2 \times 10$ mmYK-1110Screw, pan head, Pozidriv [®] DIN 798 stainless steel $M2 \times 4$ mmYS-0290Screw, special PH, black $M2.5 \times 6$ mmYK-2206Screw, flat head, Pozidriv DIN 965 / stainless steel $M3 \times 5$ mmYQ-2003Screw, hex socket set with cup poir DIN 916, steel $M3 \times 8$ mmYQ-2007Screw, hex socket set with cup poir DIN 916, steel $M4 \times 10$ mmYK-1410Screw, pan head, Pozidriv DIN 7985 stainless steel $M4 \times 10$ mmYQ-9209Screw, hex socket low head cap, DI stainless steel $M5 \times 10$ mmYQ-9215Screw, hex socket low head cap, DI steel $M5 \times 16$ mmYQ-9215Screw, hex socket head cap, DIN 916 steel $M5 \times 16$ mmYQ-9215Screw, hex socket head cap, DIN 916 steel	9.5 mm			
$ M2 \times 10 \text{ mm} $ $ M2 \times 10 \text{ mm} $ $ W-2069 \qquad (0.39'') $ $ YK-1110 \qquad Screw, pan head, Pozidriv® DIN 798 stainless steel $ $ M2 \times 4 \text{ mm} \qquad YS-0290 \qquad Screw, pan head, Pozidriv DIN 965 / Stainless steel $ $ M2.5 \times 6 \text{ mm} \qquad YK-2206 \qquad Screw, flat head, Pozidriv DIN 965 / Stainless steel $ $ M3 \times 5 \text{ mm} \qquad YQ-2003 \qquad Screw, hex socket set with cup poir DIN 916, steel $ $ M3 \times 8 \text{ mm} \qquad YQ-2007 \qquad Screw, hex socket set with cup poir DIN 916, steel $ $ M4 \times 10 \text{ mm} \qquad YK-1410 \qquad Screw, pan head, Pozidriv DIN 7985 \\ M4 \times 10 \text{ mm} \qquad YK-1410 \qquad Screw, pan head, Pozidriv DIN 7985 \\ M5 \times 10 \text{ mm} \qquad YQ-9209 \qquad Screw, hex socket low head cap, DI \\ Steel \qquad M5 \times 16 \text{ mm} \qquad YQ-9215 \qquad Screw, hex socket head cap, DIN 916 \\ Stainless steel \qquad M5 \qquad YS-0810 \qquad Inset screw $				
YK-1110Screw, pan head, Pozidriv DIN 798 stainless steelM2 × 4 mmYS-0290Screw, special PH, blackM2.5 × 6 mmYK-2206Screw, flat head, Pozidriv DIN 965 / stainless steelM3 × 5 mmYQ-2003Screw, hex socket set with cup poir DIN 916, steelM3 × 8 mmYQ-2007Screw, hex socket set with cup poir DIN 916, steelM4 × 10 mmYK-1410Screw, pan head, Pozidriv DIN 7985 stainless steelM4 × 10 mmYK-1410Screw, pan head, Pozidriv DIN 7985 stainless steelM4 × 10 mmYQ-9209Screw, hex socket low head cap, DI steelM5 × 10 mmYQ-9209Screw, hex socket low head cap, DI steelM5 × 16 mmYQ-9215Screw, hex socket head cap, DIN 91 stainless steelM5YS-0810Inset screw	L0 mm			
M2.5 × 6 mmYK-2206Screw, flat head, Pozidriv DIN 965 / stainless steelM3 × 5 mmYQ-2003Screw, hex socket set with cup poir DIN 916, steelM3 × 8 mmYQ-2007Screw, hex socket set with cup poir DIN 916, steelM4 × 10 mmYK-1410Screw, pan head, Pozidriv DIN 7985 stainless steelM4YS-0045Finger screwM5 × 10 mmYQ-9209Screw, hex socket low head cap, DI steelM5 × 16 mmYQ-9215Screw, hex socket head cap, DIN 91 stainless steelM5YS-0810Inset screw	5 A,			
M2.5 × 6 mmYR-2206stainless steelM3 × 5 mmYQ-2003Screw, hex socket set with cup poir DIN 916, steelM3 × 8 mmYQ-2007Screw, hex socket set with cup poir DIN 916, steelM4 × 10 mmYK-1410Screw, pan head, Pozidriv DIN 7985 stainless steelM4YS-0045Finger screwM5 × 10 mmYQ-9209Screw, hex socket low head cap, DI steelM5 × 16 mmYQ-9215Screw, hex socket head cap, DIN 91 stainless steelM5YS-0810Inset screw				
M3 × 5 mmYQ-2003DIN 916, steelM3 × 8 mmYQ-2007Screw, hex socket set with cup poir DIN 916, steelM4 × 10 mmYK-1410Screw, pan head, Pozidriv DIN 7985 stainless steelM4YS-0045Finger screwM5 × 10 mmYQ-9209Screw, hex socket low head cap, DIN steelM5 × 16 mmYQ-9215Screw, hex socket head cap, DIN 91 stainless steelM5YS-0810Inset screw	١,			
M3 × 8 mmYQ-2007DIN 916, steelM4 × 10 mmYK-1410Screw, pan head, Pozidriv DIN 7985 stainless steelM4YS-0045Finger screwM5 × 10 mmYQ-9209Screw, hex socket low head cap, DI steelM5 × 16 mmYQ-9215Screw, hex socket head cap, DIN 91 stainless steelM5YS-0810Inset screw	t,			
M4 × 10 mm YK-1410 stainless steel M4 YS-0045 Finger screw M5 × 10 mm YQ-9209 Screw, hex socket low head cap, DI steel M5 × 16 mm YQ-9215 Screw, hex socket head cap, DIN 91 stainless steel M5 YS-0810 Inset screw	t,			
M5 × 10 mm YQ-9209 Screw, hex socket low head cap, DI steel M5 × 16 mm YQ-9215 Screw, hex socket head cap, DIN 91 stainless steel M5 YS-0810 Inset screw	Α,			
M5 × 10 mm YQ-9209 steel M5 × 16 mm YQ-9215 Screw, hex socket head cap, DIN 91 stainless steel M5 YS-0810 Inset screw				
MIS × 16 mm YQ-921S stainless steel M5 YS-0810 Inset screw	N 6912			
	2,			
1/4" – 28 UNF UA-2053 Set of 10 mounting screws, length 2 (1.13")	8.6 mm			
1/6" × 9.0 mm YS-0067 Screw, special contact Brüel & Kjær gold plated	type,			
10-32 UNF × 1/2" YQ-2960 Screw socket set screw, flat end, st (12.8 mm) YQ-2960 Screw socket set screw, flat end, st	eel			
10-32 UNF × 5/16" YQ-2962 Screw socket set screw, flat end, st (7.7 mm) YQ-2962 Screw socket set screw, flat end, st	eel			
10–32 UNF × 3/8" YQ-8168 Screw hex socket countersunk, flat black steel	head,			
10–32 UNF YS-0811 Inset screw	Inset screw			

Accessory Sets

Item No.	Description	Used With	Item No.	Description	Used With
UA-0078	 1× Probe with round tip, 10-32 UNF 1× Cementing Stud 10-32 UNF; Ø 14 mm (0.55") 1× Plug Adaptor 10-32 UNF to TNC 1× Hexagonal Key for 10-32 UNF studs 1× Tap for 10-32 UNF thread 1× Mounting Magnet and two Insulating Discs 1× Beeswax for mounting 1× Steel Nut 10-32 UNF 1× Insulating Mica Washer 1× Probe with sharp tip 1× Insulated Stud 10-32 UNF; Length: 12.7 mm (0.5") 4× Steel Stud 10-32 UNF thread; Length: 12.7 mm (0.5") 	4370, 4371 4381, 4382 4383, 4384	UA-0844	 1 × Cementing Stud 10-32 UNF; Ø 14 mm (0.55") 1 × Hexagonal Key for 10-32 UNF studs 1 × Tap for 10-32 UNF thread 1 × Mounting Magnet and two Insulating Discs 3 × Steel Stud 10-32 UNF thread; Length: 12.7 mm (0.5") 	4391
UA-0125	 1 × Hexagonal Key for 10-32 UNF studs 1 × Tap for 10-32 UNF thread 10 × Steel Nut 10-32 UNF 10 × Insulating Mica Washer 10 × Insulated Stud 10-32 UNF; Length: 12.7 mm (0.5") 10 × Steel Stud 10-32 UNF thread; Length: 12.7 mm (0.5") 	General purpose accelerometers	UA-1079	 3 × Extension Connector for cables, 10-32 UNF to 10-32 UNF 1 × Plug Adaptor 10-32 UNF to TNC 1 × Tube of Cyanoacrylate Adhesive 1 × Beeswax for mounting 1 × Adhesive Mounting Disc 	4374
UA-0146	 1 × Cementing Stud 10-32 UNF; Ø14 mm (0.55") 3 × Plug Adaptor 10-32 UNF to TNC 1 × Hexagonal Key for 10-32 UNF studs 1 × Tap for 10-32 UNF thread 1 × Hexagonal Key for M 4 screws 1 × Beeswax for mounting 1 × Steel Nut 10-32 UNF 3 × Insulating Mica Washer 1 × Insulated Stud 10-32 UNF; Length: 12.7 mm (0.5") 11 × Steel Screw M4 thread; Length: 16 mm (0.6") 5 × Steel Stud 10-32 UNF thread; Length: 12.7 mm (0.5") 	4321	UA-1218	 3 × Extension Connector for cables, 10-32 UNF to 10-32 UNF 1 × Plug Adaptor, BNC to 10-32 UNF 1 × Tap for M3 thread 1 × Hexagonal Key for M3 studs 1 × Tube of Cyanoacrylate Adhesive 1 × Beeswax for mounting 1 × Adhesive Mounting Disc 	4394, 4397
UA-0629	12: / mm (0.5) 2 × Cement Stud, M3, Ø 8.0 mm (0.3") 3 × Extension Connector for cables, 10-32 UNF to 10-32 UNF 1 × Plug Adaptor 10-32 UNF to TNC 1 × Tap for M3 thread 1 × Hexagonal Key for M 3 studs 1 × Tube of Cyanoacrylate Adhesive 1 × Mounting Magnet M3 thread and two Insulating Discs 1 × Beeswax for mounting 1 × Adhesive Mounting Disc 3 × M3 Steel Stud; Length: 5 mm (0.1") 2 × M3 threaded Steel Stud; Length: 8 mm (0.3")	4375, 4393			
ACCELEROMETER MOUNTING SOLUTIONS

Mounting Considerations

To measure vibration accurately, one must ensure that the useful frequency and dynamic range are not limited by poor accelerometer mounting. One of the main requirements for good accelerometer mounting is for a rigid mechanical contact between

the accelerometer base and the surface to which it is to be attached. To achieve this, Brüel & Kjær has a wide variety of highly specialized mounting accessories. However, before choosing any accessory, you should keep in mind the considerations listed below.

Choosing the Right Mounting Method

Use of a Hand-held Probe or Long Rod

A hand-held probe with the accelerometer mounted on top is very convenient for quick-check survey work and for accessing confined measurement locations. However, due to low overall mechanical stiffness and lack of adequate contact force to the test object, the mounted resonance frequency will typically be very low. With this method, there are potential risks for gross measurement errors.

For measuring vibration in difficult-to-reach locations, the accelerometer can be mounted at the end of a steel pipe or rod within a rubber ring. A slightly rounded tip must be mounted onto the mounting surface of the accelerometer to ensure proper mechanical contact with the test object, even at slightly skewed angles. The response is far superior to the hand-held probe method.

Choosing a Mounting Position for the Accelerometer

The accelerometer should be mounted so that the desired measuring direction coincides with the main sensitivity axis. Accelerometers are slightly sensitive to vibrations in the transverse direction, but this can normally be ignored as the maximum transverse sensitivity is typically only a few percent of the main axis sensitivity. The reason for conducting vibration measurement tests will normally dictate the position of the accelerometer. In the drawing to the side, the purpose is to monitor the condition of the shaft and bearing. In this instance, the accelerometer should be positioned to maintain a direct path for the vibration from the bearing. Accelerometer 'A', thus, detects the vibration signal from the bearing predominant over vibrations from other parts of the machine, but accelerometer 'B' receives the bearing vibration modified by transmission through a joint, mixed with signals from other parts of the machine. Likewise, accelerometer 'C' is positioned in a more direct path than accelerometer 'D'.

It is very difficult to give general rules about placement of accelerometers, as the response of mechanical objects to forced

Mounting of Type 4326-A-001

Special effort has been put into making mounting as flexible as possible. For fast and easy mounting, Mounting Clips UA-1408, UA-1473 and UA-1474 can be used and five of the accelerometer's six surfaces can be used for mounting with adhesive cement or mounting wax. Where threaded holes can be provided in the test object, the accelerometer can be mounted from the top via mounting holes in the base using three M2 screws. See the following series of images for mounting hole positions.

vibrations is a complex phenomenon, so that one can expect, especially at high frequencies, to measure significantly different vibration levels and frequency spectra, even on adjacent measuring points on the same machine element.

Accelerometer mounting position when monitoring the condition of the shaft and bearing

030105

Loading the Test Object

When the accelerometer is mounted on the test object it will increase the mass of the vibrating system, thereby influencing the mechanical properties of the test object. As a general rule, the accelerometer mass should be no more than 1/10 of the 'local' dynamic mass of the vibrating part onto which it is mounted.

ACCELEROMETER CABLES

Brüel & Kjær Cables

A combination of measurement requirements, physical limitations, and environmental conditions usually determines the best choice of cable type. Brüel & Kjær provides a wide variety of high-quality cables and adaptors to ensure optimal electrical connections throughout the measurement setup.

Most cables employ a combination of a PTFE* insulator and PFA⁺ jacket, providing advantageous properties such as low coefficient of friction, mechanical strength, excellent dielectric insulation, wide temperature range, low gas permeability, and chemical and flame resistance.

The super low noise (SLN) and low noise (LN) cables feature Brüel & Kjær's proprietary and unique noise treatment, which has set the industry standard for cables used with charge sensors (highimpedance) to avoid triboelectric noise. The low-cost cables cover flexible industry standard coaxial cables only recommended for sensors with integrated electronics.

In addition to the standard cable lengths, which are available from stock for immediate shipment, Brüel & Kjær offers cables with custom cable lengths. Please consult your local representative for further information.

AO-XXXX-Y-ZZZ where:

- AO-XXXX is the basic cable type
- Y is length units in D (decimetre 0.1 m) or M (metre)
- ZZZ is the length value

Maximum Cable Length (CCLD)

The maximum output voltage of a CCLD accelerometer when driving long cables depends on the supply current at which it is operating, and on the capacitive load due to the connecting cable.

The maximum cable length in metres (for distortion \leq 1%) is given by:

$$L = 140000 \times \frac{l_s - 1}{f \times V_o \times C_m}$$

where:

 I_s = supply current (mA) f = frequency (kHz) V_o = output voltage (V_{peak})

 C_m = cable capacitance (pF/m)

Maximum Cable Length (Charge)

The figure below shows the influence of the input load capacitance on the high frequency response of a Brüel & Kjær charge amplifier.

How to Use Cables

When measuring low level vibrations where it appears in the form of noise:

- Use special coaxial cables with a noise reduction treatment. This is a standard feature of all accelerometer cables supplied by Brüel & Kjær
- Avoid sharp bending cable or twist cable because this will not only reduce the noise reduction treatment but also damage the connectors
- The cable should be clamped to the test specimen to avoid relative movement which causes triboelectric noise

120336

How to handle very strong electromagnetic field causing extraneous noise in the measurement signal:

- Carefully route the cable away from sources of high electromagnetic fields
- Use a balanced accelerometer such as Types 8315 and 8347-C and special cable

Bending Radius - Rule of Thumb

- Softline cable: 10 times the outer diameter of the jacket
- Hardline cable: 5 times the outer diameter of the jacket

* Polytetrafluoroethylene

† Perfluoroalkoxy

Coaxial Cable Assemblies for Uniaxial Accelerometers

Our most popular cables are marked with \blacklozenge . These offer the best delivery times and prices.

Connector A	Connector B	Temperature	Item No.	Description	
10–32 UNF Male	10–32 UNF Male	−75 to +250 °C −103 to +482 °F	♦ AO-0038	Super low-noise coaxial cable All-round use Raw cable: AC-0005 Recommended for all transducers	
10–32 UNF Male Straight	10–32 UNF Male Right angle	−75 to +250 °C −103 to +482 °F	AO-0741	AO-0038 with right-angle connector at one end Super low-noise coaxial cable Raw cable: AC-0005 Recommended for all transducers	6
10–32 UNF Male	10–32 UNF Male	−40 to +120 °C −40 to +248 °F	AO-0687	AO-0038 with extensive molded connector relief All round use, especially suitable for rough handling Raw cable: AC-0005 Recommended for all transducers	
10–32 UNF Male	10–32 UNF Male	-40 to +100 °C -40 to +212 °F	AO-0692	Rated IP67 Super low-noise, coaxial cable Raw cable: AC-0005 Recommended for temporary underwater submersion	
10–32 UNF Male	10–32 UNF Male	−75 to +250 °C −103 to +482 °F	◆ AO-0122	Robust cable Double-screened Raw cable: AC-0200 Recommended for harsh environments and rough handling	
10–32 UNF Male	10–32 UNF Male	−75 to +135 °C −103 to +275 °F	AO-0755	Robust cable with extensive relief at connectors Double-screened Raw cable: AC-0200 Recommended for harsh environments and rough handling	
10–32 UNF Male	10–32 UNF Male	−50 to +250 °C −58 to +482 °F	AO-1382	Low-noise coaxial cable, double-screened Light and flexible Raw cable: AC-0104 Recommended for flexibility	

Connector A	Connector B	Temperature	Item No.	Description	
10–32 UNF Male	10–32 UNF Male	−75 to +250 °C −103 to +482 °F	AO-1419	Low-noise coaxial cable, single-screened Very light and flexible Raw cable: AC-0066 Recommended for miniature transducers	
10–32 UNF Male	10–32 UNF Male	−20 to +70 °C −4 to +158 °F	AO-0463	Low-cost coaxial cable Single-screened Raw cable: AC-0208 Not recommended for charge transducers	
10–32 UNF Male	10–32 UNF Male	–65 to +150 °C –85 to +302 °F	AO-0704	White With low out-gassing properties Low-noise coaxial cable Raw cable: AC-0195 Recommended for high vacuum environments	
10-32 UNF Male	BNC Male	−55 to +250 °C −58 to +482 °F	AO-0406	Light and flexible double-screened Raw cable: AC-0104 Includes JP-0145 (10–32 UNF to BNC plug adaptor)	
10–32 UNF Male	BNC Male	−20 to +70 °C −4 to +158 °F	◆ AO-0531	Low-cost coaxial cable Single-screened Raw cable: AC-0208 Not recommended for charge transducers	

Connector A	Connector B	Temperature	Item No.	Description	
10–32 UNF Male	SMB Female	-75 to +250 °C -103 to +482 °F SMB end: Max 135 °C (275 °F)	AO-0699	Super low-noise Single-screened coaxial cable Raw cable: AC-0005 Recommended for all round use	
10–32 UNF Male	SMB Female	−20 to +70 °C −4 to +158 °F	AO-0691	Low-cost coaxial cable Single-screened Raw cable: AC-0189 Not recommended for charge transducers	
10–32 UNF Male	TNC Male	–75 to +250 °C –103 to +482 °F TNC end: Max. 120 °C (248 °F)	AO-0231	Super low-noise coaxial cable Single-screened Raw cable: AC-0005 Recommended for all-round use	
10–32 UNF Male	Open end	−75 to +250 °C −103 to +482 °F	AO-0482	Low-noise coaxial cable Extremely lightweight and flexible Single-screened Raw cable: AC-0066 Recommended for all-round use	
10–32 UNF Male	Circular-00 2-pin Male	-75 to +250 °C -103 to +482 °F Circular-002-pin end: Max. 90 °C (194 °F)	AO-0695	Super low-noise coaxial cable Raw cable: AC-0005 Recommended for all accelerometers to connect with Human Vibration Analyzer Type 4447	
M3 Male	10–32 UNF Male	−75 to +250 °C −103 to +482 °F	◆ AO-0283	Super low-noise coaxial cable Single-screened Raw cable: AC-0205 Recommended for all-round use for accelerometers with M3 connectors	
M3 Male	10–32 UNF Male	−75 to +250 °C −103 to +482 °F	AO-0339	Extremely lightweight and flexible Low-noise coaxial cable, single-screened Raw cable: AC-0066 Recommended for all-round use for accelerometers with M3 connectors	
M3 Male	10–32 UNF Male	−50 to +250 °C −58 to +482 °F	AO-1381	Low-noise coaxial cable Flexible double-screened Raw cable: AC-0104 Recommended for Types 4394,4397, 4518, 4519, 4521	

Connector A	Connector B	Temperature	Item No.	Description	
M3 Male	10–32 UNF Male	−65 to +150 °C −85 to +302 °F	AO-0703	White With low out-gassing properties Super low-noise coaxial cable Raw cable: AC-0195 Recommended for high vacuum environments	
M3 Male	BNC Male	–75 to +250 °C –103 to +482 °F BNC end: Max. 120 °C (248 °F)	◆ AO-0641	Super low-noise coaxial cable Single-screened Raw cable: AC-0205 Recommended for Types 4518, 4519, 4397, 4394, 4521	
M3 Male	SMB Female	−75 to +250 °C −103 to +482 °F SMB end: Max. 135 °C (275 °F)	AO-0698	Super low-noise Single-screened coaxial cable Raw cable: AC-0205 Recommended for Types 4518, 4519, 4397, 4394, 4521	
3–56 UNF Male	10–32 UNF Female	−30 to +200 °C −22 to +392 °F	♦ AO-0638	Low-noise coaxial cable Light and flexible Recommended for miniature transducers (Type 4517 family) with 3–56 UNF threaded connector	
3-pin MIL-C- 5015 Female	Open end	−75 to +250 °C −103 to +482 °F	AO-0642	3-wire (twisted) shielded cable Electrically and environmentally robust Raw cable: AC-0294 Durable for permanent installations Recommended for Type 4511-001	Ge I
Circular-1B Female	Circular-0B Male	−20 to +80 °C −4 to +176 °F	AO-0700	For DC response transducers with 7-pin circular LEMO connector PUR jacket Recommended for Types 457x-001 and 457x-D-001 and differential amplifier Type 2697	
Circular-1B Female	Circular-1B Male	−20 to +80 °C −4 to +176 °F	AO-0414	Extension cable for DC response transducers with 7-pin circular LEMO connector PUR jacket Recommended for Types 457X-001 and 457X-D-001 and differential amplifier Type 2697	(and ())
Series 800 3-pin Female	BNC Male	-75 to +150 °C -103 to +302 °F BNC end: max 135 °C (275 °F)	AO-0746	Robust cable for permanent installation Raw cable: AC-0294 Recommended for Type 4511-006	03

Coaxial Cable Assemblies for Triaxial Accelerometers

Our most popular cables are marked with \blacklozenge . These offer the best delivery times and prices.

Connector A	Connector B	Temperature	Item No.	Description	
Circular 4-pin Female	3 × 10−32 UNF Male	-75 to +90 °C -103 to +194 °F Splitter [*] : -40 to +150 °C -40 to +302 °F	AO-0527	Single-screened coaxial cable with four wires PUR jacket Raw cable: AC-0220/AC-0005 Recommended for all Brüel & Kjær CCLD triaxial accelerometers	
Circular 4-pin Female	3 × 10–32 UNF Male	-75 to +250 °C -103 to +482 °F Splitter [*] : -40 to +150 °C -40 to +302 °F	AO-0740	Single-screened coaxial cable with four wires Raw cable: AC-0223/AC-0005 Recommended for all Brüel & Kjær CCLD triaxial accelerometers	
Circular 4-pin Female	3 × BNC Male	-75 to +90 °C -103 to +194 °F Splitter [*] : -40 to +150 °C -40 to +302 °F	♦ AO-0526	Single-screened coaxial cable with four wires Raw cable: AC-0220/AC-0005 Recommended for all Brüel & Kjær CCLD triaxial accelerometers	
Circular 4-pin Female	3 × BNC Male	-75 to +250 °C -103 to +482 °F Splitter [*] : -40 to +150 °C -40 to +302 °F	◆ AO-0534	Single-screened coaxial cable with four wires Raw cable: AC-0223/AC-0005 Recommended for all Brüel & Kjær CCLD triaxial accelerometers	
Circular 4-pin Female	3 × SMB Female	-75 to +90 °C -103 to +194 °F SMB end: Min. -20 °C (-4 °F), max. +70 °C (158 °F) Splitter*: -40 to +150 °C -40 to +302 °F	AO-0690	Single-screened coaxial cable with four wires Raw cable: AC-0220/AC-0208 Recommended for all Brüel & Kjær CCLD triaxial accelerometers	
Circular 4-pin Female	Circular 4-pin Male	−75 to +250 °C −103 to +482 °F	AO-0714	Single-screened coaxial cable with four wires Raw cable: AC-0223 Recommended for high-temperature use as an extension cable for Types 4527 and 4528	
Circular 4-pin Female	Circular 4-pin Female	−75 to +90 °C −103 to +194 °F	AO-0528	Single-screened coaxial cable with four wires Raw cable: AC-0220 Recommended for all Brüel & Kjær CCLD triaxial accelerometers as an extension cable	
Circular 4-pin Female	Circular-00 4-pin Male	-75 to +90 °C -103 to +194 °F Circular-00 4-pin end: -40 to +80 °C (-40 to +176 °F)	AO-0693	Single-screened coaxial cable with four wires Raw cable: AC-0220 Recommended for all Brüel & Kjær CCLD triaxial accelerometers connecting to Human Vibration Analyzer Type 4447	

Connector A	Connector B	Temperature	Item No.	Description	
Circular 4-pin Female	Circular-00 3-pin Male	−20 to +90 °C −4 to +194 °F	AO-1454	Electrically and environmentally robust Durable for permanent installations Raw cable: AC-0220	
Circular-00 4-pin Male	3 × 10–32 UNF Male	-75 to +90 °C -103 to +194° Circular-004-pin end: -40 to +80 °C (-40 to +176 °F) Splitter [*] : -40 to +150 °C -40 to +302 °F	AO-0694	Single-screened coaxial cable with four wires Raw cable: AC-0220 Recommended for connecting accelerometers to Human Vibration Analyzer Type 4447	
3 × 10–32 UNF Male	3 × 10−32 UNF Male	-75 to +250 °C -103 to +482 °F Splitter [*] : -40 to +150 °C -40 to +302 °F	AO-0688	4-wire coaxial cable terminating in three single-wire coaxial cables at each end Raw cable: AC-0220/AC-0223 Recommended for all Brüel & Kjær CCLD triaxial accelerometers	
2 × Circular4-pin Female	Sub-D 37-pin Female	−75 to +90 °C −103 to +194 °F	AO-0536	Single-screened coaxial cable with four wires for two triaxial accelerometers Raw cable: AC-0220 Recommended for all Brüel & Kjær CCLD triaxial accelerometers to PULSE multi-analyzer	
Serial-800 4-pin Female	3 × BNC Male	-75 to +250 °C -103 to +482 °F Splitter [*] : -40 to +150 °C -40 to +302 °F	AO-0745	Robust cable suitable for permanent monitoring Raw cable: AC-0294/AC-0005 Recommended for Brüel & Kjær triaxial industrial accelerometer Type 8345 family	AL ON OUT
3 × 10–32 UNF Male	3 × BNC Male	-75 to +250 °C -103 to +482 °F Splitter [*] : -40 to +150 °C -40 to +302 °F	AO-0759	Low-noise cable Raw cable: AC-0223/AC-0005 Recommended for all transducers	
M3 Male	Circular-00 2-pin Male	−50 to +105 °C (−58 to +221 °F)	AO-0701	Low-noise cable Raw cable: AC-0104 Recommended for connecting Brüel & Kjær triaxial accelerometers with M3 connectors to Hand-held Analyzer Types 2250 and 2270	
10–32 UNF Male	Circular-00 2-pin Male	−50 to +200 °C (−58 to +392 °F)	AO-0702	Low-noise cable Raw cable: AC-0104 Recommended for connecting Brüel & Kjær triaxial accelerometers with 10–32 UNF connectors to Hand- held Analyzer Types 2250 and 2270	
* Close-up of cable	e splitter:				

Cable Assemblies for Industrial and Monitoring Applications

Connector A	Connector B	Temperature	Item No.	Description	
2-pin MIL-C- 5015 Female	BNC Male	-40 to +150 °C -40 to +302 °F	AO-0608	Black coaxial cable, ETFE jacket 2 wires and double braided shielding Raw Cable: AC-0141 Recommended for harsh environments	
2-pin MIL-C- 5015 Female	BNC Male	−40 to +150 °C −40 to +302 °F	AO-0616	Blue coaxial cable, ETFE jacket 2 wires and double braided shielding Raw Cable: AC-0194 Recommended for explosive areas	
2-pin MIL-C- 5015 Female	Open end	−40 to +150 °C −40 to +302 °F	AO-0612	Black coaxial cable, ETFE jacket 2 wires and double braided shielding Raw Cable: AC-0141 Recommended for harsh environments	
2-pin MIL-C- 5015 Female	Open end	−40 to +150 °C −40 to +302 °F	AO-0623	Blue coaxial cable, ETFE jacket 2 wires and double braided shielding Raw Cable: AC-0194 Recommended for explosive areas	
2-pin MIL-C- 5015 Female	Circular-00 2-pin Male	-40 to +85 °C -40 to +185 °F	AO-0722	Black coaxial cable, PVC Raw cable: AC-0201 Recommended for harsh environments Connects Brüel & Kjær CCLD accelerometer Types 8340 and 8341 to Hand-held Analyzer Types 2250 and 2270	
2-pin 7/16–27 UNS Female	2-pin 7/16—27 UNS Female	−55 to +250 °C −67 to +482 °F	AO-0250	Black coaxial cable 2 wires and double braided shielding Raw Cable: AC-0077 Recommended for harsh environments	6
2-pin 7/16–27 UNS Female	BNC Male	−55 to +250 °C −67 to +482 °F	WL-0958	Black coaxial cable 2 wires and double braided shielding Raw Cable: AC-0077 Recommended for harsh environments	CT
2-pin 7/16–27 UNS Female	Open end	−55 to +250 °C −67 to +482 °F	AO-0624	Blue coaxial cable 2 wires and double braided shielding Raw Cable: AC-0087 Recommended for explosive areas	

	Connector A	Connector B	Temperature	Item No.	Description	
	2-pin 7/16–27 UNS Female	3-pin MIL-26482 Male	−55 to +250 °C −67 to +482 °F	WL-1248	Black coaxial cable 2 wires and double braided shielding Raw Cable: AC-0077 Recommended for harsh environments	HAR DE
	2-pin 7/16–27 UNS Female	Open end	−55 to +250 °C −67 to +482 °F	AO-0757	Black coaxial cable 2 wires and double braided shielding Raw cable: AC-0077 Recommended for harsh environment	-
3	-pin MIL-26482 Male	Open end	−55 to +250 °C −67 to +482 °F	AO-0744	Black coaxial cable 2 wires and double braided shielding Raw cable: AC-0077 Recommended for harsh environments	0
	2-pin 7/16–27 UNS Male	TNC Male	−55 to +250 °C −67 to +482 °F	AO-0747	Black coaxial cable 2 wires and double braided shielding Raw Cable: AC-0077 Recommended for harsh environments	Carrie
	2-pin 7/16–27 UNS Female	2-pin 7/16–27 UNS Male	-200 to +500 °C -328 to +932 °F Male end: Max. 250 °C (482 °F)	AO-0730	Hardline cable Single-shielded Raw Cable: AC-0202 Recommended for harsh environments	
	2-pin 7/16–27 UNS Female	2-pin 7/16–27 UNS Female	−200 to +500 °C −328 to +932 °F	AO-0753	Hardline cable Single-shielded Raw Cable: AC-0202 Recommended for harsh environments	
	2-pin 7/16–27 UNS Female	3-pin MIL-26482 Female	−200 to +500 °C −328 to +932 °F	AO-0729	Hardline cable Double-shielded Raw Cable: AC-0306 Recommended for harsh environments	

Cable Accessories

Accessory Sets

Item No.	Description
QA-0035	Tool set for assembly 10–32 UNF connector JP-0012 and JP-0056 on cables
QA-0220	Cable mounting tool to mount the cable with M3 connector and assemble on an accelerometer
UA-0130	25 × JP-0012 (Male) connector, 10–32 UNF Plug for cables with cable jacket diameter from 1 mm to 3 mm. Recommended for AC-0005, AC-0066, AC-0104, AC-0205 and AC-0208
UA-0730	$25 \times JP$ -0056 (Male), connector 10–32 UNF plug for cable with maximum cable jacket diameter 3 mm. Recommended for AC-0200
UA-1723	10 × JP-0196 (Male) 10–32 UNF Plug Stainless steel for cables with cable jacket diameter 1 mm to 2 mm. Recommended for AC-0005, AC-0066, AC-0104, AC-0205 and AC-0208. Designed and manufactured for high vacuum environments
UA-1243	3 × 30 Pieces of 1/2/3 Cable markers for cable jacket diameter 1.6 mm Recommended for AC-0205 and AC-0104
UA-1244	3 × 30 Pieces of Red/Green/Yellow Cable markers for cable jacket diameter between 1.9 mm and 2.2 mm, -65 to $+105$ °C

Recommended for AC-0005 and AC-0208

ble Q_{A-023} Q_{A-0220} Q_{A-020} Q_{A-020} $Q_{$

Connectors

Connector Thread	Item No.	Description				
10–32 UNF (Female) to 10–32 UNF (Female)	UA-0186	Set of 25 JJ-0032 extension connectors for cables			æ.	-
10–32 UNF (Female) to BNC (Male)	JP-0145	Plug adaptor	UA-0186	Ser -		6140)
10-32 UNF (Female) to BNC (Male)	UA-0245	Adaptor		0.7	UA-0245	C B
10–32 UNF (Female) to TNC (Male)	JP-0162	Plug adaptor		JP-0145		JP-0162
B&K 10–32 UNF (Male) to BNC (Female)	UA-1555	Adaptor			100	
10–32 UNF (Female) to SMB (Female)	WA-1705	Plug adaptor		The second	3	front all and a second
2-pin TNC (Female) to 10–32 UNF (Female)	JJ-0207	Plug adaptor	UA-1555	(i) man	JJ-0207	WA-0214
2-pin TNC (Male) to 10–32 UNF (Female)	WA-0214	Plug adaptor for AO-0250	0,(1999	WA-1705)	
Solder pin 10-32 UNF	JP-0192	Solder connector adaptor		-		13
BNC to BNC	JJ-0152	"T" connector, 1 male and 2 female connectors		200		JP-0028
TNC to TNC	JJ-0175	Extension connector		6		
B&K Coaxial to 10–32 UNF (Female)	JP-0028	Input adaptor	JP-0192	0	NE	Anna
B&K Coaxial to BNC (Female)	JP-0144	Adaptor		JJ-0152	JJ-0175	JP-0144

Raw Cables

Illustrations of the individual cables follow – see the referenced figure number in the table.

Some of the more unfamiliar jacket materials used are explained here:

- PTFE: Insulation and sheathing material. Can be used for many high-temperature applications such as gas turbines, highvoltage applications and many aerospace applications including use in vacuum environment
- **PFA:** Insulation and sheathing material. Can be used for hightemperature industrial applications such as gas turbines. Low halogen
- ETFE: Insulation and sheathing material, chemically resistant, flame retardant, low smoke generation. Ideal for all round, general purpose use and radiation environment

- **FEP:** Good insulation material for cable jacket. It has excellent non-ageing characteristics and a broad useful temperature range
- **PE:** Insulation, dielectric (LDPE) or jacket material (HDPE). This material is light, tough, permanently flexible, has good resistance to chemicals, non-oxidising acids and aromatic solvents, a low moisture absorption and good tensile and tear strength
- PVC: Insulation or jacket material which exhibits the property of high electrical resistivity, good dielectric strength, excellent mechanical toughness, superior resistance against oxygen, ozone, most common acids, alkalis and chemicals. Flame resistance, oil resistance and the temperature range depend on the compound
- **PUR:** Extruded jacket. Exhibits extreme toughness and abrasion resistance

Insulator/ Number of Diameter Max. Temp Min. Temp Capacitance Impedance Item No. Description Screen Jacket Wires mm inches °C °F °C °F pF/m Ω AC-0005 Super low noise PTFE/PFA Single 1 2 0.08 +250 +482 -75 -103 106 60 (Fig. 28) AC-0066 Low noise PTFE/PFA Single 1 1 0.04 +250 +482 -75 -103 106 50 (Fig. 29) AC-0104 PTFE/PFA 100 Low noise Double 1 1.6 0.06 +250 +482 -50-58 50 (Fig. 30) Flexible low FEP/PTFE AC-0195 outgassing, Single 1 1.70 0.06 +150+302-65 -85 white AC-0200 106 PTFF/PFA Double 0.13 +250 +482 -75 -103 Super low noise 3.2 60 1 (Fig. 31) AC-0205 PTFE/PFA Single +250 +482 -75 -103 Super low noise 1.5 0.06 110 50 1 (Fig. 32) AC-0208 PE/PVC 2 0.08 +70 +158 -20 100 Flexible, grey Single -4 50 1 (Fig. 33) AC-0220 Flexible ETFE/PUR 2.4 0.09 +90 +194 -75 -103 106 50 Single 4 (Fig. 34) AC-0223 Flexible ETFE/PTFE Single 4 2.1 0.09 +250 +482 -75 -103 106 50 (Fig. 35) AC-0080 Spiral PUR/PFA Single 1 14 0.55 +85 +185 -40 -40 100 50 (Fig. 36)

Raw Coaxial Cables for Piezoelectric and CCLD Accelerometers

Raw Cables for Conditioning Monitoring Accelerometers

Item No.	Description	Insulator/	Screen	Number of	Dian	neter	Max.	Temp	Min.	Тетр	Capacitance	Impedance Ω
item no.	Description	Jacket	Screen	Wires	mm	inches	°C	°F	°C	°F	pF/m	impedance s2
AC-0077 (Fig. 37)	For charge types; Low noise	PTFE/PFA, Black	Double	2	6	0.24	+250	+482	-55	-67	106	50
AC-0087 (Fig. 38)	For Charge types; Low noise	PTFE/PFA, Blue	Double	2	6	0.24	+250	+482	-55	-67	105	50
AC-0141 (Fig. 39)	General purpose	ETFE, ETFE Black	Double	2	6	0.24	+125	+257	-40	-40	135	40
AC-0194 (Fig. 40)	General purpose	ETFE, ETFE Blue	Double	2	6	0.24	+125	+257	-40	-40	135	40
AC-0202 (Fig. 41)	Hardline	MgO	Single	2	3	0.12	+600	+1112	-200	-328	N/A	N/A
AC-0306 (Fig. 42)	Hardline	MgO	Double	2	4.8	0.19	+600	+1112	-200	-328	N/A	N/A

ACCELEROMETER CALIBRATION

The most important parameter for any measurement device is sensitivity. The sensitivity is the ratio of the output parameter to the input parameter (the measurand). To determine the sensitivity is to calibrate the device. For vibration transducers the output is normally charge (pC) or voltage with acceleration (m/s^2 or g) or velocity (m/s or inch/s) as the input parameter.

Brüel & Kjær offers a range of instruments suited for calibration of shock and vibration transducers. The most commonly used are the

reference transducers used to make comparison calibrations according to ISO 16063–21 (formerly ISO 5347–3). Another solution is the automated Vibration Transducer Calibration System Type 3629 with different software options based on proven Brüel & Kjær's PULSE™ multi-analyzer technology. It provides fast and accurate magnitude and phase calibration according to ISO 16063–21. Primary magnitude and phase calibration according to ISO 16063–11 Method 3 is available using a commercial laser interferometer.

Reference Accelerometers

Type No.		8305	8305-001	3506 (8305 and 2525)
Nominal Sensitivity	pC/ms ⁻² (pC/g)	0.125 (1.23)	0.125 (1.23)	1 mV/ms ⁻² +30/-20 dB (10 mV/g +30/-20 dB)
Frequency Range $\pm 10\%$ limits	Hz	0.2 to 11500 with 20 g load	0.2 to 10300	0.2 to 10300
Transverse Sensitivity	%	2	2	2
Height Spanner Size	mm (in)	29 (1.15) 16 (0.63)	22.3 (0.88) 16 (0.63)	29 (1.15) 16 (0.63)
Weight	grams	40	26	40
Thread, Top		10-32 UNF	None	10-32 UNF
Thread, Bottom		10-32 UNF	10-32 UNF	10-32 UNF
Calibration Included			DPLA [*] Primary Laser Cali Uncertainty : Frequency Respo	±0.5%
Max. Shock	km/s ² (g)		10 (1000))

* DPLA is the Danish Primary Laboratory of Acoustics

Calibrators and Calibration Systems

Type No.	4294
Description	Calibration Exciter Hand-held calibration exciter with built-in reference accelerometer and compressor loop
Calibration Level	10.0 m/s ² rms ±3% 10.0 mm/s rms ±3% 10.0 μm rms ±3%
Calibration Frequency	159.15 Hz ±0.02%
Maximum Load	70 g (2.4 oz)
Mounting Thread	10-32 UNF
Transverse Vibration	<5% of main axis
Distortion	<2% (10 to 70 g load) <7% (0 to 10 g load)
Signal Duration	103 ±1 second with autostop
Battery Life	>200 calibrations
Temperature Range	10 to 40 °C (50 to 104 °F)
Weight	500 g, all included
Dimensions	Length: 155 mm (6.1") Diameter: 52 mm (2.05")
High-load Version Type 4294-002	3.16 m/s ² ±3%, 200 g (7.1 oz) max. load

Vibration and Shock Calibration Exciters

Item No.		Туре 4808	Туре 4809	WQ-2347 (APS 500)
Frequency Range	Hz	5 to 10000	10 to 20000	0.1 to 200
Max. Sine Force	N peak	112 (187 with air cooling)	44 (60 with air cooling)	89
First Axial Resonance	kHz	10	20	0.2
Moving Element mass	gram	160	60	1100
Stroke	mm, pk–pk	12.7	8	155
Built-in Reference Accelerometer		No	No	No

Calibration Accessories

WA-0567	Calibration Fixture and Adaptor Plates (WS-3104, etc.) for Type 4808
11-0684	1 nF Precision Adaptor (used to calibrate charge amplifiers)

Secondary calibration systems from Bruel & Kjær are used not only in Bruel & Kjær service centres, but also by high-tech customers all over the world. Many Brüel & Kjær calibration systems are used by laboratories that have gained accreditation in accordance with ISO 17025 and the EN 45000 series.

For secondary accelerometer calibrations, Vibration Exciter Type 4808 is typically part of the calibration system.

SIGNAL CONDITIONING

Multi-pin Signal Conditioners for Microphones

Multi-pin preamplifiers cover the widest range of acoustic applications. Signal conditioners condition the microphone signals from the microphone preamplifiers. In this case, you must take into account the preamplifier's supply voltage. For very high sound pressure level measurements, the conditioner's supply voltage may limit the measurement system's maximum measurable level. The maximum measurable sound pressure level is a function of several parameters:

- Frequency content of the sound
- Sensitivity of microphone (including influence of polarization voltage for externally polarized microphones)
- Preamplifier's voltage drop
- Capacitance of cable between preamplifier and conditioner
- Supply voltage and current from conditioner
- Gain or attenuation in conditioner or preamplifier
- Peak input range of data acquisition

Type No.	2250	2829	5935-L	2690-A	2691-A
Description	Hand-held Analyzer	Microphone Conditioner	Microphone Conditioner	NEXUS Microphone Conditioner	NEXUS (Single Probe) Intensity Conditioner
Channels Min./Max.	1	4	2	1/4	2
Preamplifier Supply Voltage	±18	±50	24	± 14 and ± 40	± 14 and ± 40
Polarization Control	0 and 200 V	0 and 200 V	0, 28 and 200 V	0 and 200 V	0 and 200 V
Manual Control	Yes	No	Yes	Yes	Yes
Computer Control	Yes	No	No	Yes	Yes
Maximum Number of Channels from One PC	Multiple from USB or LAN port	-	-	99 per COM or USB port	99 per COM or USB port
CIC	No	Via external connector	Via external connector	No	No
Maximum Frequency (kHz at filters – 5% point)	20	-	100	100	100
A-weighting	Yes	No	Yes	Yes	Yes
B-, C- and D-weighting	Yes (B- and C-)	No	No	Optional	No
Adjustable Filters	No	No	No	Yes	Yes
Alarms	Yes	-	-	-	-
Maximum Gain	× 1000 (60 dB)	-	× 316 (50 dB)	× 10000 (80 dB)	× 10000 (80 dB)
Minimum Gain	× 0.01 (-60 dB)	× 1 (0 dB)	× 1 (0 dB)	× 0.1 (-20 dB)	× 0.1 (-20 dB)
Uni (Fine) Gain Adjustment	Yes	No	Yes	Yes, automatic from TEDS	Yes, automatic from TEDS
Reads TEDS	No	Via external connector	No	Yes	Yes
Channels per 19" Rack	-	-	6	12	12
Mains (AC) Power	Yes	Yes	Yes	Yes	Yes
Battery Power	Yes	No	Yes	Optional	Optional

CCLD Signal Conditioners for Microphones and Accelerometers

Constant Current Supply (mA) - called CCLD - conditioning is used on a wide range of transducers including accelerometers, microphones, and tacho probes. CCLD is a not a standardized system. Some CCLD transducers, like CCLD Laser Tacho Probe Type 2981, require more current for power than can be sourced from some CCLD conditioners.

Current is also one of the parameters related to a CCLD system's maximum frequency range. Use the supply current from the following equation:

$$L = 140000 \times \frac{I_s - 1}{f \times V_o \times C_m}$$

where:

 I_{s} = supply current (mA) f =frequency (kHz) V_o = output voltage (V_{peak}) C_m = cable capacitance (pF/m)

DC Peak Output	No	Yes	No	No
Alarms	Yes	Yes	No	No
Manual Control	Yes	Yes	Yes	No
Computer Control	Yes	Yes	Yes	Yes
Maximum Number of Channels from One PC	Multiple from USB or LAN port	1 per COM or USB port 15 per IEEE 488 port	99 per COM or USB port	256 per COM or USB port
Multiplexer Output [*]	No	No	No	Yes
Maximum Frequency (kHz at filters –5% point)	20	100 (-20%)	100 (-10%)	50 (-10%)
Minimum Frequency (Hz at filters –5% point)	1.5	0.2 (-10%)	0.1 (-10%)	0.1 (-10%)
A-weighting	Yes	No	Yes	Optional
B-, C- and D-weighting	Yes (B- and C-)	No	Optional	No
Adjustable Filters	No	Yes	Yes	Yes
Maximum Gain	× 1000 (60 dB)	× 10000 (80 dB)	× 10000 (80 dB)	× 100 (40 dB)
Minimum Gain	× 0.001 (-60 dB)	× 0.1 (-20 dB)	× 0.1 (-20 dB)	× 0.316 (-10 dB)
Uni (Fine) Gain Adjustment	Yes	Yes	Yes, automatic from TEDS	No
Reads TEDS	No	No	Yes	Yes
Channels per 19" Rack Mount	-	3	12	16
Mains (AC) Power	Yes	Yes	Yes	Yes
Power from PC's USB Port	Yes	No	No	No
Battery Power	Yes	No	No	No

* For multichannel tests, a multiplexer or computer-controlled switch can reduce the number of data acquisition channels required for time-invariant or stationary systems.

Type No.

Description

Channels Min./Max.

integration filters) DC RMS Output

16

6

Yes

No

Item No.	Туре 1704-А	Type 1704-C-102	WB-1372	WB-1453
Description	CCLD Signal Conditioner	CCLD Signal Conditioner	CCLD Signal Conditioner	CCLD Signal Conditioner
Channels Min./Max.	1/2	2	1	3
Constant Current Supply (mA)	3 - 4.1	3 - 4.1	3	3
AC Acceleration Output	Yes	Yes	Yes	Yes
AC Velocity & Displacement Output (single and double integration filters)	No	No	No	No
DC RMS Output	No	No	No	No
DC Peak Output	No	No	No	No
Alarms	No	No	No	No
Manual Control	Yes	Yes	No	No
Computer Control	No	No	No	No
Maximum Number of Channels from One PC	-	-	-	-
Multiplexer Output [*]	No	No	No	No
Maximum Frequency (kHz at filters – 5% point)	55	55	25	25
Minimum Frequency (Hz at filters –5% point)	2.2	2.2	0.1	0.1
A-weighting	Yes	No	No	No
B- , C- and D-weighting	No	No	No	No
Adjustable Filters	Yes	Yes	× 1 (0 dB)	No
Maximum Gain	× 100 (40 dB)	× 100 (40 dB)	× 1 (0 dB)	-
Minimum Gain	× 1 (0 dB)	× 1 (0 dB)	-	× 1 (0 dB)
Uni (Fine) Gain Adjustment	No	No	No	No
Reads TEDS	No	No	No	No
Channels per 19" Rack Mount	-	-	-	-
Mains (AC) Power	Yes	Yes	No	No
Power from PC's USB Port	Yes	Yes	Yes	No
Battery Power	Yes	No	Yes	Optional

* For multichannel tests, a multiplexer or computer-controlled switch can reduce the number of data acquisition channels required for time-invariant or stationary systems.

Charge Signal Conditioners for Accelerometers

Charge accelerometers offer the greatest flexibility in regards to temperature and dynamic range. Within this group you have either single-ended or differential charge accelerometers. Single-ended accelerometers are used in many applications, while differential accelerometers offer improved immunity to noise and ground loops. Signal conditioners are usually compatible with one or the other, in rare cases, the conditioner can be used with both types of accelerometer.

Maximum Charge Input

For applications where shocks and impulses occur such as gas turbines and munitions, the conditioner's maximum charge input may limit the measurement system's maximum measurable level. The maximum measurable acceleration level is a function of several parameters:

- Frequency content of the signal
- Sensitivity of accelerometer
- Capacitance of cable between accelerometer and conditioner
- Gain or attenuation in conditioner or preamplifier
- Peak input range of data acquisition

	64 M	Contraction of the second	Braung Agentin Type 295		
Type No.	1702	1705	2525	2634	2663/2663-B
Description	Range of Airborne Charge Amplifiers	Range of Airborne CCLD Amplifiers	Measuring Amplifier	Charge Amplifier	Charge Amplifier
Channels Min./Max.	1	1	1	1	1
Single-ended Charge	Yes	-	Yes	Yes	Yes
Differential Charge	No	No	No	Yes	Yes
Maximum Charge Input	-	-	50000 pC	~1000 pC	5000 pC peak
AC Acceleration Output	Yes	Yes	Yes	Yes	Yes
AC Velocity & Displacement Output (single and double integration filters)	No	No	Yes	No	NO
RMS and Peak Outputs	No	No	Yes	No	No
Alarms	No	No	Yes	No	No
Manual Control	Yes	Yes	Yes	Yes	No
Computer Control	No	No	Yes	No	No
Maximum Number of Channels from One PC	-	-	1 per COM or USB port 15 per IEEE 488 port	-	-
Maximum Frequency (kHz at filters –5% point)	5	5	100 (-20%)	>200 (-3 dB)	200
Minimum Frequency (Hz at filters –5% point)	5	1.2	0.2 (-10%)	1 (-3 dB)	0.5 (-3 dB)
Adjustable Filters	No	No	Yes	No	Optional
Maximum Gain	× 50 (14 dB)	-	× 10000 (80 dB)	× 10 (20 dB)	× 100 (40 dB)
Minimum Gain	× 0.5 (–6 dB)	-	×0.1 (-20 dB)	× 1 (0 dB)	× 1 (0 dB)
Uni (Fine) Gain Adjustment	Yes	Yes	Yes	No	No
Channels per 19" Rack Mount	-	-	3	-	-
Mains (AC) Power	No	No	Yes	No	No
DC Power	Yes	Yes	No	Yes	Yes
Battery Power	No	No	No	No	No

Type No.	2635	2692-A	2692-C
Description	Charge Amplifier	NEXUS Charge Amplifier	NEXUS Charge Amplifier (very high input)
Channels Min./Max.	1	1/4	1/4
Single-ended Charge	Yes	Yes	Yes
Differential Charge	No	No	No
Maximum Charge Input	~10000 pC	10000 pC	100000 pC
AC Acceleration Output	Yes	Yes	Yes
AC Velocity & Displacement Output (single and double integration filters)	Yes	Optional	Optional
RMS and Peak Outputs	No	No	No
Alarms	No	No	No
Manual Control	Yes	Yes	Yes
Computer Control	No	Yes	Yes
Maximum Number of Channels from One PC	-	99 per COM or USB port	90 per COM or USB port
Maximum Frequency (kHz at filters –5% point)	200	100 (-10%)	100 (-10%)
Minimum Frequency (Hz at filters – 5% point)	0.2	0.1 (-10%)	0.1 (-10%)
Adjustable Filters	Yes	Yes	Yes
Maximum Gain	× 10000 (80 dB)	× 10000 (80 dB)	× 10000 (80 dB)
Minimum Gain	× 0.01 (-40 dB)	× 0.1 (-20 dB)	× 0.1 (-20 dB)
Uni (Fine) Gain Adjustment	Yes	Yes	Yes
Channels per 19" Rack Mount	6	12	12
Mains (AC) Power	Yes	Yes	Yes
DC Power	No	Yes	Yes
Battery Power	Yes	Optional	Optional

Type No.	2647-A	2647-B	2647-C	2647-D	2647-D-001	2647-D-002	2647-D-003	2647-D-004	2647-D-005	2647-Е
Description				Rang	ge of Charge t	o CCLD Conve	rters			
Gain (mV/pC)	1	10	0.1	1	1	1	1	1	1	5
Lower Limiting Frequency (Hz) (-10%, -1 dB)	0.17	0.17	1.0	1.0	1.0	80	80	80	1	0.17
Upper Limiting Frequency (kHz)(-10%, -1 dB)	50	50	10*	10*	10*	10*	10*	10*	10*	50
Cable Integrated	No	No	No	No	Yes	No	Yes	Yes	Yes	No
Connector A (to transducer)		10-3	2 UNF		2-pin TNC	10-32 UNF	2-pin TNC	2-pin TNC	10-32	UNF
Connector B (to front end)		10-3	2 UNF		BNC (F)	10-32 UNF	BNC (F)	LEMO	LEN	10

* Depends on input load capacitance. Values apply to 1.5 nF (for example, 1 nF accelerometer capacitance plus 5 m cable)

What are the Benefits of Signal Conditioning?

Signal conditioning improves the performance and reliability of the measurement system with a variety of functions such as signal amplification, attenuation, electrical isolation, filtering, powering of your transducers, overload detection and Transducer Electronic Data Sheet (TEDS) support.

Brüel & Kjær provides a number of signal conditioning solutions. When determining which conditioner to use, you should consider the type of transducer as well as the conditioner's benefits to the measurement system, including the following critical features and characteristics. For further comparisons, see the individual conditioner's product data for in-depth specifications.

Number of Channels

For multichannel tests, having more channels in the signal conditioner makes for a simpler system (for example, one power supply or battery for all the conditioned channels).

Channel Control

For units with adjustable settings, manual control is the easiest way to change configuration. In automated or multichannel systems, computer control offers big time savings.

For very large systems, it is desirable to control as many channels as possible from a single PC.

Maximum and Minimum Frequency and Adjustable Filters

Besides needing to cover the measurement's frequency range, a conditioner's analogue filter can remove portions of the signal outside the range of interest. For example, in-vehicle measurements of sound often have very strong low-frequency content below 20 Hz. A 20 Hz high-pass filter will attenuate the signal below the audio range which may improve the measurement system's noise floor at mid to high frequencies.

Minimum and Maximum Gain

When using data acquisition equipment with adjustable input ranges, the noise floor of the complete measurement system (from transducer through conditioning to data acquisition) can be improved by adding gain in the conditioner.

Uni (Fine) Gain Adjustment

The sensitivity of a transducer in engineering units or volts typically varies significantly between individual transducers. Compensating for the individual sensitivities using fine gain control in the conditioner removes this error.

Transducer Electronic Data Sheet (TEDS)

Significant measurement errors can be automatically avoided when the fine gain adjustment of the conditioner is read from the transducer's built-in Transducer Electronic Data Sheets (TEDS).

A TEDS microphone is sealed to the preamplifier with a calibration sticker

Multi-unit Design

Rack mounting is a convenient way of organizing laboratory-based measurement systems where all the conditioning and data acquisition can be combined into one frame. For most signal conditioners, you can order an optional 19-inch rack and/or a multi-unit frame, with which one or more conditioner can be mounted.

Other Useful Features for Acoustic Transducers

Polarization Control

The working principle of the condenser microphone is based on a fixed charge. This charge is established, either with a very stable external polarization voltage, typically 200 V, via a large resistor, or by an electret layer deposited on the microphone's backplate, in which case the external polarization voltage should be set to 0 V.

CIC

Charge Injection Calibration (CIC) is a technique for on-line verification of the integrity of the entire measurement chain, for example, microphone, preamplifier and cabling. Even microphones remote from the input stage/conditioning amplifier can be verified. The basic philosophy behind CIC is that if we have a known condition (for example, a properly calibrated microphone) and establish a reference measurement, then as long as the reference value does not change, nothing has changed, for example, the microphone calibration will still be valid. Additionally CIC verifies the cable and preamplifier.

Filtering

Acoustic weighting curves

- A-weighting Filters: Sound measurements often specify A-weighting to reflect the acuity of the human ear, which does not respond equally to all frequencies. Using analogue A-weighting filters can also have the same benefit of improving the measurement system's noise floor at mid to high frequencies for in-vehicle measurements.
- B-, C-, and D-weighting Filters: Sound measurements can also specify B-, C- or D-weighting instead of the more common Aweighting. These additional weightings also reflect the acuity of the human ear, which does not respond equally to all frequencies, but also has a different response at different sound pressure levels.

Example of the benefits of analogue filtering for in-vehicle measurements

Other Useful Features for Vibration Transducers

AC Acceleration Output

This is the "raw time" output from an accelerometer through any gain and filtering in the conditioner.

Analogue velocity and acceleration filters

AC Velocity and Displacement Output (Single- and Double-integration Filters)

In some measurements, such as machine health monitoring according to ISO 10816, the velocity or displacement is of more interest than the acceleration from an accelerometer. A single and double integration filter easily converts an acceleration signal to velocity or displacement in the time domain.

Converting to velocity or displacement in the conditioner makes further analysis easier.

DC RMS and Peak Outputs and Alarms

Some analysis techniques use averaged (RMS) or Peak measurements instead of the "raw time" signal. Conditioners with this capability are often called "measuring amplifiers" because they provide the needed measured parameter without need for additional instrumentation. Besides being displayed on the unit's screen, the averaged (RMS) or Peak values can be sent to other measurement devices as a DC voltage. A TTL alarm output can be sent from the measuring amplifier when a limit is exceeded.

CALIBRATION SYSTEMS

Primary Calibration Systems

Microphone Reciprocity Calibration System

Reciprocity Calibration System Type 9699 performs reciprocity calibration according to the method described in IEC 61094–2 to determine the pressure sensitivity of microphones described in IEC 61094–1 (Laboratory Standard Microphones).

This system is intended for National Metrology Institutes and other high-level laboratories. It is a turnkey system for routine measurements that can be set up to meet the requirements of the user. The system can work in a "normal" laboratory environment with no specific precautions with respect to background noise and vibration.

It is a very flexible system that can be used for calibration research and at primary calibration laboratories, calibration service centres and larger organisations with their own calibration facilities.

Vibration Transducer Calibration System

Vibration Transducer Calibration System Type 3629 together with Laser-interferometric Calibration System Software Type 5309 are designed for absolute calibration of a variety of vibration and shock transducers. The combined system is generally used by national primary laboratories or as reference by clients utilising advanced technology.

The system performs absolute calibration according to the method described in ISO 16063–11:1999. Type 5309 uses Method 3, sine approximation, and calibrates practically all transducer types: charge, CCLD (constant current supplied transducers), piezoresistive, variable capacitance, voltage, servo and electrodynamic (for example, velocity pick-ups).

Hydrophone Calibration System

Hydrophone Calibration System Type 9718 performs free-field calibration in a water tank as described in IEC 60565.

The system is generally used by national primary laboratories or as reference by clients utilising advanced technology for calibration of underwater transducers both at the primary and secondary level.

Secondary calibration used by laboratories who need to calibrate large numbers of hydrophones with minimum time consumption, is based on the substitution principle and performed in two steps:

- First: A calibration is performed by means of a known reference hydrophone
- Second: A calibration is performed with the unknown unit under calibration

The measurement principle used is gated selective FFT for optimum signal-to-noise ratio. The complex impedance can also be measured and reported.

The reciprocity system can perform calibration without use of a reference transducer, this is called absolute calibration. The reciprocity calibration is used for calibration of such reference transducers.

Directivity Calibration Software

The directivity calibration software option complements Hydrophone Calibration System Type 9718. The hydrophone to be calibrated is mounted on Turntable Type 9640 capable of handling payloads up to 100 kg. A rotation controller turns the turntable and provides accurate information of the angle. For each angle, the hydrophone output is measured and printed in a polar plot. The polar plot may be repeated at different frequencies as needed.

Overview of Brüel & Kjær's calibration system products

Secondary Calibration Systems

Shock and Vibration Transducer System Type 3629

With Comparison Calibration System Software Type 5308

The system performs comparison calibration according to the method described in ISO 16063–21:2003.

Vibration Transducer Calibration System Type 3629 and Type 5308 software are designed for comparison calibration of a variety of vibration and shock transducers and is generally used by calibration service centres and larger organisations with their own calibration facilities.

Type 3629 calibrates practically all transducer types – charge, CCLD (constant current supplied transducers), piezoresistive, variable capacitance, voltage, servo and electrodynamic (for example, velocity pick-ups).

With Shock Transducer Calibration Software Type 5310

The calibration is performed in accordance with ISO 16063-22.

This system is normally used with a POP shock calibrator that works at shock levels from 20 to 10000 g and shares a number of user interface features and components with Comparison Calibration Software Type 5308. For shocks below 100 g it is even possible to use a special feature to generate them on a shaker.

High-shock Transducer Calibration

The calibration is performed in accordance with ISO 16063–22 using High Shock Transducer Calibration Software Type 5311.

It is normally used with a Hopkinson Bar that works at shock levels from 10 to 100 kg and shares a number of user interface features and components with Comparison Calibration Software Type 5308.

Microphone Calibration System Type 9721

Microphone Calibration System Type 9721 can calibrate measurement and laboratory standard microphones of commonly used models and brands, including those that fulfil IEC standards 61094–4 (Working Standards) and 61094–1 (Laboratory Standards). Microphones of non-standard dimensions can also be calibrated, but might require additional mechanical accessories.

Type 9721 is a general-purpose microphone calibration system that calibrates microphones with or without preamplifiers in accordance with IEC 61094–5 and IEC 61094–6.

The system is intended for calibration service centres and larger organisations with their own calibration facilities. It is a flexible, turnkey system for routine measurements that can be set up to meet the requirements of the user. The system can work in a "normal" laboratory environment with no specific precautions with respect to background noise and vibration.

Option:

• Phase Response Comparison Calibration with Application Software WT-9651 and coupler WA-1544 or WA-1545

BRÜEL & KJÆR SERVICE

In order to provide you with a Best in Class customer service experience, we continuously expand the Brüel & Kjær offerings and improve our internal processes to ensure the same standards around the globe.

Single Point of Contact

This speeds up your enquires, by connecting you to the right contact the very first time! The multilingual Global Customer Care

What You Gain When You Partner with Brüel & Kjær

Expert Calibration

Your equipment will be expertly calibrated and repaired in Brüel & Kjær accredited calibration centres. The Global Product Care team is regularly trained and certified to perform factory calibrations and repairs of instrumentation to ensure the same high standards as new equipment.

Knowledgeable Service

Global Field Service engineers are at your disposal when it comes to on-site field services including installation, system configuration, fault resolution, calibration and preventative maintenance of your organization is eager to assist you in every request you may have. Our customer-friendly team will submit your request for calibration, track your order end-to-end, and inform you proactively about status and delivery schedule. If you need to receive technical support, they will route you to the dedicated contact.

entire systems. A range of services accompany the solution to reduce the risk of faults occurring during use. We know our products best!

Team of Specialists

The local teams are supported by a global group of engineering specialists who can advise on and solve all kinds of sound and vibration measurement and analysis problems you might have. Professional Project Management and Engineering Test Services combined with experienced Technical Support ensure smooth operation of your solution and provide additional value to you.

Brüel & Kjær Calibration and Repair Services

Brüel & Kjær's 10 calibration centres perform more than 30,000 high-level, quality calibrations a year. The global team of highly skilled calibration technicians:

- Maintain an intimate knowledge of all Brüel & Kjær branded products
- Excel at carrying out a wide range of calibrations run on dedicated test benches
- Deliver complete calibration schedules

Calibration of Reference Equipment

There are two levels of reference calibration available at Brüel & Kjær: Primary Calibration – performed by Danish Primary Laboratory of Acoustics (DPLA) – and Secondary Calibration. The level you select depends on the accuracy you require for your reference equipment.

Primary Calibration

DPLA annually performs hundreds of primary accredited calibrations of reference microphones and accelerometers for

Accredited Calibration

Our network of calibration centres operates within the EA and ILAC guidelines for accreditation. Our ISO/IEC 17025 accreditations have been awarded by accreditation bodies that are signatories to the EA-MLA and the ILAC-MRA. This allows us to deliver the same high level of quality, competence and confidence, together with international recognition, wherever the accredited calibration is performed.

The calibration centres can also calibrate other manufacturer's equipment.

metrology institutes, test houses, and industry organizations requiring high-accuracy calibrations.

Secondary Calibration

If your sensitivity requirements are not as high as primary calibration, we recommend that you maintain your reference equipment with annual accredited calibrations in one of our ISO/ IEC 17025 accredited laboratories. This is, for example, performed for industrial companies who perform in-house calibrations, tests or any acoustic or vibration measurements.

Where accredited calibration is not available, Brüel & Kjær centres offer Traceable Calibration.

Initial Accredited Calibration

Sensitivity data are included with the delivery of every new Brüel & Kjær microphone and accelerometer. However, accredited calibration can be ordered, where required, to start the measurement history from day one – for example, if stipulated by quality procedures, external audits or other requirements.

Traceable Calibration

You can also order traceable calibration, which means that the measurements are traceable to national standards – at the same level as accredited calibration, only without the formal third-party recognition.

To optimize uptime and minimize costs, we recommend combining calibration with a Hardware Maintenance Agreement.

Regular Calibration

When you send in your accelerometers and microphones for calibration regularly, you benefit from reliable measurement data; you can compare data over time, provide proof to customers, and fulfil your internal or external quality requirements.

To minimize the errors due to faulty or inaccurate measurements and the related costs, we recommend annual calibration in one of our ISO/IEC 17025 accredited laboratories. This will give you a continuous calibration history to use as reference for internal requirements, for audit purposes required by authorities or just as a request from your customers. You can also follow the history of sensitivity for your equipment over a period of time and detect any questionable trends up-front.

Service Agreements

With a Service Agreement you can save both time and money.

The value of a service agreement lies in a combination of the following:

- Assurance that the time your equipment is away for service is minimized
- Attractive total service price

You can combine a range of services in one agreement over several years. You get priority at the time you need service and a predictable maintenance budget. With planned service, your equipment is always ready for use and you preserve your unbroken sensitivity history.

If the Brüel & Kjær technician detects a need for repair or replacement while your equipment is in for calibration, it will be

Rentals

Brüel & Kjær offers rental services for a large number of our products. For further details, please contact your local sales representative.

Learn More

To learn more about Brüel & Kjær services, including FAQs and how to order calibration or repair, please visit www.bksv.com/services.

performed immediately and free of charge, provided your service agreement covers such maintenance. This means that you do not have to be without your equipment several times, that there is no unnecessary communication back and forth to decide what should be done to the equipment, and no large surprises to your budget.

Examples of what a service agreement can contain:

- Your equipment can be calibrated and maintained at the same time
- Multiple calibrations to give the most favourable price
- Priority calibration
- Priority repair or replacement
- Extension of manufacturer's warranty
- Loan of an equivalent product while your equipment is being calibrated or repaired

Antry C-309 Naras, Densat
CATE OF CALIBRATION No: CDK1505381 Page 1 of
FION OF Bröcl & Kjær Type 4231 No: 3008930 Id: - Bröcl & Kjær Type UC-0210 I: PTB-1.61-4057176
R Brisit & Kjarr Sound & Vibration Measurement A/S Skodaborgvej 307 DK-2850 NAERUM Demmark News Q
na h breets TIONS at 23°C ± 3°C e: 100.56 kPa. Humidity: 43 % RH. Temperature: 23.1 °C.
4231 has been calibrated in accordance with the requirements as specified in The accreditation assures the traceability to the international units system SL.
4231 has been calibrated in accordance with the requirements as specified in he accreditation assures the traceability to the international units system SI.
The accreditation assures the traceability to the international units system SI. mod with the assistance of Briel & Kjær acoustic calibrator calibration application y using procedure P_4231_D07.
he accreditation assures the traceability to the international units system SL med with the assistance of Brüel & Kjær acoustic calibrator calibration application y using procedure P_4231_D07. * container * repair/adjustment.
he accreditation assures the traceability to the international units system SI. med with the assistance of Briel & Kjær acoustic calibrator calibration application r using procedure P_4231_D07. strates international is prop (m-1) r repair/adjustment. is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level %. The uncertainty evaluation has been carried out in accordance with EA-402 from time contributions and any short time contributions.
be accreditation assures the traceability to the international units system SI. med with the assistance of Brück & Kjær acoustic calibrator calibration application wing procedure P_4231_D07. repair/adjustment. actionate actiona
he accreditation assures the traceability to the international units system SI. mod with the assistance of Briel & Kjær acoustic calibrator calibration application y using procedure P_4231_D07. formation in the assistance of Briel & Kjær acoustic calibrator calibration application y using procedure P_4231_D07. formation in the assistance of Briel & Kjær acoustic calibrator calibrator calibration application application to the assistance of Briel & Kjær acoustic calibrator calibra
the accreditation assures the traceability to the international units system SL med with the assistance of Brück & Kjer acoustic calibrator calibration application vising procedure P_4231_D07, restate 10 repair/adjustment. international units is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level X. The uncertainty coultantion has been carried out in accordance with EA-4002 from actions action
the accreditation assures the traceability to the international units system SI. made with the assistance of Briel & Kjær acoustic calibrator calibration application y using procedure P_4231_D07. formation in the standard uncertainty multiplied by a coverage factor k = 2 providing a level for analys, calibration has been carried out in accordance with EA-402 from ands, calibration method, effect of ervironmental conditions and any short time contribution is analyse. analization in the standard uncertainty multiplied by a coverage factor k = 2 providing a level for a standard in the standard out in accordance with EA-402 from a side, calibration method, effect of ervironmental conditions and any short time contribution is and any short time contribution for the spectrum of the spectrum of the providence of the spectrum of the contribution for the spectrum of the providence of the spectrum of th
the accreditation assures the traceability to the international units system SL med with the assistance of Brück & Kjer acoustic calibrator calibrator application vising procedure P_4231_D07. restarce SL
the accreditation assures the traceability to the international units system SL med with the assistance of Brück & Kjer acoustic calibrator calibrator application vising procedure P_4231_D07. restarce SL
Trepair/adjustment. Standard andard an

GLOSSARY OF TERMS

Absorption

The conversion of sound energy into another form of energy, usually heat when passing through an acoustical medium

Absorption coefficient

Ratio of sound absorbing effectiveness at a specific frequency, of a unit area of acoustical absorbent to a unit area of perfectly absorptive material

Acceleration

Vector quantity that describes the time-derivative of velocity, mathematically: a = dv/dt. The SI unit is m/s² (metres per second squared). In the imperial system, the unit g or more correctly g_n is used, where the definition is that $1 g_n = 9.80665 \text{ m/s}^2$

Acceleration can be oscillatory (and then often called vibration), in which case simple harmonic components can be defined by the acceleration amplitude (and frequency), or random, in which case the rms acceleration (and bandwidth and probability density distribution) can be used to define the probability that the acceleration will have values within any given range. Accelerations of short time duration are defined as transient accelerations. Nonoscillatory accelerations are defined as sustained accelerations, if of long duration, or as acceleration pulses, if of short duration.

In the case of time-dependent accelerations various selfexplanatory modifiers, such as peak, average, and rms (root-meansquare), are often used. The time intervals over which the average or root-mean-square values are taken should be indicated or implied

Accelerometer

A transducer that converts an input acceleration to an output (usually electrical) that is proportional to the input acceleration

Acoustics

The science of the production, control, transmission, reception and effects of sound and of the phenomenon of hearing

Active sound field

A sound field in which the particle velocity is in phase with the sound pressure. All acoustic energy is transmitted, none is stored. A plane wave propagating in a free field is an example of a purely active sound field and constitutes the real part of complex sound field

Ambient noise

All-pervasive noise associated with a given environment

Amplitude

The instantaneous magnitude of an oscillating quantity such as sound pressure. The peak amplitude is the maximum value.

In a vibrating object, amplitude is measured and expressed in three ways: Displacement, Velocity and Acceleration. Amplitude is also the y-axis of the vibration time waveform and spectrum; it helps define the severity of the vibration

Amplitude distribution

A method of representing time-varying noise by indicating the percentage of time that the noise level is present in a series of amplitude intervals

Anechoic room

A room whose boundaries effectively absorb all incident sound over the frequency range of interest, thereby creating essentially free-field conditions

Audibility threshold

The sound pressure level, for a specified frequency at which persons with normal hearing begin to respond

Background noise

The ambient noise level above which signals must be presented or noise sources measured

CCLD (Constant Current Line Drive)

Generic name for a constant current power supply for accelerometers with built-in electronics and for these accelerometers. Used in Brüel & Kjær analyzers and literature. See also DeltaTron

Charge amplifier

An amplifier that converts the charge output of a piezoelectric accelerometer into a proportional low-impedance voltage signal

Charge converter

A device that converts a piezoelectric accelerometer's highimpedance charge output to a low-impedance voltage proportional to the charge input. A charge converter typically requires a constant current power supply.

Also called 'in-line charge converter'

Complex intensity

Complex intensity is the combined intensity and imaginary intensity

Conditioning (signal conditioning)

The conversion or alteration of an accelerometer signal to a suitable or desirable level, range or bandwidth. Signal conditioning includes amplification, filtering, differential applications, isolation, transducer tests and more

Cumulative distribution

A method of representing time-varying noise by indicating the percentage of time that the noise level is present above (or below) a series of amplitude levels

Damping (1)

The action of frictional or dissipative forces on a dynamic system causing the system to lose energy and reduce the amplitude of movement

Damping (2)

Removal of echoes and reverberation by the use of sound absorbing materials. Also called sound proofing

DC response

Accelerometers respond to a fairly wide frequency range, most down to 1 or 2 Hz. Some special accelerometers respond to zero frequency and are, therefore, said to exhibit a 'DC response'

Decibel scale

A linear numbering scale used to define a logarithmic amplitude scale, thereby compressing a wide range of amplitude values to a small set of numbers

DeltaTron

Brüel & Kjær's proprietary name for accelerometers with built-in electronics and the constant current power supply for these. Brüel & Kjær also uses the generic name CCLD (Constant Current Line Drive). It corresponds to IEPE (Integrated Electronics Piezo Electric) often used for accelerometers requiring this kind of power supply. Other similar proprietary names are ISOTRON®, PIEZOTRON® and ICP®.

Other types of accelerometers with different powering principles exists, for example, Brüel & Kjær's CVLD (Constant Voltage Line Drive) that is used for maximum EMC immunity

Differentiation

In vibration analysis, the three physical parameters, displacement, velocity and acceleration, are mathematically related. Differentiation is a mathematical operation that converts one parameter to another (for example, a displacement signal to a velocity signal, or velocity signal to an acceleration signal). See also Integration, which is the inverse of differentiation

Diffraction

The scattering of radiation at an object smaller than one wavelength and the subsequent interference of the scattered wavefronts

Diffuse field

A sound field in which the sound pressure level is the same everywhere and the flow of energy is equally probable in all directions

Diffuse sound

Sound that is completely random in phase; sound which appears to have no single source

Directivity factor

The ratio of the mean-square pressure (or intensity) on the axis of a transducer at a certain distance to the mean-square pressure (or intensity) which a spherical source radiating the same power would produce at that point

Displacement

Time-varying quantity that specifies the change in position of a point on a body with respect to a reference frame. In the SI system it is measured in metres (m). In the imperial system thousands of an inch is often used (mils)

Dynamic capability

The dynamic capability of an intensity measurement system is determined by adding normally 5 dB (for a measuring error less than 2 dB) to the Residual Intensity Index

Dynamic range

Range of values that can be measured

Normally expressed as the ratio in dB between the smallest signal level an instrument can sense to the largest signal it will accept without an overload occurring. Modern vibration analysis instrumentation can have a dynamic ranges up to 160 dB

Excitation

External force (or other input) applied to a system that causes the system to respond in some way

Far field

Distribution of acoustic energy at a very much greater distance from a source than the linear dimensions of the source itself; the region of acoustic radiation used to the source and in which the sound waves can be considered planar

Filter

An electrical circuit that intercepts input signals and blocks those that are above or below a specific frequency band or a mechanical filter that suppresses vibration amplitude levels at certain frequencies

Forced vibration

Vibration of a system due to an external time dependent force

Free field

An environment in which there are no reflective surfaces within the frequency region of interest

Frequency response

Response within a given frequency range when the complex sensitivity of the transducer for a given excitation is not constant over that range. Often given as the magnitude and phase

Frequency response function

Frequency-dependent ratio of the motion-response Fourier transform to the Fourier transform of the excitation force of a linear system. Frequency response measurements are used extensively in modal analysis of mechanical systems
g_n (g)

Standard acceleration due to gravity. The value was adopted in the International Service of Weights and Measures and confirmed in 1913 by the 5th CGPM as the standard for acceleration due to gravity.

- Unit: 9.80665 metres per second-squared (9.80665 m/s²)
- Symbol: g_n (in vibration literature, this if often shorted to g but should not be misunderstood as the gravitational force mentioned below)

This "standard value" ($g_n = 9.80665 \text{ m/s}^2 \approx 386.089 \text{ in/s}^2 \approx 32.1740 \text{ ft/s}^2$) should be used for reduction to standard gravity of measurements made in any location on Earth.

Frequently, the magnitude of acceleration is expressed in units of g_n .

Note: The actual acceleration produced by the force of gravity at or below the surface of the Earth varies with the latitude and elevation of the point of observation. This variable often is expressed using the symbol g. Caution should be exercised if this is done so as not to create an ambiguity with this use and the standard symbol for the unit of the gram

Ground loop

In instrumentation systems, such as vibration measurement data collection systems, it is often required to mount a transducer on a machine whose structure or "ground" may have an electrical voltage present on it caused by current leakage in motor windings, etc. The transducer cable shield is normally connected to the housing, and is then electrically connected to this voltage when the transducer is mounted. If the instrument to which the transducer is connected is connected to a different ground, such as a power line neutral, this difference in the ground potentials will cause a current in the shield, and this will add interference to the measured signal. The interference will be at 50 or 60 Hz and harmonics, and it reduces the signal to noise ratio of the measurement. This condition is called a ground loop, and there are several ways to avoid it. One is to use an insulating disc between the transducer and the machine, another is to use a battery operated instrument that is not connected to a power line

Harmonics

Harmonic vibration, the frequency of which is an integral multiple of the fundamental frequency

Hearing loss

An increase in the threshold of audibility due to disease, injury, age or exposure to intense noise

Hertz (Hz)

The unit of frequency representing cycles per second

High-pass filter

An electrical circuit that intercepts input signals and blocks those that are below a specific frequency band. Besides eliminating low-

frequency noise, a high-pass filter separates a signal's alternating components from its direct (DC) components

IEPE

Integral Electronics Piezoelectric is a generic term for transducers with built-in electronics. A number of proprietary systems such as DeltaTron[®], ISOTRON[®], ICP[®] and PIEZOTRON[®] exist. See also CCLD

Imaginary intensity

Imaginary intensity is the non-propagating part of the sound field (sometimes called the reactive part)

Impact test

Impact testing provides a method of determining the frequency response function of a structure. Accelerometers are placed on the structure, and an object, such as a specially constructed impact hammer, is used to hit the structure. The hammer is instrumented to measure the input force pulse, while the accelerometers pick up the response of the structure. From this vibrational response, it is important to be aware of excitation frequencies that coincide with the natural frequencies of the structure (resonances), as these point to dangerous operating levels

Impedance, specific acoustic

The complex ration of dynamic pressure to particle velocity at a point in an acoustic medium.

Measured in rayls (1 rayl = $1 \text{ N} \cdot \text{S/m}^3$)

Impedance, mechanical

The complex ratio of force to velocity at a specified point and degree-of-freedom in a mechanical system. It is a measure of how much a structure resists motion

Infrasound

Sound at frequencies below the audible range, that is, below about 16 Hz

Integration

Integration is the inverse of differentiation. See Differentiation

Intensity

Intensity is the real part of the complex intensity and is the propagating part of the sound field (sometimes called the active part)

Isolation

A decreased tendency to respond to or transmit a sound through the use of resilient materials and structures

Leakage, spectral

The broadening of a peak in the frequency domain caused by window function with the Fourier transform

Leakage error

Error in frequency description caused by truncation of signal.

Leakage can be reduced using time weighting functions such as Hanning Window

Level (of a quantity)

The logarithm of the ratio of the quantity to a reference of the same kind.

In vibration terminology, the term level is sometimes used to denote amplitude, average value, root-mean-square value, or ratios of these values. Strictly speaking, these terms should not be used

Linear system

A system in which the magnitude of the response is proportional to the magnitude of the excitation

Loudness

Subjective impression of the intensity of a sound

Low-pass filter

An electrical circuit that intercepts input signals and blocks those that are above a specific frequency called the 'cut-off frequency'. An example is the anti-aliasing filter

Masking

The process by which threshold of audibility of one sound is raised by the presence of another (masking) sound

Mobility (mechanical mobility)

The complex ratio of the velocity, taken at a point in a mechanical system, to the force, taken at the same or another point in the system. Mechanical mobility is the matrix inverse of mechanical impedance. It is a measure of how easily a structure is able to move in response to an applied force

Modal analysis

Vibration analysis method that characterizes a complex structural system by its modes of vibration, that is, its natural frequencies, modal damping and mode shapes, and based on the principle of superposition

Near field

That part of a sound field, usually within about two wavelengths from a noise source, where there is no simple relationship between sound level and distance

Newton

The force required to accelerate a kg mass at 1 m/s². Approximately equal to the gravitational force on a 100 g mass

Noise emission level

The dB(A) level measured at a specified distance and direction from a noise source, in an open environment, above a specified type of surface. Generally follows the recommendation of a national or industry standard

Noise reduction coefficient, NRC

The arithmetic average of the sound absorption coefficients of a material at 250, 500, 1000 and 2000 Hz

Nov

A linear unit of noisiness or annoyance

Particle velocity

The velocity of air molecules about their rest position due to a sound wave

Pascal, Pa

A unit of pressure corresponding to a force of 1 newton acting uniformly upon an area of 1 square metre. Hence: 1 Pa = 1 N/m^2

Peak

A measurement's maximum instantaneous value (displacement, velocity, acceleration or voltage) in a given period. Peaks can be both negative and positive in direction

- Peak value
- Peak magnitude
- Positive peak value •
- Negative peak value

Note: A peak value of vibration is usually taken as the maximum deviation of that vibration from the mean value. A positive peak value is the maximum positive deviation and a negative peak value is the maximum negative deviation

Peak-to-peak value (of a vibration)

Difference between the maximum positive and maximum negative values of a vibration during a specified interval

Phase

Argument of a complex vibration

Phase mismatch (in acoustic measurements)

The relative phase mismatch between the two channels in an intensity measuring system

Phon

The loudness level of a sound. It is numerically equal to the sound pressure level of a 1 kHz free progressive wave, which is judged by reliable listeners to be as loud as the unknown sound

Pink noise

Broadband noise whose energy content is inversely proportional to frequency (-3 dB per octave or -10 dB per decade)

Power spectrum level

The level of the power is a band one hertz wide referred to a given reference power

Pressure-residual Intensity Index, $\delta_{{\it pl}_0}$ The pressure-residual intensity index for a given measurement system is defined as the difference between the measured pressure level and the indicated sound intensity level when exactly the same signal is fed into the two channels of an intensity analysing system

Random noise

Noise, whose instantaneous amplitude is not specified at any instant of time. Instantaneous amplitude can only be defined statistically by an amplitude distribution function

Relative velocity

The rate of change of displacement. It is expressed in units of distance per unit of time. In terms of vibration signals, it would be millimetres per second or inches per second.

In general, velocity is time-dependent. A velocity is designated as relative velocity if it is measured with respect to a reference frame other than the primary reference frame designated in a given case. The relative velocity between two points is the vector difference between the velocities of the two points. Velocity can be oscillatory, in which case simple harmonic components can be defined by the velocity amplitude (and frequency), or random, in which case the root-mean-square (rms) velocity (and band width and probability density distribution) can be used to define the probability that the velocity will have values within any given range. Velocities of short time duration are defined as transient velocities. Non-oscillatory velocities are defined as sustained velocities, if of long duration

Residual Intensity

The sound intensity level measured when the same signal is fed to both channels of a sound intensity measuring system

Residual Noise

For charge accelerometers, the noise is a function of the preamplifier and given within the specified frequency range. The specified noise level is measured with NEXUS Conditioning Amplifier Type 2692-001. For accelerometers with integrated electronics, the noise is given within specified frequency range

Resonance

State of a system in forced oscillation when any change, however small, in the frequency of excitation causes a decrease in a response of the system

Resonance frequency

Frequency at which resonance exists

Reverberation

The persistence of sound in an enclosure after a sound source has been stopped. Reverberation time is the time, in seconds, required for sound pressure at a specific frequency to decay 60 dB after a sound source is stopped

RMS (Root Mean Square)

The square root of the arithmetic average of a set of squared instantaneous values

Sabin

A measure of sound absorption of a surface. One metric sabin is equivalent to 1 square metre of perfectly absorptive surface

Seismic

When accelerated, a seismic transducer such as a piezoelectric accelerometer or a velocity transducer, uses the inertial force produced by its seismic mass to generate a signal

Semi-anechoic field

A free field above a reflective plane

Sensitivity (of a transducer)

Ratio of a specified output quantity to a specified input quantity.

For an accelerometer, sensitivity is expressed in millivolts or picocoulombs per m/s^2 or g (mV/ms⁻² or mV/g, pC/ms⁻² or pC/g). The sensitivity of a transducer is usually determined as a function of frequency using sinusoidal excitation

Shielding

Enclosure of test equipment and cables to prevent the occurrence of noise in a signal (such as interference, interaction or current leaks)

Shock

Sudden change of force, position, velocity or acceleration that excites transient disturbances in a system.

The change is normally considered sudden if it takes place in a time that is short compared with the fundamental periods of concern

Sone

A linear unit of loudness. The ration of loudness of a sound to that of a 1 kHz tone 40 dB above the threshold of hearing

Sound

Energy that is transmitted by pressure waves in air or other materials and is the objective cause of the sensation of hearing. Commonly called noise if it is unwanted

Sound intensity

The rate of sound energy transmission per unit area in a specified direction

Sound level

The level of sound measured with a sound level meter and one of its weighting networks. When A-weighting is used, the sound level is given in dB(A)

Sound level meter (SLM)

An electronic instrument for measuring the RMS level of sound in accordance with an accepted national or international standard

Sound power

The total sound energy radiated by a source per unit time

Sound power level

The fundamental measure of sound power. Defined as:

$$L_W = 10 \left(\log \frac{P}{P_0} \right) dB$$

Where P is the RMS value of sound power in watts, and P_0 is 1 pW

Sound pressure

A dynamic variation in atmospheric pressure. The pressure at a point in space minus the static pressure at that point

Sound pressure level

The fundamental measure of sound pressure. Defined as:

$$L_p = 20\left(\log\frac{p}{p_0}\right) dB$$

Where p is the RMS value (unless otherwise stated) of sound pressure in pascals, and p_0 is 20 µPa for measurements in air

Sound transmission class, STC

A single-number rating for describing sound transmission loss of a wall or partition

Sound transmission loss

Ratio of the sound energy emitted by an acoustical material or structure to the energy incident upon the opposite side

Standing wave

A periodic wave having a fixed distribution in space which is the result of interference of progressive waves of the same frequency and kind. Characterised by the existence of maxima and minima amplitudes that are fixed in space

Transducer

A device designed to convert energy from one form to another in such a manner that the desired characteristics of the input energy appear at the output. Includes accelerometers, eddy current probes, loudspeakers, microphones and velocity transducers

Note 1: The output is usually electrical Note 2: The use of the term "pick-up" is deprecated

Transient vibration

Vibration that decays with time. This term is basically associated with mechanical shock

Triaxial

Three axes. A triaxial accelerometer is a single instrument with three sensing elements oriented to measure vibration in three axes

Triboelectric Noise

Generated by movement in the cable's components, resulting in charge or voltage noise signals. Mechanically induced noise is a critical and frequent concern when using charge accelerometers

Trigger

An electric impulse that is used as a timing reference, generally for purposes of initiating a process or measurement

Ultrasound

Sound at frequencies above the audible range, that is, above about 20 kHz

Uni-Gain

The sensitivity of Uni-Gain accelerometers are guaranteed within tight tolerances for easy interchangeability without recalibration. This designation indicates that the measured accelerometer sensitivity has been adjusted during manufacture to within 2% of a convenient value

Velocity

The rate of change of position or displacement in relation to time along a specified axis

Vibration

Mechanical oscillations about an equilibrium point. The oscillations may be periodic or random

Wavelength

The distance measured perpendicular to the wavefront in the direction of propagation between two successive points in the wave, which are separated by one period. Equals the ratio of the speed of sound in the medium to the fundamental frequency

Weighting network

An electronic filter in a sound level meter which approximates under defined conditions the frequency response of the human ear. The A-weighting network is most commonly used

White noise

Broadband noise having constant energy per unit of frequency

COMPLIANCE WITH STANDARDS

General Compliance

C E 💩 ම 🗵	The CE marking is the manufacturer's declaration that the product meets the requirements of the applicable EU directives RCM mark indicates compliance with applicable ACMA technical standards—that is, for telecommunications, radio communications, EMC and EME China RoHS mark indicates compliance with administrative measures on the control of pollution caused by electronic information prod- ucts according to the Ministry of Information Industries of the People's Republic of China WEEE mark indicates compliance with the EU WEEE Directive
Safety	EN/IEC 61010–1: Safety requirements for electrical equipment for measurement, control and laboratory use. ANSI/UL 61010–1: Safety requirements for electrical equipment for measurement, control and laboratory use.
EMC Emission	EN/IEC 61000–6–3: Generic emission standard for residential, commercial and light industrial environments. EN/IEC 61000–6–4: Generic emission standard for industrial environments. CISPR 22: Radio disturbance characteristics of information technology equipment. Class B Limits. FCC Rules, Part 15: Complies with the limits for a Class B digital device.
EMC Immunity	EN/IEC 61000–6–1: Generic standards – Immunity for residential, commercial and light industrial environments. EN/IEC 61000–6–2: Generic standards – Immunity for industrial environments. EN/IEC 61326: Electrical equipment for measurement, control and laboratory use – EMC requirements. Note: The above is only guaranteed using accessories listed in this Catalogue.

Relevant Microphone Standards

Laboratory reference microphones are specified in the international standard IEC 61094–1:2000.

Measurement microphones are specified in the international standard IEC 61094–4:1995.

These standards use the abbreviation WS for working standards, for example, measurement microphones used in daily routine measurements, while the abbreviation LS denotes laboratory standards.

The digits following "WS" indicate as follows:

- 1 = 1-inch microphone
- 2 = 1/2-inch microphone
- 3 = 1/4-inch microphone

The letter "F" denotes a free-field type and "P" a pressure- field type.

Electroacoustic Standards

The most relevant electroacoustic standard is the IEC 61672:2002 "Electroacoustics – Sound Level Meters". Although the microphone is an important component in any system that has to comply with IEC 61672 there are many other factors to consider.

It is also worth considering other parameters such as phase response, venting, environmental exposure and documentation

The tables in the Microphone section show which microphones are comply with the various electroacoustic standards including those

that are suitable to be used in system solutions that have to fulfil the requirements of IEC 61672. The following overview shows the coding used to display the relevant standard.

	IEC 61094		IEC 61672		ANSI
А	IEC 61094 – 4 WS1F	Т	IEC 61672 Class 1	К	ANSI S1.4 Type 1
В	IEC 61094 – 4 WS2F	J	IEC 61672 Class 2	L	ANSI S1.4 Type 2
С	IEC 61094 – 4 WS3F			М	ANSI S1.12 Type M
D	IEC 61094 – 4 WS1P				
Е	IEC 61094 – 4 WS2P				
F	IEC 61094 – 4 WS3P				
G	IEC 61094-1 LS1P				
н	IEC 61094 – 1 LS2P				

DIMENSIONS

Microphone Dimensions

The following table shows the dimensions of the most popular Brüel & Kjær microphones. In most cases, a TEDS combination is displayed (with a preamplifier). All dimensions are in millimetres.

Accelerometer Dimensions

The following table shows the dimensions of the most popular Brüel & Kjær accelerometers. All dimensions are in millimetres.

MICROPHONE COMPARISON TABLE

Specification	4138	4144	4145	4160	4176	4178	4179	4180	4188	4189	4190	4191	4192	4193	4197	4938	4939	4940	4941	4942	4943	4944	4947	4950	4953	4954	4956	4964
Main Purpose	High frequency	General purpose Low sound pressure level	General purpose Low sound pressure level	Reference	General purpose	Sound intensity	Very low sound pressure level	Reference	General purpose	General purpose	General purpose	General purpose	General purpose	Low frequency	Sound intensity	High sound pressure level High frequency	General purpose High frequency	For use with Sound Level Meter Type 2231	Very high sound pressure level	General purpose	General purpose	High sound pressure level	QA testing	General purpose	General purpose	General purpose	General purpose	Low frequency
Diameter	1/8-inch	1-inch	1-inch	1-inch	1/2-inch	1/4-inch	1-inch	1/2-inch	1/2-inch	1/2-inch	1/2-inch	1/2-inch	1/2-inch	1/2-inch	1/2-inch	1/4-inch	1/4-inch	1/2-inch	1/4-inch	1/2-inch	1/2-inch	1/4-inch	1/2-inch	1/2-inch	1/2-inch	1/4-inch	1/2-inch	1/2-inch
Description	Pressure-field	Pressure-field	Free-field	Pressure-field	Free-field	Sound intensity microphone pair	Free-field	Pressure-field	Free-field	Free-field	Free-field	Free-field	Pressure-field	Infrasound Pressure-field	Free-field pair for sound intensity	Pressure-field	Free-field	Free-field	Pressure-field	Diffuse-field	Diffuse-field	Pressure-field	Pressure-field	Free-field	Pressure-field	Free-field	Pressure-field	Free-field
Nominal Open-circuit Sensitivity	1.0 mV/Pa -60 dB re 1 V/Pa	50 mV/Pa - 26 dB re 1 V/Pa	50 mV/Pa - 26 dB re 1 V/Pa	47 mV/Pa -27 dB re 1 V/Pa	50 mV/Pa -26 dB re 1 V/Pa	4 mV/Pa -48 dB re 1 V/Pa	100 mV/Pa -20 dB re 1 V/Pa	12.5 mV/Pa -38 dB re 1 V/Pa	31.6 mV/Pa -30 dB re 1 V/Pa	50 mV/Pa -26 dB re 1 V/Pa	50 mV/Pa -26 dB re 1 V/Pa	12.5 mV/Pa 38 dB re 1 V/Pa	12.5 mV/Pa —38 dB re 1 V/Pa	12.5 mV/Pa -38 dB re 1 V/Pa	11.2 mV/Pa -39 dB re 1 V/Pa	1.6 mV/Pa -56 dB re 1 V/Pa	4 mV/Pa -48 dB re 1 V/Pa	50 mV/Pa -26 dB re 1 V/Pa	0.09 mV/Pa 81 dB re 1 V/Pa	50 mV/Pa -26 dB re 1 V/Pa	50 mV/Pa -26 dB re 1 V/Pa	1 mV/Pa -60 dB re 1 V/Pa	12.5 mV/Pa 38 dB re 1 V/Pa	50 mV/Pa - 26 dB re 1 V/Pa	50 mV/Pa 26 dB re 1 V/Pa	3.16 mV/Pa -50 dB re 1 V/ Pa	12.5 mV/Pa -38 dB re 1 V/ Pa	50 mV/Pa 26 dB re 1 V/Pa
Polarization Voltage	200 V	200 V	200 V	200 V	0 V	200 V	200 V	200 V	0 V	0 V	200 V	200 V	200 V	200 V	200 V	200 V	200 V	0 V	200 V	0 V	200 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V
									±1 dB: 12.5 Hz	±1 dB: 10 Hz to	±1 dB: 5 Hz to	±1 dB: 5 Hz to	±1 dB: 5 Hz to	±1 dB: 0.12 Hz	±1 dB: 5 Hz to			±1 dB: 10 Hz to		±1 dB: 10 Hz to	±1 dB: 5 Hz to	±2 dB: 4 Hz to				±2 dB: 4 Hz to	±1 dB: 7 Hz to	±1 dB: 0.04 Hz
Optimized Frequency Response	±2 dB: 6.5 Hz to 140 kHz	±2 dB: 2.6 Hz to 8 kHz	±2 dB: 2.6 Hz to 18 kHz	±2 dB: up to 8 kHz	±2dB: 6.5 Hz to 16 kHz	±2 dB: 4 Hz to 100 kHz	±2 dB: 10 Hz to 10 kHz	±1.5 dB: <20 kHz	to 8 kHz ±2 dB: 8 Hz to 12.5 kHz	8 kHz ±2 dB: 6.3 Hz to 20 kHz	10 kHz ±2 dB: 3.15 Hz to 20 kHz	16 kHz ±2 dB: 3.15 Hz to 40 kHz	12.5 kHz ± 2 dB: 3.15 Hz to 20 kHz	to 12.5 kHz ±2 dB: 0.07 Hz to 20 kHz	12.5 kHz ⁺ ±2 dB: 0.3 Hz to 20 kHz	±2 dB: 4 Hz to 70 kHz	±2 dB: 4 Hz to 100 kHz	8 kHz ±2 dB: 6.3 Hz to 20 kHz	±2 dB: 4 Hz to 20 kHz	10 kHz ⁺ ±2 dB: 6.3 Hz to 16 kHz	6.3 kHz [†] ±2 dB: 3.15 Hz to 10 kHz	70 kHz (–3 dB): 3 Hz to 70 kHz	±2 dB: 8 Hz to 10 kHz	±2 dB: 6.5 Hz to 16 kHz	±2 dB: 3 Hz to 10 kHz	80 kHz ±3 dB: 3 Hz to 100 kHz	12 kHz [†] ±2 dB: 2 Hz to 20 kHz	to 8 kHz ⁺ ±2 dB: 0.03 Hz to 20 kHz
Lower Limiting Frequency (–3 dB)	0.5 to 5 Hz	1 to 2 Hz	1 to 2 Hz	1 to 2 Hz	0.5 to 5 Hz	0.3 to 3 Hz	5 to 7 Hz	1 to 3 Hz	1 to 5 Hz	2 to 4 Hz	1 to 2 Hz	1 to 2 Hz	1 to 2 Hz	0.01 to 50 mHz	0.14 Hz	0.3 to 3 Hz	0.3 to 3 Hz	2 to 4 Hz	0.3 to 3 Hz	2 to 4 Hz	1 to 2 Hz	0.3 Hz to 3 Hz	1 to 5 Hz	0.5 to 5 Hz	1 to 2.4 Hz	0.3 to 3 Hz	1 to 2 Hz	0.01 to 0.05 Hz
Inherent Noise (Typical)	43 dB(A)	9.5 dB(A)	10 dB(A)	9.5 dB(A)	14.6 dB (A)	28 dB(A)	-2.5 [*] dB(A)	18 dB(A)	14.2 dB(A) 14.5 dB(Lin)	14.6 dB(A) 15.3 dB (Lin)	14.5 dB(A) 15.3 dB(Lin)	20.0 dB(A) 21.4 dB(Lin)	19.0 dB(A) 21.3 dB(Lin)	19.0 dB(A) 21.3 dB(Lin)	20.0 dB(A)	30 dB(A)	28 dB(A)	14.6 dB(A) 15.3 dB(Lin)	59 dB	14.6 dB	15.5 dB	30dB(A)	17.5 dB(A) 18.7 dB(Lin)	14.6 dB(A)	16.2 dB(A)	35 dB(A)	18.6 dB(A) 20.9 dB(Lin)	14.6 dB(A) 15.3 dB(Lin)
3% Distortion Limit (Max. [†])	168 dB	146 dB	146 dB	146 dB	142 dB	164 dB	140 dB [*]	160 dB	146 dB	146 dB	148 dB	162 dB	162 dB	162 dB	162 dB	172 dB	164 dB	146 dB	184 dB	146 dB	148 dB	170 dB	160 dB	142 dB	146 dB	164 dB	160 dB	146 dB
3% Distortion Limit RMS (V)	5.0 V	20.0 V	20.0 V	18.8 V	12.6 V	12.7 V	2.0 V [*]	25.0 V	12.6 V	20.0 V	25.1 V	31.5 V	31.5 V	31.5 V	28.2 V	12.7 V	12.7 V	20.0 V	2.9 V	20.0 V	25.6 V	5.7 V	25.0 V	12.6 V	20.0 V	10.0 V	25.0 V	20.0 V
Operating Temperature Range	(-22 to +212 °F)	-30 to +100 °C (-22 to +212 °F) Can be used up to 150 °C (302 °F)		–10 to +50 °C (+30 to 122 °F)			(an he used un		−30 to +125 °C (−22 to +257 °F)	-30 to +150 °C	(-22 to +302 °F)		(-22 to +302 °F)	-30 to +150 °C (-22 to +302 °F) Can be used up to 300 °C (572 °F)	(-40 to +302 °F)						-40 to +150 °C (-40 to +302 °F)							
Temperature Coefficient	−0.01 dB/°C	−0.003 dB/°C	−0.002 dB/°C	−0.003 dB/°C	0.005 dB/°C	0.003 dB/°C	−0.004 dB/°C	−0.002 dB/°C	+0.005 dB/°C	−0.006 dB/°C	−0.012 dB/°C	−0.002 dB/°C	−0.002 dB/°C	−0.002 dB/°C	−0.002 dB/°C	0.003 dB/°C	0.003 dB/°C	−0.006 dB/°C		−0.006 dB/°C	−0.015 dB/℃	0.008 dB/℃	0.006 dB/°C	0.005 dB/°C	−0.008 dB/°C	0.009 dB/℃	0.013 dB/°C	-0.006 dB/kPa
Pressure Coefficient	-0.01 dB/kPa	-0.016 dB/kPa	-0.015 dB/kPa	-0.00016 dB/ kPa	0.02 dB/kPa	-0.007 dB/kPa	-0.016 dB/kPa	–0.00007 dB/ kPa	-0.021 dB/kPa	-0.010 dB/kPa	-0.010 dB/kPa	–0.007 dB/kPa	-0.007 dB/kPa	-0.005 dB/kPa	-0.007 dB/kPa	-0.003 dB/kPa	-0.007 dB/kPa	-0.010 dB/kPa		-0.010 dB/kPa	-0.008 dB/kPa	-0.003 dB/kPa	-0.006 dB/kPa	0.02 dB/kPa	0.008 dB/kPa	-0.007 dB/kPa	0.0009 dB/kPa	-0.010 dB/kPa
Effect of Vibration, SPL for 1 m/s ² axial acceleration	58 dB	67 dB	67 dB	67 dB	63.5 dB	60 dB	60 dB	65 dB	63.5 dB	62.5 dB	62.5 dB	65.5 dB	65.5 dB	65.5 dB	65.5 dB	69 dB	60 dB	62.5 dB		62.5 dB	62.5 dB	69 dB	65.5 dB	63.5 dB	62.5 dB	60 dB	65.5 dB	62.5 dB
Effect of magnetic field, SPL for 80 A/m, 50 Hz field	40 dB	18 dB	18 dB	18 dB	30 dB	10 dB	12 dB	20 dB	7 dB	6 dB	4 dB	16 dB	16 dB	16 dB	6 to 34 dB	10 dB	10 dB	6 dB		6 dB	4 dB	48 dB(A)	16 dB	30 dB	6 dB	10 dB		6 dB
Estimated Long-term Stability at 20 °C		<1 dB/ 1000 years	<1 dB/ 1000 years	<1 dB/400 years	<1 dB/ 1000 years	<1 dB/ 1000 years	<1 dB/250 years	<1 dB/400 years	<1 dB/ 1000 years	<1 dB/ 1000 years	<1 dB/ 1000 years	<1 dB/ 1000 years	<1 dB/ 1000 years	<1 dB/ 1000 years	<1 dB/ 1000 years	<1 dB/ 1000 years	<1 dB/ 1000 years	<1 dB/ 1000 years		<1 dB/ 1000 years	<1 dB/ 1000 years	<1 dB/ 1000 years	<1 dB/ 1000 years	<1 dB/ 1000 years	<1 dB/ 1000 years	<1 dB/ 1000 years	<1 dB/ 1000 years	<1 dB/ 1000 years
Estimated Long-term Stability at 150 °C (dry air)		>2 hr/dB	>2 hr/dB		>10 hr/dB	>100 hr/dB			>10 hr/dB	>2 hr/dB	>100 hr/dB	>100 hr/dB	>100 hr/dB	>100 hr/dB	>100 hr/dB	>100 hr/dB	>100 hr/dB	>2 hr/dB		>2 hr/dB	>100 hr/dB	>2 hr/dB	>2 hr/dB	>10 hr/dB	>2 hr/dB	>2 hr/dB		>2 hr/dB
Standards [‡]	-	D, L	A, I	G	I, K		-	н	І, К	B, I, L	B, I, L	B, I, L, M	E, K, M	E, K, M		F	С		-	К	к	F	к	I, K	-	С	E, K, M	B, I, L
Recommended Brüel & Kjær Preamplifier (Type/Item no.)	2670 + UA-0160	2669 2673 + UA-0786	2669 2673 + UA-0786	2669 2673 + UA-0786	2669, 2671 2699, 1706	2683	2660 WH-3315 + WL-1302	2673	2669, 2671 2699, 1706	2669, 2671 2699, 1706	2669	2669	2669	2669	2683	2669 + UA-0035 2670	2669 + UA-0035 2670	2669, 2671 2699, 1706	2669 + UA-0035 2670	2669, 2671 2699, 1706	2669	2669, 2670 2671, 2699 1706 + UA-0035	2669, 2671 2699, 1706	2669, 2671 2699, 1706	2669, 2671 2699, 1706	2669, 2670 2671, 2699 1706 + UA-0035	2669, 2671 2699	2669, 2671 2699, 1706

* See product data for details † To ensure correct operation, the microphone should not be exposed to sound pressure levels exceeding the stated 3% Distortion Limit by more than 10 dB. Above this level, the output becomes heavily distorted (clipping occurs). In addition, an externally polarized microphone will not suffer permanent damage provided it is used with a Brüel & Kjær preamplifier. † Standards: A = IEC 61094-4 WS1F, B = IEC 61094-4 WS2F, C = IEC 61094-4 WS3F, D = IEC 61094-4 WS2F, C = IEC 61094-4 WS2P, F = IEC 61094-4 WS2P, F = IEC 61094-4 WS3F, D = IEC 61094-4 WS2P, F = IEC 61094-4 WS3P, G = IEC 61094-1 LS2P, I = IEC 610

Note: The effect of humidity is insignificant, and therefore not shown.

153

154

www.bksv.com/<mark>transducers</mark>

CHARGE ACCELEROMETER **COMPARISON TABLES**

Brüel & Kjær supplies accelerometers for heavy-duty industrial use and specifically designed for special-purpose applications. These charge accelerometers are self-generating devices that do not require an external power source for operation.

Most are Uni-Gain types having a measured sensitivity within ±2% of the specified sensitivity. However, there are some variable gain types (V variants) that have a greater deviation in sensitivity: ±15%.

Uni-Gain and V types have the same specifications and long-term stability. The V type just has a relaxed sensitivity tolerance.

Tables

There are two tables:

- Triaxial piezoelectric charge accelerometers
- Uniaxial piezoelectric charge accelerometers

These tables list key specifications for all our standard accelerometers, enabling you to get a quick overview for easier comparison and selection.

Pull out for COMPARISON TABLES >> >>

Uniaxial Piezoelectric Charge Accelerometers

General-purpose, High-sensitivity, High-frequency and Miniature Accelerometers

		General	Purpose			High Sensitivity							High Frequency	and Miniature		
Type No.		4382 [*]	4383*	4370 [*]	4381 [*]	4371*	4384*	8346-C	4374	4374-L	4375 [*]	4393 [*]	4505-A	4505-001	4517-C	4
GENERAL																
Weight	gram	17	17	54	43	11	11	176	0.75	0.75	2.4	2.4	4.9	4.9	0.6	
(excluding cable, wherever applicable)	OZ	0.6	0.6	1.9	1.52	0.39	0.39	6.2	0.026	0.026	0.085	0.085	0.17	0.17	0.021	
	pC/ms ⁻²	3.16	3.16	10	10	1	1	38	0.15	0.11	0.316	0.316	0.3	0.067	0.18	
Charge Sensitivity (at 159.2 Hz)	pC/g	31.0	31.0	98	98	9.8	9.8	372	1.47	1.08	3.10	3.10	2.94	0.66	1.80	
Frequency Range (±10% limit)	Hz	0.1 to 8400	0.1 to 8400	0.1 to 4800	0.1 to 4800	0.1 to 12600	0.1 to 12600	0.1 to 3000	1 to 26 000	1 to 26000	0.1 to 16500	0.1 to 16500	1 to 12000	1 to 9000	1 to 10000	1
Mounted Resonance Frequency	kHz	28	28	16	16	42	42	10	85	85	55	55	45	45	80	
Max. Transverse Sensitivity (at 30 Hz, 100 ms ⁻²)	%	<4	<4	4	<4	<4	<4	<5	<5	<5	<4	<4	<5	<5	<5	
Transverse Resonance Frequency	kHz	10	10	4	5	15	15	3.5	21	21	18	18	>20	>20		
Measuring Range (±peak)	kms ⁻²	20	20	20	20	60	60	20	50	50	50	50	30	30	10	
measuring Range (±peak)	g	2000	2000	2000	2000	6000	6000	2000	5000	5000	5000	5000	3000	3000	1000	
ELECTRICAL																
Residual Noise Level	mms ⁻²	0.6	0.6	0.2	0.2	2.4	2.4	1	18.5	18.5	5.2	5.2	7.6		5	
(measured with NEXUS Type 2692-001 in the specified frequency range)	mg	0.06	0.06	0.02	0.02	0.24	0.24	0.1	1.85	1.85	0.52	0.52	0.76		0.5	
Capacitance (excluding cable)	pF	1100	1100	1100	1100	1100	1100	1100	800	700	625	590	1000	80	730	
Case (signal ground) Insulation to Base	MΩ												>10	>10		
Min. Leakage Resistance (at 20 °C)	GΩ	20	20	20	20	20	20	>20	20	20	20	20	>20	>20	>20	
ENVIRONMENTAL																
Operating Temperature Range	°C	-74 to +250	-50 to +100	-74 to +250	-74 to +250	-74 to +250	-74 to +250	-55 to +230	-55 to +230	-51 to +177	-					
operating remperature hunge	۴F	-101 to +482	-58 to +212	-101 to +482	-101 to +482	-101 to +482	-101 to +482	-67 to +446	-67 to +446	-60 to +350	-					
Temperature Coefficient of Sensitivity	%/°C	0.05 ⁺	0.05 [‡]	0.12	0.11	0.05 [‡]	0.05 [‡]	0.05 [‡]	0.05 [‡]		0.11					
Temperature Transient Sensitivity	ms ^{−2} /°C	0.1	0.1	0.02	0.04	0.4	0.4	0.001	10	10	5	5	1	4	4	
(3 Hz Low. Lim. Freq. (–3 dB, 6 dB/oct)	g∕°F	0.0055	0.0055	0.0011	0.0022	0.022	0.022	0.000055	0.55	0.55	0.275	0.275	0.055	0.227	0.22	
Base Strain Sensitivity	ms ⁻² /με	0.01	0.01	0.003	0.003	0.02	0.02	0.002	0.01	0.01	0.005	0.005	0.02	0.02	5	
(at 250 $\mu\epsilon$ in the base plane)	g/με	0.001	0.001	0.0003	0.0003	0.002	0.002	0.0002	0.001	0.001	0.0005	0.0005	0.002	0.002	0.5	
Magnetic Sensitivity (50 Hz, 0.038 T)	ms ⁻² /T	1	1	1	1	4	4	0.5	30	30	30	30	5	5	5.6	
Magnetic Sensitivity (50 Hz, 0.038 H)	g/kG	0.01	0.01	0.01	0.01	0.04	0.04	0.005	0.3	0.3	0.3	0.3	0.05	0.05	0.056	
Max. Non-destructive Shock (± peak)	kms ⁻²	50	50	20	20	200	200	50	250	250	250	250	30	30	50	
······································	g	5000	5000	2000	2000	20000	20000	5000	25000	25000	25000	25000	3000	3000	5000	
MECHANICAL																
Case Material													2 Titanium ASTM Grade 2		Titanium	
Piezoelectric Sensing Element		PZ 23	PZ 27	PZ 27	PZ 23	PZ 23	PZ 23	PZ 23	PZ 101	Ceramic						
Construction		DeltaShear™	DeltaShear™	Delta-Shear™	DeltaShear™	DeltaShear™	DeltaShear™	DeltaShear™	Planar Shear	Planar Shear	DeltaShear™	DeltaShear™	ThetaShear™	ThetaShear™	Planar Shear	PI
Sealing		Welded	Welded	Welded	Welded	Welded	Welded	Hermetic	Sealed	Sealed	Welded	Welded	Welded	Welded	Hermetic	
Electrical Connector		10-32 UNF-2A	10-32 UNF-2A	Integral cable, 10–32 UNF-2B	Integral cable, 10–32 UNF-2B	Integral cable, 10-32 UNF-2B	M3	10-32 UNF-2A	10-32 UNF-2A	Coaxial 3-56	Co					
		10-32 UNF-2B	10-32 UNF				M3 × 2.2 mm	Integral 10–32 UNF								

* Also available as V type

⁺ In the temperature range –25 to +125 °C

4517-C-001	4517-C-003	4521-C
1	0.85	2.7
0.035	0.03	0.095
0.18	0.18	1
1.80	1.80	10
1 to 20000	1 to 9000	1 to 9000
75	30	35
<5	<5	<5
10	10	20
10		
1000	1000	2000
5	5	1.6
		1.0
0.5	0.5	0.16
730	760	1300
>20	>20	>20
-51 to +177	-51 to +177	-51 to +230
-60 to +350	-60 to +350	-60 to +446
0.11	0.11	0.11
4	2	0.55
0.22	0.2	0.030
0.5	0.01	1
0.05	0.001	0.1
5	5	6
0.05	0.05	0.06
50	50	20
5000	5000	2000
Titanium	Anodized Aluminium	Titanium Alloy
Ceramic	Ceramic	Ceramic
Planar Shear	Planar Shear	Planar Shear
Hermetic	Epoxy sealed	Hermetic
Coaxial 3-56	Coaxial 3-56	M3
Adhesive	Adhesive	Insulated M2 screw

Industrial, Structural, Modal, Shock, Crash Test and Reference Accelerometers

			Industrial			Structura	l and Modal		Shock and Automotive Crash Test	Refe	rence
Type No.		4391*	8315	8347-C	4500-A	4501-A	4507-C	4508-C	8309	8305	8305-001
GENERAL											
Weight	gram	16	62	60	4.1	4.0	4.5	4.5	3	40	26
(excluding cable, wherever applicable)	oz	0.56	2.18	2.1	0.145	0.141	0.16	0.16	0.105	0.58	0.92
Charge Sensitivity (at 159.2 Hz)	pC/ms ⁻²	1	10	1	0.316	0.316	0.45	0.45	0.004	0.12	0.12
	pC/g	9.8	98	9.8	3.10	3.10	4.41	4.41	0.04	1.18	1.18
Frequency Range (±10% limit)	Hz	0.1 to 10000	1 to 10000	1 to 12800	1 to 15000	1 to 10000	0.1 to 6000	0.1 to 8000	1 to 54000	0.2 to 4400 (±2%) 0.2 to 3100 (±1%)	0.2 to 4400 (±2%) 0.2 to 3100 (±1%)
Mounted Resonance Frequency	kHz	40	28	39	45	30	18	25	180	38	34
Max. Transverse Sensitivity	%	<4	<3	<3	<5	<5	<5	<5	<5	<2	<2
(at 30 Hz, 100 ms ⁻²)	70	~4	<5	<5	<5	<5	<5	15	<5	~2	~ 2
Transverse Resonance Frequency	kHz	12	9.4	17	> 20	>20	18	18	28		
Measuring Range (±peak)	kms ⁻²	20	20	10	30	30	20	20	150	10	10
Measuring Kange (±peak)	g	2000	2000	1000	3000	3000	2000	2000	15000	1000	1000
ELECTRICAL											
Residual Noise Level	mms ⁻²	2.3	18.6		7.6	7.6	1.7	1.8	230		
(measured with NEXUS Type 2692-001 in	mg	0.23	1.86		0.76	0.76	0.17	0.18	23		
the specified frequency range)	pF	1100		540	1000	1000	360	360	100	180	70
Capacitance (excluding cable) Case (signal ground) Insulation to Base	μr MΩ	>100		>100	>10	>10	500	500	100	Signal ground	Signal ground
Min. Leakage Resistance (at 20 °C)	GΩ	>20	>10	>100	> 20	> 10	>20	>20	>20	1000	1000
ENVIRONMENTAL	011	20	210		20	20	20	20	20	1000	1000
	°C	-60 to +180	-53 to +260	-196 to +482	-55 to +175	-55 to +175	-74 to +250	-74 to +250	-74 to +180	-74 to +200	-74 to +200
Operating Temperature Range	°F	-76 to +356	-63.4 to +500	-321 to +900	-67 to +347	-67 to +347	-101 to +482	-101 to +482	-101 to +356	-101 to +392	-101 to +392
Temperature Coefficient of Sensitivity	%/°C	0.05 [‡]	±10%, from -53 to +125°C	0.03	0.05 [‡]	0.1 [‡]	0.1 [‡]	0.1 [‡]	0.043 [‡]	-0.02 [‡]	-0.02 [‡]
Temperature Transient Sensitivity	ms ^{−2} /°C	0.2	0.09*	1.5	0.4	0.4	0.2	0.6	400	0.50	0.50
(3 Hz Low. Lim. Freq. (–3 dB, 6 dB/oct)	g∕°F	0.011	0.055	0.083	0.022	0.022	0.011	0.033	22	0.028	0.028
Base Strain Sensitivity	ms ⁻² /με	0.005	0.008	0.02	0.001 ⁺	0.001 ⁺⁺	0.005	0.005	2	Top: 0.01 Base: 0.003	Top: 0.01 Base: 0.003
(at 250 $\mu\epsilon$ in the base plane)	g/με	0.0005	0.0008	0.002	0.0001	0.0001	0.0005	0.0005	0.2	Top: 0.001 Base: 0.0003	Top: 0.001 Base: 0.0003
	ms ⁻² /T	4	4	20	2	2	1	1	20	1	1
Magnetic Sensitivity (50 Hz, 0.038 T)	g/kG	0.04	0.04	0.2	0.02	0.02	0.01	0.01	0.2	0.01	0.01
	kms ⁻²	20	20	50	30	30	50	50	1000	10	10
Max. Non-destructive Shock (± peak)	g	2000	2000	5000	3000	3000	5000	5000	100 000	1000	1000
MECHANICAL											
Case Material		Titanium ASTM Grade 2	Stainless Steel 316 L	Inconel® 600	Anodized Aluminium	Anodized Aluminium	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Stainless Steel AISI 316	Stainless Steel AISI 316	Stainless Steel AISI 31
Piezoelectric Sensing Element		PZ 23	Piezite P-8®	PZ 101	PZ 23	PZ 23	PZ 23	PZ 23	PZ 46	Quartz	Quartz
Construction		DeltaShear™	Shear	Shear	ThetaShear™	ThetaShear™	ThetaShear™	ThetaShear™	Compression	Compression	Compression
Sealing		Welded	Hermetic	Hermetic	Welded	Welded	Welded	Welded	Epoxy sealed	Hermetic	Hermetic
Electrical Connector		7/16–28 UNEF-2A	2-pin TNC	2-pin TNC	10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	Integral cable, 10–32	10-32 UNF	10-32 UNF
Mounting		10-32 UNF-2B × 3.2 mm threaded hole	ARINC (3 × M4)	ARINC (3 × M4)	Mounting clip or Adhesive	Mounting clip or Adhesive	Mounting clip or Adhesive	Mounting clip or Adhesive	Integral M5 stud	10–32 UNF threaded hole	10-32 UNF threader hole

* With 1 Hz high-pass filter † Mounted in mounting clip

Triaxial Piezoelectric Charge Accelerometers

26	
).92	
).12	
.18	
400 (±2%)	
100 (±1%)	
34	

Type No.		4326-A	4326-A-001	4326-001 [*]	4321 [†]
GENERAL					
Weight (excluding cable, wherever applicable)	gram Oz	13 0.46	17 0.6	17 0.6	55 1.94
	pC/ms ⁻²	0.316	0.316	0.316	1
Charge Sensitivity (at 159.2 Hz)	pC/g	3.100	3.100	3.100	9.8
	1, 0	X: 1 to 9000	X: 1 to 9000	X: 1 to 9000	X: 0.1 to 12000
Frequency Range (±10% limit)	Hz	Y: 1 to 8000	Y: 1 to 8000	Y: 1 to 8000	Y: 0.1 to 12000
		Z: 1 to 16000	Z: 1 to 16000	Z: 1 to 16000	Z: 0.1 to 12000
		X: 27	X: 27	X: 27	X: 40
Mounted Resonance Frequency	kHz	Y: 24	Y: 24	Y: 24	Y: 40
		Z: 48	Z: 48	Z: 48	Z: 40
Max. Transverse Sensitivity (at 30 Hz, 100 ms ⁻²)	%	<5	<5	<5	<4 [‡]
		X: >20	X: >20	X:>20	X: 14
Transverse Resonance Frequency	kHz	Y: >20	Y: >20	Y: >20	Y: 14
		Z: >20	Z: >20	Z: >20	Z: 14
	kms ⁻²	30	30	30	5
Measuring Range (± peak)	g	3000	3000	3000	500
ELECTRICAL	-	1 			
Residual Noise Level	mms ⁻²	3	5.6	5.6	2.3
(measured with NEXUS Type 2692-001 in the specified frequency range)	mg	0.3	0.56	0.56	0.23
Capacitance (excluding cable)	pF	1000	1000	1000	1100
Case (signal ground) insulation to base	MΩ	>10	>10	>10	
Min. Leakage Resistance (at 20 °C)	GΩ	>20	>20	>20	>20
ENVIRONMENTAL		1			
Operating Temperature Range	°C	-55 to +175	-55 to +230	-55 to +230	-74 to +250
	°F	-67 to +347	-67 to +446	-67 to +446	-101 to +482
Temperature Coefficient of Sensitivity	%/°C		X and Y: 0.08 ^{**} , Z: 0.05 ^{**}		0.5**
Temperature Transient Sensitivity	ms ^{−2} /°C	0.3	0.3	0.3	0.4
(3 Hz Low-Limited Freq. (–3 dB, 6 dB/oct))	g/°F	0.0165	0.0165	0.0165	0.022
Base Strain Sensitivity	ms ⁻² /με	0.002 ⁺⁺	0.002 ⁺⁺	0.002 ⁺⁺	0.2
at 250 $\mu\epsilon$ in base plane)	g/με	0.0002	0.0002	0.0002	0.02
Magnetic Sensitivity (50 Hz, 0.038 T)	ms ⁻² /T	5	5	5	4
Magnetic Sensitivity (50 H2, 0.038 T)	g/kG	0.05	0.05	0.05	0.04
Max. Non-destructive Shock	kms ⁻²	30	30	30	10
(± peak)	g	3000	3000	3000	1000
MECHANICAL					
Case Material		Anodized Aluminium	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2
Piezoelectric Sensing Element		PZ 23	PZ 23	PZ 23	PZ 23
Construction		ThetaShear™	ThetaShear™	ThetaShear™	DeltaShear™
Sealing		Welded	Welded	Welded	Sealed
Electrical Connector		3 × 10–32 UNF-2A	3 × 10-32 UNF-2A	3 × 10-32 UNF-2A	3 × 10-32 UNF-2A
Mounting		Mounting clip, adhesive, M2 screws or M3 stud	Mounting clip, adhesive, M2 screws or M3 stud	Mounting clip, adhesive, M2 screws or M3 stud	10–32 UNF × 5 mm threaded hole, M4 screw

General Purpose

* Dielectric rigidity: >1000 V † Also available as V type

‡ Transverse sensitivity of V type is <5%</p>

** In the temperature range –25 to +125 °C ⁺⁺ Mounted in mounting clip

www.bksv.com/<mark>transducers</mark>

CCLD ACCELEROMETER COMPARISON TABLES

Brüel & Kjær's CCLD accelerometers, power supplies, front ends and accessories offer an unrivalled degree of reliability and accuracy to help safeguard the integrity of your measurement data.

Variants

There are three variants of CCLD accelerometers:

- B types: Accelerometers with built-in TEDS (transducer electronic data sheets)
- S types: Available as a set consisting of an accelerometer, cable and mounting studs in a case
- V types: Variable gain accelerometers that have a greater deviation in sensitivity of ±15%

Uni-Gain and variable gain accelerometers have the same specifications and long-term stability. V types just have a relaxed sensitivity tolerance.

Tables

- There are three tables:Industrial piezoelectric CCLD accelerometers
- Uniaxial piezoelectric CCLD accelerometers
- Triaxial piezoelectric CCLD accelerometers

These tables list key specifications for all our standard accelerometers, enabling you to get a quick overview for easier comparison and selection.

Pull out for COMPARISON TABLES >> >>

Uniaxial Piezoelectric CCLD Accelerometers

		1									Structural	and Modal								
Type No.			4507	4507-В	4507-001	4507-B-001	4507-002	4507-B-002	4507-B-003 [*]	4507-B-004	4507-B-005	4507-B-006	4508	4508-B	4508-001	4508-B-001	4508-002	4508-B-002	4508-B-003 ⁺	4508-B-004
GENERAL			I																	
Weight (excluding cable, wl	herever applicable)	gram	4.8	4.8	4.8	4.8	4.8	4.8	4.9	4.6	4.6	4.6	4.8	4.8	4.8	4.8	4.8	4.8	4.9	4.8
	· · · · · · · · · · · · · · · · · · ·	OZ	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.16	0.16	0.16	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Voltage Sensitivity	alu aurrant)	mV/ms ⁻²	10	10	1	1	100	100	10	10	100	50	10	10	1	1	100	100	10	50
(at 159.2 Hz and 4 mA supp		mV/g	98	98	9.8	9.8	980	980	98	98	980	490	98	98	9.8	9.8	980	980	98	490
Frequency Range	Amplitude (±10%) Phase (±5°)	Hz	0.3 to 6000 2 to 5000	0.3 to 6000 2 to 5000	0.1 to 6000 0.5 to 5000	0.1 to 6000 0.5 to 5000	0.4 to 6000 2 to 5000	0.4 to 6000 2 to 5000	0.3 to 6000 2 to 5000	0.3 to 6000 2 to 5000	0.4 to 6000 2 to 5000	0.2 to 6000 1 to 5000	0.3 to 8000 2 to 5000	0.3 to 8000 2 to 5000	0.1 to 8000 0.5 to 5000	0.1 to 8000 0.5 to 5000	0.4 to 8000 2 to 5000	0.4 to 8000 2 to 5000	0.3 to 8000 2 to 5000	0.2 to 8000 1 to 5000
Mounted Resonance Freque		kHz	18	18	18	18	18	18	18	18	18	18	25	25	25	25	25	25	25	25
Max. Transverse Sensitivity	2	%	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	< 5	<5	<5	<5	<5
Transverse Resonance Freq		kHz	>18	>18	>18	>18	>18	>18	>18	>18	>18	>18	>18	>18	>18	>18	>18	>18	>18	>18
	,	kms ⁻²	0.7	0.7	7	7	0.07	0.07	0.7	0.7	0.07	0.14	0.7	0.7	7	7	0.07	0.07	0.7	0.15
Measuring range (± peak)		g	70	70	700	700	7	7	70	70	7	14	70	70	700	700	7	7	71	14
TEDS			No	Yes	No	Yes	No	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	No	Yes	Yes	Yes
ELECTRICAL																				
	at 25 °C and 4 mA																			
Bias Voltage	at full temperature and current range	V	12 ±1	13 ±1	12±1	13 ±1	12 ± 2	13 ±2	13 ±1	13±1	13 ±2	13 ±2	12 ±1	13 ±1	12 ±1	13 ±1	12 ±2	13 ±2	13±1	13 ±2
Power Supply	Constant current	mA	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20
	Unloaded supply voltage	V	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30
Output Impedance	100/)	Ω	2	30	2	30	2	30	30	30	30	30	2	30	2	30	2	30	30	30
Start-up time (to final bias :		s µV	<5 <35	<5 <35	< 50 <8	<50 <8	<5 <150	<5 <150	<5 <35	<5 <35	<5 <150	<5 <80	<5 <35	<5 <35	<50 <8	<50 <8	<5 <150	<5 <150	<5 <35	<5 <80
specified frequency range)	MS broadband noise in the	μg	<350	<350	<800	<800	<150	<150	<350	<350	<150	<160	<350	<350	<800	<800	<150	<150	<350	<160
1 1 7 07	10 Hz	mms ⁻² /	0.15 (15)	0.15 (15)	0.25 (25)	0.25 (25)	0.08 (8)	0.08 (8)	0.15 (15)	0.15 (15)	0.08 (8)	0.08 (8)	0.15 (15)	0.15 (15)	0.25 (25)	0.25 (25)	0.08 (8)	0.08 (8)	0.15 (15)	0.08 (8)
Noise (spectral)	100 Hz	√Hz	0.035 (3.5)	0.035 (3.5)	0.06 (6)	0.06 (6)	0.02 (2)	0.02 (2)	0.035 (3.5)	0.035 (3.5)	0.02 (2)	0.02 (2)	0.035 (3.5)	0.035 (3.5)	0.06 (6)	0.06 (6)	0.02 (2)	0.02 (2)	0.035 (3.5)	0.02 (2)
	1000 Hz	(µg/√Hz)	0.02 (2)	0.02 (2)	0.035 (3.5)	0.035 (3.5)	0.01 (1)	0.01 (1)	0.02 (2)	0.02 (2)	0.01 (1)	0.01 (1)	0.02 (2)	0.02 (2)	0.035 (3.5)	0.035 (3.5)	0.01(1)	0.01 (1)	0.02 (2)	0.01 (1)
Insulation Resistance (signa	al ground to case)	MΩ																		
ENVIRONMENTAL		1	I																	
Operating Temperature Rar	nge	°C	-54 to +121	-54 to +121	-54 to +121	-54 to +121	-54 to +100	-54 to +100	-54 to +121	-54 to +121	-54 to +100	-54 to +100	-54 to +121	-54 to +121	-54 to +121	-54 to +121	-54 to +100	-54 to +100	-54 to +121	-54 to +100
Temperature Coefficient of	Sonsitivity	°F %/°C	-65 to +250 0.09	-65 to +250 0.09	-65 to +250 0.09	-65 to +250 0.09	-65 to +212 0.18	-65 to +212 0.18	-65 to +250 0.09	-65 to +250 0.09	-65 to +212 0.18	-65 to +212 0.18	-65 to +250 0.06	-65 to +250 0.06	-65 to +250 0.06	-65 to +250 0.06	-65 to +212 0.12	-65 to +212 0.12	-65 to +250 0.06	-65 to +212 0.12
-	-	ms ⁻² /°C	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Temperature Transient Sens (3 Hz Lower Limiting Freq. (g/°F	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.2	0.0165	0.0165	0.0165	0.0165	0.0165	0.0165	0.0165	0.0165
		ms ⁻² /T	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Magnetic Sensitivity (50 Hz	z, 0.038 T)	g/kG	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
		ms ⁻² /με	0.005 ⁺	0.005 [‡]	0.005 [‡]	0.005 [‡]	0.005 [‡]	0.005 [‡]	0.005 [‡]	0.005 [‡]	0.005 [‡]	0.005 [‡]	0.005 [‡]	0.005 [‡]	0.005 [‡]	0.005 [‡]	0.005 [‡]	0.005 [‡]	0.005 [‡]	0.005 [‡]
Base Strain Sensitivity (at 2	250 $\mu\epsilon$ in base plane)	g/με	0.0005 [‡]	0.0005 [‡]	0.0005 [‡]	0.0005 [‡]	0.0005 [‡]	0.0005 [‡]	0.0005 [‡]	0.0005 [‡]	0.0005 [‡]	0.0005 [‡]	0.0005 [‡]	0.0005 [‡]	0.0005 [‡]	0.0005 [‡]	0.0005 [‡]	0.0005 [‡]	0.0005**	0.0005 [‡]
		kms ⁻²	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
Max. Non-destructive Shoc	ck (± peak)	g	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000
MECHANICAL		1																		
Case Material			Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTN Grade 2
Piezoelectric Sensing Eleme	ent		PZ 23	PZ 23	PZ 23	PZ 23	PZ 27	PZ 27	PZ 23	PZ 23	PZ 27	PZ 27	PZ 23	PZ 23	PZ 23	PZ 23	PZ 27	PZ 27	PZ 23	PZ 27
Construction			ThetaShear™	ThetaShear™	ThetaShear™	ThetaShear™	ThetaShear™	ThetaShear™	ThetaShear™	ThetaShear™	ThetaShear™	ThetaShear™	ThetaShear™	ThetaShear™	ThetaShear™	ThetaShear™	ThetaShear™	ThetaShear™	ThetaShear™	ThetaShear™
Sealing			Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic
Electrical Connector			10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-24
Mounting			Clip or Adhesive	Clip or Adhesive	Clip or Adhesive	Clip or Adhesive	Clip or Adhesive	Clip or Adhesive	Adhesive		or clip mounting form s; Adhesive mountin		Clip or Adhesive	Clip or Adhesive	Clip or Adhesive	Clip or Adhesive	Clip or Adhesive	Clip or Adhesive	Adhesive	Clip or Adhesive

* Adhesive-mount version of B variant

General-purpose and 360°Mounting Uniaxial CCLD Accelerometers

	Miniature and High Frequency								1																	
Type No.			4517	4517-002	4516	4516-001	4518	4518-002	4518-001	4518-003	4519	4519-002	4519-001	4519-003	4397-A	4394*	4534-B	4534-B-001	4534-B-002	4534-B-004	4533-B	4533-B-001	4533-B-002	4533-B-004	4521	
GENERAL																										
Weight (excluding cable,	wherever applicable)	gram	0.65	0.7	1.5	1.5	1.5	1.45	1.5	1.45	1.6	1.5	1.6	1.5	2.4	2.9	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	4	
weight (excluding cable,		OZ	0.02	0.025	0.05	0.05	0.053	0.051	0.053	0.051	0.056	0.053	0.056	0.053	0.085	0.102	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.141	
Voltage Sensitivity		mV/ms ⁻²	1.02	1.02	1.02	0.51	1.02	1.02	10.2	10.2	1.02	1.02	10.2	10.2	1	1	1	10	50	5	1	10	50	5	0.98	
(at 159.2 Hz and 4 mA su	ipply current)	mV/g	10	10	10	5	10	10	100	100	10	10	100	100	9.8	9.8	9.8	98	490	49	9.8	98	490	49	10	
Frequency Range	Amplitude (±10%) Phase (±5°)	Hz	1 to 20000 2 to 5000	1 to 20000 2 to 5000	1 to 20000 4 to 5000	1 to 20000 4 to 5000	1 to 20000 2 to 10000	1 to 20000 4 to 10000	1 to 20000 2 to 10000	1 to 20000 4 to 10000	1 to 20000 2 to 10000	1 to 20000 2 to 10000	1 to 20000 2 to 10000	1 to 20000 5 to 10000	1 to 25000 4 to 2500	1 to 25000 4 to 2500	0.2 to 12800 1 to 10000	0.2 to 12800 1 to 5000	0.3 to 12800 2 to 1500	0.2 to 12800 1 to 5000	0.2 to 12800 1 to 10000	0.2 to 12800 1 to 5000	0.3 to 12800 2 to 1500	0.2 to 12800 1 to 5000	1 to 10000 5 to 5000	
Mounted Resonance Fre		kHz	80	80	40	40	62	62	62	62	62	62	62	62	53	52	38	38	38	38	38	38	38	38	35	
Max. Transverse Sensitiv	•	%	< 5	<5	<5	<5	< 5	<5	<5	<5	<5	<5	<5	<5	<4	<4	<5	<5	<5	<5	<5	<5	<5	<5	<5	
Transverse Resonance Fr		kHz									.0				17	15								-0		
		kms ⁻²	4.9	4.9	4.9	9.8	4.9	4.9	0.49	0.49	4.9	4.9	0.49	0.49	$5 (7500 \text{ ms}^{-2})$	when T <100 °C)	7	0.7	0.14	1.4	7	0.7	0.14	1.4	4.9	
Measuring range (± peak	()	g	500	500	500	1000	500	500	50	50	500	500	50	50	•	when T < 100 °C)	714	71	14	143	714	71	14	14.3	500	
TEDS		8	No	No	No	No	No	No	No	No	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	
ELECTRICAL																										
Bias Voltago	at 25 °C and 4 mA	V	10 ±1.5	10 ± 1.5	10 ± 1.5	10 ±1.5	12 ±1	12 ±1	12 ±1	12 ±1	12 ±1	12 ±1	12 ±1	12 ±1	12 ±0.5	12 ±0.5	12 to 14	12 to 14	12 to 14	12 to 14	12 to 14	12 to 14	12 to 14	12 to 14	8.5 to 11.5	
Bias Voltage	at full temp. and curr. range	v	8 to 16	8 to 16	8 to 16	8 to 16	8 to 16	8 to 16	8 to 16	8 to 16	8 to 16	8 to 16	8 to 16	8 to 16	8 to 15	8 to 15	12 to 14	12 to 14	12 to 14	12 to 14	12 to 14	12 to 14	12 to 14	12 to 14	8 to 16	
Power Supply	Constant current	mA	2 to 10	2 to 10	2 to 10	2 to 10	2 to 10	2 to 10	2 to 10	2 to 10	2 to 10	2 to 10	2 to 10	2 to 10		to 10 A if T < 100 °C)	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	
	Unloaded supply voltage	v	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	21 to 32	21 to 32	21 to 32	21 to 32	21 to 32	21 to 32	21 to 32	21 to 32	24 to 30	
Output Impedance		Ω	70	70	80	100	40	40	120	120	40	40	120	120	100	100	<15	<15	<15	<15	<15	<15	<15	<15	60	
Start-up time (to final bia	as ±10%)	s	<0.7	<0.7	<1	<1	< 0.3	<0.3	<4	<4	<0.3	<0.3	<1	<1	<5	<5	<30	<30	<30	<30	<30	<30	<30	<30	<1	
•	RMS broadband noise in the	μV	60	60	60	30	20	20	90	90	20	20	90	90	<15	25	5	13	50	7	5	13	50	7	60	
specified frequency rang		μg	6000	6000	6000	6000	2000	2000	900	900	2000	2000	900	900	<1500	2500	500	130	100	140	500	130	100	140	6000	
	10 Hz	mms ⁻² /√H	7 (700)	7 (700)	7 (700)	7 (700)	1 (100)	1 (100)	0.4 (40)	0.4 (40)	1 (100)	1 (100)	0.4 (40)	0.4 (40)	0.79 (79)	1.3 (130)	0.25 (25)	0.15 (15)	0.11 (11)	0.14 (14)	0.25 (25)	0.15 (15)	0.11 (11)	0.14 (14)		
Noise (spectral)	100 Hz 1000 Hz	(µg/√Hz)	² 0.7 (70) 0.07 (7)	0.7 (70) 0.07 (7)	1.5 (150) 0.5 (50)	1.5 (150) 0.5 (50)	0.3 (30) 0.1 (10)	0.3 (30) 0.1 (10)	0.1 (10) 0.5 (50)	0.1 (10) 0.5 (50)	0.3 (30) 0.1 (10)	0.3 (30) 0.1 (10)	0.1 (10) 0.05 (5)	0.1 (10) 0.05 (5)	0.21 (21) 0.14 (14)	0.45 (45) 0.17 (17)	0.07 (7) 0.044 (4.4)	0.025 (2.5) 0.01 (1)	0.022 (2.2) 0.009 (0.9)	0.03 (3) 0.014 (1.4)	0.07 (7) 0.044 (4.4)	0.025 (2.5) 0.01 (1)	0.022 (2.2) 0.009 (0.9)	0.03 (3) 0.014 (1.4)		
Insulation Resistance (bo		MΩ	Case grounded	Base isolated	Case grounded	Case grounded		Case grounded	0.14 (14)	Base isolated	Base isolated	Base isolated	Base isolated	Base isolated	Base isolated	Base isolated	Base isolated	Base isolated	Base isolated							
ENVIRONMENTAL	,																									
On anothing Tana a state of	Denee	°C	-51 to +121	-51 to +121	-51 to +121	-51 to +121	-51 to +121	-51 to +121	-51 to +100	-51 to +100	-51 to +121	-51 to +121	-51 to +100	-51 to +100	-50 to +125	-50 to +125	-55 to +125	-55 to +125	-55 to +125	-55 to +125	-55 to +125	-55 to +125	-55 to +125	-55 to +125	-51 to +121	
Operating Temperature F	Kange	°F	-60 to +250	-60 to +250	-60 to +250	-60 to +250	-60 to +250	-60 to +250	-60 to 212	-60 to 212	-60 to +250	-60 to +250	-60 to 212	-60 to 212	-58 to +257	-58 to +257	-67 to +257	-67 to +257	-67 to +257	-67 to +257	-67 to +257	-67 to +257	-67 to +257	-67 to +257	-60 to +250	
Temperature Coefficient	of Sensitivity	%/°C	0.05	0.05	0.11	0.11	0.2	0.07	0.07	0.07	0.23	0.23	0.23	0.23	0.05	0.04	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	
Temperature Transient S		ms ⁻² /°C	0.3	0.3	0.1	0.1	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	2	2	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.21	
(3 Hz Lower Limiting Free	q. (-3 dB, 6 dB/octave)	g/⁰F	0.0165	0.0165	0.0055	0.0055	0.0165	0.0165	0.0165	0.0165	0.0165	0.0165	0.0165	0.0165	0.11	0.11	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.01155	
Magnetic Sensitivity (50	Hz. 0.038 T)	ms ⁻² /T	40	40	20	1	5	5	9	9	5	5	12	12	50	10	3	3	3	3	3	3	3	3	6	
	, ,	g/kG	0.4	0.4	0.2	0.01	0.05	0.05	0.09	0.09	0.05	0.05	0.12	0.12	0.5	0.1	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.06	
Base Strain Sensitivity (a	t 250 με in base plane)	ms ⁻² /με	0.8	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.005	0.005	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.06	
	· · · · · · · · · · · · · · · · · · ·	g/με	0.08	0.05	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.0005	0.0005	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.006	
Max. Non-destructive Sh	ock (± peak)	kms ⁻²	49	49	15	15	29	29	29	29	29	29	29	29		50 (transverse)	100	100	100	100	100	100	100	100	20	
		g	5000	5000	1500	1500	3000	3000	3000	3000	3000	3000	3000	3000	10000 (axial) 5	5000 (transverse)	10000	10000	10000	10000	10000	10000	10000	10000	2000	
MECHANICAL															Titanium ASTM	Titanium ASTM										
Case Material			Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Grade 2	Titanium ASTM Grade 2	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Sta
Piezoelectric Sensing Ele	ment		Quartz	Quartz	Quartz	Quartz	Ceramic	PZ 23	PZ 23	PZ 23	PZ 23	PZ 23	PZ 23	PZ 23	PZ 23	PZ 23	PZ 23	Quartz								
Construction			Planar Shear	Planar Shear	Planar Shear	Planar Shear	Planar Shear	Planar Shear	Planar Shear	Planar Shear	Planar Shear	Planar Shear	Planar Shear	Planar Shear	DeltaShear™	DeltaShear™	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Planar Shear	
Sealing			Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Welded	Welded	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	
Electrical Connector			Coaxial 3-56	Coaxial 3–56	10-32 UNF-2A	10-32 UNF-2A	Coaxial M3	Coaxial M3	10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	M3									
Mounting			Adhesive	Adhesive	Adhesive	Adhesive	Integral M3 stud ×	Adhesive	Integral M3 stud ×	Adhesive	Integral M3 stud ×	Adhesive	Integral M3 stud ×	Adhesive	M3 × 2.4 mm		internal thread, depth	F Stud mount, 10–32 UNF internal thread, depth			10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	Insulated M2 centre	e bolt
* Same as Type 4207 S with	insulated base						3.8 mm		3.8 mm		2.8 mm		3.8 mm		threaded hole	threaded hole	3.8 mm	3.8 mm	3.8 mm	3.8 mm	× 3.8 mm threaded hole	× 3.8 mm threaded hole	× 3.8 mm threaded hole	e × 3.8 mm threaded hole		

* Same as Type 4397-S with insulated base

360° Mo	ounting	
4523	4511-001	4511-006
13.3	35	29
0.47	1.23	1.0
1	1	1
9.8	9.8	9.8
1 to 15000	1 to 15000	2 to 25000
2 to 10000	2 to 10000	2 to 10000
43	43	43
<5	<5	<5
		-
5	5	5
500	500	500
No	No	No
12 ±1	11 ± 0.5	12 ±1
12 ±2	8.5 to 14	12 ±2
2 to 20	2 to 20	2 to 20
18 to 30	18 to 30	23 to 32
2	100	100
<5	<2	<2
20	<10	<10
2000	<1000	<1000
0.9 (90)	1.6 (160)	1.6 (160)
0.15 (15)	0.5 (50)	0.5 (50)
0.029 (2.9)	0.16 (16)	0.16 (16)
>100	>100	>100
-54 to +150	-54 to +150	-54 to +150
-65 to +302	-65 to +302	-65 to +302
0.09	0.09	0.09
0.2	1	1
0.011	0.055	0.055
24	20	20
0.24	0.2	0.2
0.2	0.05	0.2
0.02	0.005	0.02
51	51	51
5000	5000	5000
Stainless steel AISI 316-L	Stainless steel AISI 316-L	Stainless steel AISI 316- LS
PZ 23	PZ 23	PZ 23
Annular Shear, base insulated	Annular Shear, case insulated	Annular Shear, case insulated
Hermetic	Hermetic	Hermetic
10-32 UNF-2A	3-pin HiRel	3-pin Glenair [®] 800-series
lt M4 centre bolt	M4 centre bolt or 10-32 UNF stud	M4 centre bolt

High-temperature, High-sensitivity, Underwater and Shock Uniaxial CCLD Accelerometers

Type No.			4526	High Temperature 4526-001	4526-002	8340	High Sensitivity 8344	8344-B-001	Underwater 5958-A [*]	Sho 8339	ock 8339-001
GENERAL			4520	4520 001	4520 002	0040	0044	0044 0 001	5556-A		0000 001
GENERAL		gram	5	5	5	775	176	176	44 ⁺	5.8	5.8
Weight (excluding cable, where	ever applicable)	oz	0.18	0.18	0.18	27.33	6.2	6.2	1.55 [†]	0.204	0.204
Voltage Sensitivity		mV/ms ⁻²	10	1	10	1020	250	50	1	0.025	0.01
(at 159.2 Hz and 4 mA supply co		mV/g	98	9.8	98	10000	2450	490	9.8	0.25	0.1
Frequency Range	Amplitude (±10%)		0.3 to 8000	0.1 to 8000	0.3 to 8000	0.1 to 1500	0.2 to 3000	0.05 to 3000	0.3 to 11000	1 to 20000	1 to 20000
	Phase (±5°)	Hz	2 to 5000	0.5 to 5000	2 to 5000	5 to 200	0.5 to 5000	0.5 to 5000	5 to 10000	5 to 8000	5 to 8000
Mounted Resonance Frequency	1	kHz	25	25	25	7	10	10	45	130	130
Max. Transverse Sensitivity (at	30 Hz, 100 ms ⁻²)	%	<5	<5	<5	<1	<5	<5	<5	<10	<10
Transverse Resonance Frequence	су	kHz	>18	>18	>18		3.5	3.5	14		
Managemine reason () month		kms ⁻²	0.7	7	0.7	0.0049	0.026	0.137	5	200	500
Measuring range (± peak)		g	70	714	70	0.5	2.6	14	500	20000	50000
TEDS			No	No	No	No	Yes	Yes	No	No	No
ELECTRICAL											
	at 25 °C and 4 mA	v	12 ±1	12 ±1	12 ±1	12 ±1	13±1	13 ±1	12 ± 0.5	9 ±1	9 ±1
Bias Voltage	at full temp. and curr. range	v	9 to 13	9 to 13	9 to 13	10 to 14	13±1	13 ±1	10 to 15	7.5 to 10	7.5 to 10
Develop Consults	Constant current	mA	2 to 20	2 to 10	2 to 10	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20
Power Supply	Unloaded supply voltage	V	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30	24 to 30
Output Impedance		Ω	2	2	2	200	30	30	100	100	100
Start-up time (to final bias ± 109	%)	s	<5	<5	<5	<8	<30	120		<0.1	<0.1
Residual Noise (inherent RMS b	proadband noise in the	μ٧	<35	<8	<35	25	113: 0.2 to 3000 Hz	9: 0.3 to 3000 Hz 5: 1 to 3000 Hz	<15	35	35
specified frequency range)		μg	< 350	<816	<350	2.5	45: 0.2 to 3000 Hz	18: 0.3 to 3000 Hz 10: 1 to 3000 Hz	<1500	150000	350000
	10 Hz		0.15 (15)	0.25 (25)	0.15 (15)	0.015 (1.5)	0.00775 (0.78) [‡]	0.011 (1.1)**		60 (6000)	150 (15000)
Noise (spectral)	100 Hz	mms ^{−2} /√Hz	0.035 (3.5)	0.06 (6)	0.035 (3.5)	0.015 (1.5)	0.000775 (0.078) [‡]	0.002 (0.2)**		15 (1500)	35 (3500)
	1000 Hz	(µg/√Hz)	0.02 (2)	0.035 (3.5)	0.02 (2)	0.0005 (0.05)	0.000846 (0.035) [‡]	0.0009 (0.09)**		10 (1000)	25 (2500)
Insulation Resistance (body to I		MΩ	0.02 (2)	0.033 (3.3)	0.02 (2)	Case isolated	0.000840 (0.055)	0.0009 (0.09)	>10	Base isolated	Base isolated
ENVIRONMENTAL	mounting surface)	10122				Case isolated			>10	Base isolateu	Base isolated
ENVIRONMENTAL		°C	-54 to +180	-54 to +180	-54 to +165	-51 to +74	-50 to +100	-50 to +100	-50 to +100	-51 to +121	-51 to +121
Operating Temperature Range		°F	-65 to +356	-65 to +356	-65 to +329	-60 to +165	-58 to +212	-58 to +212	-58 to +212	-60 to +250	-60 to +250
Temperature Coefficient of Sen	sitivity	%/°C	0.09	0.09	0.09	0.25	0.05	0.05	0.05	0.03	0.03
	-	ms ⁻² /°C	0.3	0.3	0.3	0.003	0.001	0.001	1	30	30
Temperature Transient Sensitiv (3 Hz Lower Limiting Freq. (–3 d	•										
	, ,	g/°F	0.0165	0.0165	0.0165	0.000165	0.000055	0.000055	0.055	1.65	1.65
Magnetic Sensitivity (50 Hz, 0.0	938 T)	ms ⁻² /T	3	3	3	0.7	0.5	2.5	20	2000	2000
		g/kG	0.03	0.03	0.03	0.007	0.005	0.025	0.2	20	20
Base Strain Sensitivity (at 250 µ	ιε in base plane)	ms ⁻² /με	0.001	0.001	0.005	0.0002	0.002	0.002	0.01	1.3	1.3
		g/με	0.0001	0.0001	0.0005	0.00002	0.0002	0.0002	0.001	0.13	0.13
Max. Non-destructive Shock (±	neak)	kms ⁻²	50	50	50	0.98	3.6	3.6	20	816	816
	peaky	g	5000	5000	5000	100	350	350	2000	80000	80000
MECHANICAL											
Case Material			Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Stainless steel	Stainless steel AISI 316-L	Stainless steel AISI 316-L	Stainless steel AISI 404L	17–4 PH Stainless steel	17-4 PH Stainless stee
Piezoelectric Sensing Element			PZ 23	PZ 23	PZ 23	Ceramic	PZ 27	PZ 27	PZ 23	Quartz	Quartz
Construction			ThetaShear™	ThetaShear™	ThetaShear™	Annular Shear	DeltaShear™	DeltaShear™	DeltaShear™	Compression	Compression
Sealing			Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic
Electrical Connector			10-32 UNF-2A	10-32 UNF-2A	10-32 UNF-2A	2-pin MIL-C-5015	10-32 UNF	10-32 UNF	BNC	10-32 UNF-2A	10-32 UNF-2A
Mounting			Stud mount, 10–32 threaded hole	Stud mount, 10–32 threaded hole	Adhesive	Stud mount, 1/4"–28 UNF-2A threaded hole	M5 × 4.5 threaded hole	M5 × 4.5 threaded hole	1/4″–28 UNF-2A integrated	Integral 10–32 UNF stud	Integral 10–32 UNF stu

* Also available as Type 5958-H with open end † In air, including 0.15 m cable ‡ Type 8344 noise spectral at 1 Hz = 0.11 ms⁻²/ \sqrt{Hz} (11 µg/ \sqrt{Hz}) ** Type 8344-B-001 noise spectral at 1 Hz = 0.09 ms⁻²/ \sqrt{Hz} (9 µg/ \sqrt{Hz})

Industrial Piezoelectric CCLD Accelerometers

			Industrial	Applications		
Type No.			8341	8324-G [*]		
GENERAL						
		gram	41	91		
Weight (excluding cable, wh	nerever applicable)	oz	1.44	3.15		
		mV/ms ⁻²	10	1		
Voltage Sensitivity (at 159.2	2 Hz and 4 mA supply current)	mV/g	100	9.8		
Frequency Range: Amplitud	le (±10% limit)	Hz	0.3 to 10000	9000		
Mounted Resonance Freque	ency	kHz	27	30		
Max. Transverse Sensitivity	(at 30 Hz, 100 ms ⁻²)	%	<5	<3		
Transverse Resonance Frequ		kHz		9		
		kms ⁻²	490	20		
Measuring range (± peak)		g	50	2000		
ELECTRICAL		0				
	at 25 °C and 4 mA		-	_		
Bias Voltage	at full temperature and	V	8 to 16	13 ± 1		
	current range		0 10 10	15 ±1		
Power Supply	Constant current	mA	2 to 10	2 to 20		
· • · · · · · • · · · · · · · · · · · ·	Unloaded supply voltage	V	24 to 30	24 to 28		
Output Impedance		Ω	60	<100		
Start-up time (to final bias :	±10%)	S	<3	<2		
Residual Noise (inherent RM	AS broadband noise in the	μV	20	4		
specified frequency range)		μg	200	0.4		
Isolation			Case insulated	Case insulated		
ENVIRONMENTAL		1		Accelerometer: 60 to 1480		
Operating Temperature Ran	nge	°C	-51 to +121	Accelerometer: –60 to +480 Charge Converter: –40 to +85		
- F0F	.0-	°F	-60 to +250	Accelerometer: -76 to +896 Charge Converter: -40 to +185		
Temperature Coefficient of	Sensitivity	%/°C	0.11	0.11		
Temperature Transient Sens	sitivity	ms ^{−2} /°C	0.2	20		
(3 Hz Lower Limiting Freq. 2	20 dB/decade)	g∕°F	0.011	1.1		
Magnetic Sensitivity (50 Hz	0 028 T)	ms ⁻² /T	25	25		
Magnetic Sensitivity (50 Hz)	, 0.058 1)	g/kG	0.25	0.25		
Daga Churcin Canaitivity (in th	na hana alama at 250 ua)	ms ⁻² /με	0.1	0.2		
Base Strain Sensitivity (in th	The base plane at 250 $\mu\epsilon$)	g/με	0.01	0.02		
		kms ⁻²	50	20		
Max. Non-destructive Shoc	k (± peak)	g	5000	2000		
MECHANICAL						
Case Material			Stainless Steel	Inconel [®] 600		
Piezoelectric Sensing Eleme	nt		Ceramic	Piezoelectric type PT		
Construction			Planar Shear	Compression		
Sealing			Hermetic	Hermetic		
Electrical Connector			MIL-C-5015	BNC (connector at the cable end)		
Mounting			1/4''-28 UNF × 6.35 mm threaded hole	ARINC, 8–32 UNC 3 × M4		

* The accelerometer comes with high temperature cable, integrated charge converter/filter and TEDS.

159

Triaxial Piezoelectric CCLD Accelerometers

					High Temperature				Gener	al Purpose		
Type No.			4528-B	4528-B-001	4527	4527-001	4535-В	4535-B-001	4504-A	4506*	4506-В [*]	4506-B-003 [*]
GENERAL		1 1										
Weight (evoluting coble w	whorever emplicable)	gram	6	6	6	6	6	6	15	15	15	18
Weight (excluding cable, w	wherever applicable)	oz	0.21	0.21	0.21	0.21	0.21	0.21	0.54	0.54	0.54	0.63
Voltage Sensitivity		mV/ms ⁻²	1	10	1	10	1	10	1	10	10	50
(at 159.2 Hz and 4 mA supp	pply current)	mV/g	9.8	98	9.8	98	9.8	98	9.8	98	98	490
Frequency Range	Amplitude (±10%)	Hz X:	0.3 to 10000 Y: 0.3 to 10000 Z:	0.3 to 12800 X: 0.3 to 10000 Y: 0.3 to 10000	Z: 0.3 to 12800 X: 0.3 to 10000 Y: 0.3 to 10000	Z: 0.3 to 12800 X: 0.3 to 10000 Y: 0.3 to 10000 Z: 0	: 0.3 to 12800 X: 0.3 to 10000 Y: 0.3 to 10000 Z: 0.3 to	12800 X: 0.3 to 10000 Y: 0.3 to 10000 Z: 0.3 to 12800	X: 1 to 11000 Y: 1 to 9000 Z: 1 to 18000	X: 0.3 to 5500 Y: 0.6 to 3000 Z: 0.6 to 3000	X: 0.3 to 5500 Y: 0.6 to 3000 Z: 0.6 to 3000	X: 0.3 to 4000 Y: 0.3 to 2000 Z: 0.3 to 2000
inequency nunge	Phase (±5°)	Hz >	K: 2 to 10000 Y: 2 to 10000 Z:	Z: 2 to 12800 X: 2 to 10000 Y: 2 to 10000	Z: 2 to 12800 X: 2 to 10000 Y: 2 to 10000	Z: 2 to 12800 X: 2 to 10000 Y: 2 to 10000 Z:	Z: 2 to 12800 X: 2 to 10000 Y: 2 to 10000 Z: 2 to 1	2800 X: 2 to 10000 Y: 2 to 10000 Z: 2 to 12800	X: 4 to 2500 Y: 4 to 2500 Z: 4 to 2500	X: 3 to 3000 Y: 3 to 3000 Z: 3 to 3000	X: 3 to 3000 Y: 3 to 3000 Z: 3 to 3000	X: 2 to 2500 Y: 2 to 2500 Z: 2 to 2500
Mounted Resonance Frequ	Juency	kHz	X: 30 Y: 30	Z: 42 X: 30 Y: 30	Z: 42 X: 30 Y: 30	Z: 42 X: 30 Y: 30	Z:42 X: 30 Y: 30 Z: 4	2 X: 30 Y: 30 Z: 42	X: 26 Y: 23 Z: 44	X: 18 Y: 9.5 Z: 9.5	X: 18 Y: 9.5 Z: 9.5	X: 14 Y: 7 Z: 7
Max. Transverse Sensitivity	ty (at 30 Hz, 100 ms ⁻²)	%	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Transverse Resonance Free	equency	kHz										
Measuring range (± peak)		kms ⁻²	7000	700	7000	700	7000	700	5000	700	700	140
		g	714	71	714	71	714	71	500	70	70	14
TEDS			Yes	Yes	No	No	Yes	Yes	No	No	Yes	Yes
ELECTRICAL		1										
Bias Voltage	at 25 °C and 4 mA	v	13 ±1	13 ±1	12 ±1	12 ±1	13±1	13 ±1	12 ±0.5			
J	at full temp. and curr. range		11 to 14	11 to 14	8.5 to 14	8.5 to 14	12 to 14	12 to 14	8 to 15	12 ±1	13 ±1	13±1
Power Supply	Constant current	mA	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 20	2 to 10	2 to 10	2 to 10	2 to 10
	Unloaded supply voltage	V	20 to 30	20 to 30	20 to 30	20 to 30	22 to 30	22 to 30	+24 to +30	+24 to +30	+24 to +30	+24 to +30
Output Impedance		Ω	50	50	30	30	50	50	<100	< 2	<30	<30
Start-up time (to final bias		S	< 10	<10	<10	<10	<10	<10	<2	<10	<10	<10
	RMS broadband noise in the	μV	9.0	60	9.0	60	9	60	<40	X: <40 Y: <20 Z: <20	X: <40 Y: <20 Z: <20	X: <60 Y: <30 Z: <30
specified frequency range)		μg	900	600	900	600	900	600	<4000	X: <400 Y: <200 Z: <200	X:<400	X: <120 Y: <60 Z: <60
	10 Hz	mms ⁻² /√Hz	0.30 (30)	0.2 (20)	0.30 (30)	0.2 (20)	0.30 (30)	0.2 (20)	2.1 (210)	X: 0.2 (20) Y: 0.1 (10) Z: 0.1 (10)	X: 0.2 (20) Y: 0.1 (10) Z: 0.1 (10)	X: 0.1 (10) Y: 0.06 (6) Z: 0.06 (6)
Noise (spectral)	100 Hz	(µg/√Hz)	0.06 (6)	0.04 (4)	0.06 (6)	0.04 (4)	0.06 (6)	0.04 (4)	0.75 (75)	X: 0.04 (4) Y: 0.02 (2) Z: 0.02 (2)	X: 0.04 (4) Y: 0.02 (2) Z: 0.02 (2)	X: 0.04 (4) Y: 0.02 (2) Z: 0.02 (2)
la sulation Desistances (had	1000 Hz		0.04 (4)	0.02 (2)	0.04 (4)	0.02 (2)	0.04 (4)	0.02 (2)	0.28 (28)	X: 0.02 (2) Y: 0.01 (1) Z: 0.01 (1)	X: 0.02 (2) Y: 0.01 (1) Z: 0.01 (1)	0.018 (1.8) Y: 0.008 (0.8) Z: 0.008 (0.8)
Insulation Resistance (bod		MΩ GΩ	Signal ground is connected to a				Signal ground is connected to case	Signal ground is connected to eace	>10	>1	>1	>1
Insulation Resistance (sign ENVIRONMENTAL	nai ground to case)	602	Signal ground is connected to c				Signal ground is connected to case	Signal ground is connected to case		71	>1	71
ENVIRONMENTAL		°C	-60 to +165	-60 to +165	-60 to +180	-60 to +180	-60 to +125	-60 to +125	-50 to +125	-54 to +100	-54 to +100	-54 to +100
Operating Temperature Ra	ange	°F	-76 to +329	-76 to +329	-76 to +356	-76 to +356	-76 to +257	-76 to +257	-58 to +257	-65 to +212	-65 to +212	-65 to +212
Temperature Coefficient of	of Sensitivity	%/°C	0.12	0.1	0.12	0.1	0.12	0.1	X: 0.1 Y: 0.1 Z: 0.08	X: 0.05 Y: 0.1 Z: 0.1	X: 0.05 Y: 0.1 Z: 0.1	X: 0.15 Y: 0.12 Z: 0.12
Temperature Transient Sen	-	ms ⁻² /°C	0.02	0.02	0.02	0.02	0.02	0.02	0.5	3	3	5
(3 Hz Lower Limiting Freq.		g/°F	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0275	0.165	0.165	0.275
		ms ⁻² /T	15	8	15	8	15	8	10	6	6	6
Magnetic Sensitivity (50 Hz	Hz, 0.038 T)	g/kG	0.15	0.08	0.15	0.08	0.15	0.08	0.1	0.06	0.06	0.06
		ms ⁻² /με	0.1	0.1	0.1	0.1	0.1	0.1	0.001 ⁺	0.03*	0.03 [‡]	0.02 [‡]
Base Strain Sensitivity (at 2	: 250 $\mu\epsilon$ in base plane)	g/µε	0.01	0.01	0.01	0.01	0.01	0.01	0.0001 ⁺	0.003*	0.003*	0.002
		kms ⁻²	50	50	50	50	50	50	30	50	50	20
Max. Non-destructive Shoo	ock (peak)	κiiis σ	5100	5100	5100	5100	5100	5100	3000	5000	5000	2000
MECHANICAL		5	5100	5100		5100		5100	5000		5000	2000
Case Material			Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Anodized Aluminium	Titanium ASTM Grade 2	Titanium ASTM Grade 2	Titanium ASTM Grade 2
Piezoelectric Sensing Elem	nent		PZ 23	PZ 23	PZ 23	PZ 23	PZ 23	PZ 23	PZ 23	PZ 23	PZ 23	PZ 27
Construction			Shear	Shear	Shear	Shear	Shear	Shear	ThetaShear™	OrthoShear™	OrthoShear™	OrthoShear™
Sealing			Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Welded	Welded	Welded	Welded
Electrical Connector			4-pin, 1/4"–28 UNF	4-pin, 1/4″–28 UNF		4-pin, 1/4″–28 UNF	4-pin, 1/4″–28 UNF	4-pin, 1/4″–28 UNF	3 × 10–32 UNF -2A		Microtech-compatible, 4-pin, 1/4"–28 UNF (titanium)	
Mounting			M3 threaded hole or Adhesiv					M3 threaded hole or Adhesive	Mounting clip, adhesive, M2 screws or M3 stud	1×1.6 mm slots for clip mounting on five sides		1 × 1.6 mm slots for clip mounting on five sides
* ****												,

* All three axes must be powered. Single or dual-axis supply is not available
 † Mounted in mounting clip
 ‡ Mounted in mounting clip or on adhesive tape 0.09 mm thick

Structural, Modal, Human Body Vibration and Industrial Triaxial CCLD Accelerometers

									Structural and Mod	lal													Human Bo	dy Vibration				Industrial
Type No.		4520		4520-002	<u>!</u>	45	20-001	4520-004		4524 [*]			4524-B [*]			4524-B-001 [*]			4524-B-004 [*]			4515-B			4515-B-002 [*]			8345
GENERAL													-															
Weight (excluding cable, wherever applicable)	gram oz	2.9 0.1		3.6 0.127			4 0.14	4 0.14		4.4 0.15			4.4 0.15			4.4 0.15			4.4 0.15			345 12.2			345 12.2			40 1.41
Voltage Sensitivity at 159.2 Hz and 4 mA supply current)	mV/ms ⁻² mV/g	1.02		1.02			1.02	0.1		10			10			1			5			10			10			10
Amplitude (±10%)	Hz	X: 2 to 7000 Y: 2 to 7000	Z: 2 to 7000	X: 2 to 4000 Y: 2 to 400	0 Z: 2 to 7000	X: 2 to 4000 Y: 2	to 4000 Z: 2 to 7000	X: 2 to 4000 Y: 2 to 4000 Z:		5500 Y: 0.25 to 30						Y: 0.25 to 3000 Z: 0			Y: 0.25 to 3000 Z: 0			Y: 0.25 to 900		X: 0.25 to 900	Y: 0.25 to 900	Z: 0.25 to 900	X: 2 to 2000	Y: 2 to 2000 Z: 2 to 2000
Phase (±5°) Mounted Resonance Frequency	Hz kHz	X: 40 Y: 30	Z: 30	X: 20 Y: 25	Z: 30	X: 20	Y: 25 Z: 30	X: 20 Y: 25	Z: 30 X:1.5 to	b 3000 Y: 1.5 to 300 1.8 Y: 9	2: 1.5 to 3000 Z: 9	X: 1.5 to 3000 X:18	Y: 1.5 to 3000 Y: 9	Z: 1.5 to 3000 Z: 9	X: 1.5 to 3000 X:18	Y: 1.5 to 3000 Z: Y: 9	2: 9	X: 1.5 to 3000 X:18	Y: 1.5 to 3000 Z: Y: 9	1.5 to 3000 Z: 9	X: 1.5 to 3000 X: 18	Y: 1.5 to 3000 Y: 9	Z: 1.5 to 3000 Z: 8.9	X: 1.5 to 3000 X: 18	Y: 1.5 to 3000 Y: 9	Z: 1.5 to 3000 Z: 8.9 [†]	X: 2 to 2000 X: >18	Y: 2 to 2000 Z: 2 to 2000 Y: >18 Z: >18
Max. Transverse Sensitivity (at 30 Hz, 100 ms ⁻²)	%	<5		<5			<5	< 5		<5			<5			<5			<5			<5			<5			<5
Fransverse Resonance Frequency	kHz								X: 9	9 Y: 9	Z: 9	X: 9	Y: 9	Z: 9	X: 9	Y: 9	Z: 9	X: 9	Y: 9	Z: 9	X: 9	Y: 9	Z: 9	X: 9	Y: 9	Z: 9 [†]	X:>20	Y: >20 Z: >20
Measuring range (± peak)	kms ⁻²	4.9 500		4.9 500			4.9 500	49 5000		0.5 50			0.5 50			5 500			1 100			5 500			5 500			500 51
TEDS		No		No			No	No		No			Yes			Yes			Yes			Yes			Yes			No
ELECTRICAL				· · · · · · · · · · · · · · · · · · ·																							·	
at 25 °C and 4 mA at full temp. and curr. r	V	8.5 to 11.5 8 to 16		8.5 to 11. 8 to 16			to 11.5 to 16	8.5 to 11.5 8 to 16		12±1			13±1			13 ±1			13 ±1			13 ±1			13 ±1			12 ±1
Constant current	mA	2 to 10		2 to 10			to 10	2 to 10		2 to 10			2 to 10			2 to 10			2 to 10			2 to 10			2 to 10			2 to 10
Power Supply Unloaded supply volta		24 to 30		24 to 30			to 30	24 to 30		24 to 30			24 to 30			24 to 30			24 to 3			24 to 30			24 to 30			23 to 32
Output Impedance	Ω	<80		<100			<100	<100		<2			<30			<30			30			<30			<30			<2
Start-up time (to final bias \pm 10%)	S	<1		<1			<1	<1		<10			<10			<10			<10			<10			<10			<10
Residual Noise (inherent RMS broadband noise in t	ne ^{μV}	<70		<70			<70	<56	X: <-	40 Y: <20	Z: <20	X: <40	Y: <20	Z: <20	X: 50	Y: 40	Z: 40	X: 40	Y: 30	Z: 30	X: <40	Y: <20	Z: <20	X: <40	Y: <20	Z: <20	X:<100	Y: <100 Z: <100
specified frequency range)	μg	< 7000		<7000		<	7000	< 56 000	X: <4		Z: <200	X: <400	Y:<200	Z: <200	X: 500		Z: 400	X: 800	Y: 600	Z: 600	X: <400	Y: <200	Z: <200	X: <400	Y: <200	Z: <200	X: <1000	Y: <1000 Z: <1000
10 Hz	mms ⁻² /√Hz							30 (3)	X: 0.16		. ,	X: 0.16 (16)	Y: 0.08 (8)	Z: 0.08 (8)	X: 0.2 (20)	. ,	: 0.16 (16)	X: 0.1 (10)		2: 0.07 (7)	X: 0.16 (16)	Y: 0.08 (8)	Z: 0.08 (8)	X: 0.16 (16)	Y: 0.08 (8)	Z: 0.08 (8)	X: 0.16 (16)	Y: 0.16 (16) Z: 0.16 (16)
Noise (spectral) 100 Hz	(μg/√Hz)							10 (1)	X: 0.04			X: 0.04 (4)	Y: 0.02 (2)	Z: 0.02 (2)	X: 0.05 (5)		Z: 0.04 (4)	X: 0.04 (4)		2: 0.02 (2)	X: 0.04 (4)	Y: 0.02 (2)	Z: 0.02 (2)	X: 0.04 (4)	Y: 0.02 (2)	Z: 0.02 (2)	X: 0.04 (4)	Y: 0.04 (4) Z: 0.04 (4)
1000 Hz	MΩ							6 (0.6)	X: 0.02	2 (2) Y: 0.01 (1)	Z: 0.01 (1)	X: 0.02 (2)	Y: 0.01 (1)	Z: 0.01 (1)	X: 0.025 (2.5)	Y: 0.02 (2)	Z: 0.02 (2)	X: 0.02 (2)	Y: 0.01 (1) 2	2: 0.01 (1)	X: 0.02 (2)	Y: 0.01 (1)	Z: 0.01 (1)	X: 0.02 (2)	Y: 0.01 (1)	Z: 0.01 (1)	X: 0.02 (2)	Y: 0.02 (2) Z: 0.02 (2)
Insulation Resistance (body to mounting surface) Insulation Resistance (signal ground to case)	GΩ	Case grounded		Case ground	led	Case	grounded	Case grounded	>1 (Sigr	nal ground is isolated	from the housing)	>1 (Signal grou	und is isolated fr	om the housing)	>1 (Signal grou	ind is isolated from th	he housing)	>1 (Signal grou	und is isolated from th	housing)		>1			>1			>0.1
ENVIRONMENTAL	012	case grounded		Case ground	lea	Case	grounded	Case grounded	>1 (Sigi	nar ground is isolated	from the housing)		unu is isolateu in	on the nousing)	>1 (Signal gloc		le nousing)	>1 (Signal glot		le nousing)		>1			~1			>0.1
	°C	-51 to +121		-51 to +12	1	-51	to +121	-51 to +121		-54 to +10)		-54 to +100			-54 to +100			-54 to +100		-10 to +70	(short periods: –	60 to +100)	-10 to +70	(short periods: –	60 to +100)		-54 to +125
Operating Temperature Range	°F	-60 to +250		-60 to +25			to +250	-60 to +250		-65 to +21			-65 to +212			-65 to +212			-65 to +212			(short periods: –			s (short periods: –			-65 to +257
Temperature Coefficient of Sensitivity	%/°C	0.05		0.05			0.05	0.05		0.14			0.14			0.08			0.14			0.14	,		0.14	,		0.09
Temperature Transient Sensitivity	ms ^{−2} /°C	0.09		0.09			0.09	3.6		0.002			0.002			0.05			0.002			0.002			0.002			1
(3 Hz Lower Limiting Freq. (–3 dB, 6 dB/octave)	g∕°F	0.00495		0.00495		0.	00495	0.36		0.00011			0.00011			0.00275			0.00011			0.00011			0.00011			0.055
Magnotic Sonsitivity (EQ LI- 2 020 T)	ms ⁻² /T	40		40			40	40		20			20			20			20			20			20			20
Magnetic Sensitivity (50 Hz, 0.038 T)	g/kG	0.4		0.4			0.4	0.4		0.2			0.2			0.2			0.2			0.2			0.2			0.2
Para Strain Constituity (at 250 up in hose place)	ms ⁻² /με	0.3		0.15			0.15	0.15		0.0005 [‡]			0.0005 [‡]			0.0005 [‡]			0.0005 [‡]			0.0005 [‡]			0.0005 [‡]			0.01
Base Strain Sensitivity (at 250 $\mu\epsilon$ in base plane)	g/με	0.03		0.015		0	0.015	0.015		0.00005 [‡]			0.00005 [‡]			0.00005 [‡]			0.00005 [‡]			0.00005^{\ddagger}			0.00005^{\ddagger}			0.001
Max. Non-destructive Shock (peak)	kms ⁻²	49		49			49	49		50			50			50			50			50			50			50
	g	5000		5000			5000	5000		5000			5000			5000			5000			5000			5000			5100
MECHANICAL										.	1.0																	
Case Material		Titanium		Titanium			anium	Titanium		Titanium ASTM G	rade 2	Tit	anium ASTM Gra	de 2	Tita	anium ASTM Grade 2		Tita	anium ASTM Grade 2			esistant nitrile rul			esistant nitrile rul		Stain	less steel AISI 316-LS
Piezoelectric Sensing Element		Quartz Planar Shear		Quartz Planar She			luartz	Quartz Planar Shear		PZ 27 OrthoShear	м		PZ 27 OrthoShear™			PZ 23 OrthoShear™			PZ 27 OrthoShear™			(built-in acceleror ar™ (built-in accel			(built-in acceleror ar™ (built-in accel			PZ 23 Shear
Construction Sealing		Planar Shear Hermetic		Hermetic			ar Shear rmetic	Hermetic		Hermetic			Hermetic			Hermetic			Hermetic			ic (built-in acceler			ic (built-in acceler			Hermetic
Electrical Connector		4-pin, 1/4"-28 UNF		4-pin, 1/4"–28			/4″–28 UNF	4-pin, 1/4"–28 UNF		4-pin, 1/4"-28			4-pin, 1/4"–28 U	NF	л	Hermetic I-pin, 1/4"-28 UNF		1	1-pin, 1/4"-28 UNF			3 × 10-32 UNF -2/		nerifiet	4-pin LEMO	oneter)	A_pir	n Glenair [®] 800 series
Mounting		Adhesive		Adhesive or Clip r			hole or Adhesive	M3 threaded hole or Adhesiv	ive	Clip or Adhes			Clip or Adhesive			Clip or Adhesive			Clip or Adhesive			oped, pressed or g		Stra	oped, pressed or g	glued		4 in isosceles triangle
		1							-		-			-								, , , , , , , , , , , , , , , , , , ,	,			, . 		

* All three axes must be powered. Single or dual-axis supply is not available.

† Built-in accelerometer

‡ Mounted in mounting clip or on adhesive tape 0.09 mm thick

162

www.bksv.com/<mark>transducers</mark>

PIEZORESISTIVE ACCELEROMETER COMPARISON TABLE

Brüel & Kjær's piezoresistive accelerometers, DC Response Accelerometers Type 4570 – 4575 are designed to measure low-frequency vibration down to DC. The gas-damped sensing element offers a wide dynamic range and very stable frequency response even after subjection to high shock levels. The accelerometer has built-in conditioning, where the sensing element and electronics are shielded, sealed and insulated from the housing.

This table lists key specifications for these accelerometers, including the D versions, enabling you to get a quick overview for easier comparison and selection.

Pull out for **COMPARISON TABLE** >> >>

Uniaxial Piezoresistive Accelerometers

Type No.			4570	4570-D	4571	4571-D	4572	4572-D	4573	4573-D	4574	4574-D	4575	4575-D
GENERAL														
		gram	8	8	8	8	8	8	8	8	8	8	8	8
Weight (excluding cable, wherever	applicable)	OZ	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29
Voltage Sensitivity (at 159.2 Hz and	d 4 mA supply surront)	mV/ms ⁻²	0.4	0.4	1	1	2	2	6.7	6.7	20	20	100	100
voltage sensitivity (at 155.2 Hz and	a 4 mA supply current)	mV/g	4	4	10	10	20	20	67	67	200	200	1000	1000
Frequency Range: Amplitude (±10	% limit)	Hz	0 to 1850	0 to 1850	0 to 1850	0 to 1850	0 to 1850	0 to 1850	0 to 850	0 to 850	0 to 500	0 to 500	0 to 300	0 to 300
Frequency Range: Phase (±5° limit))	Hz	0 to 160	0 to 160	0 to 160	0 to 160	0 to 160	0 to 160	0 to 75	0 to 75	0 to 45	0 to 45	0 to 25	0 to 25
Max. Transverse Sensitivity (at 30 l	Hz, 100 ms ⁻²)	%	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Max. Zero Acceleration Output (rel	lative to V _{ref})	mV	<50	<50	<50	<50	< 50	<50	<50	<50	<50	<50	<50	< 50
Measuring range (± peak)		ms ⁻²	5000	5000	2000	2000	1000	1000	300	300	100	100	20	20
		g	500	500	200	200	100	100	30	30	10	10	2	2
ELECTRICAL														
V _{ref} at full temperature and curren	t range	V	2.5 ± 0.005	2.5 ±0.005	2.5 ± 0.005	2.5 ± 0.005	2.5 ± 0.005	2.5 ± 0.005	2.5 ± 0.005	2.5 ± 0.005	2.5 ± 0.005	2.5 ± 0.005	2.5 ± 0.005	2.5 ± 0.005
Deven Comple	Current consumption	mA	<5	< 5	<5	<5	<5	<5	<5	<5	< 5	<5	<5	<5
Power Supply	Unloaded supply voltage	V	8 to 24	8 to 24	8 to 24	8 to 24	8 to 24	8 to 24	8 to 24	8 to 24	8 to 24	8 to 24	8 to 24	8 to 24
Output Impedance	voltage	Ω	<100	<100	<100	<100	<100	<100	<100	< 100	<100	<100	<100	<100
Start-up time (to final bias ±10%)		s	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Residual Noise (inherent RMS broa	adband noise in the	μV	<600	<600	<650	<650	<450	<450	<700	<700	<350	<350	<500	<500
specified $\pm 10\%$ frequency range)		mg	<150	<150	<65	<65	<22.5	<22.5	<10.45	<10.45	<1.75	<1.75	<0.5	< 0.5
	10 Hz	-2 /11-	35 (3.5)	35 (3.5)	15 (1.5)	15 (1.5)	5 (0.5)	5 (0.5)	3.5 (0.35)	3.5 (0.35)	0.750 (0.075)	0.750 (0.075)	0.300 (0.030)	0.300 (0.030)
Noise (spectral)	100 Hz	mms ⁻² /Hz (mg/Hz)	35 (3.5)	35 (3.5)	15 (1.5)	15 (1.5)	5 (0.5)	5 (0.5)	3.5 (0.35)	3.5 (0.35)	0.750 (0.075)	0.750 (0.075)	0.300 (0.030)	0.300 (0.030)
	1000 Hz		35 (3.5)	35 (3.5)	15 (1.5)	15 (1.5)	5 (0.5)	5 (0.5)	3.5 (0.35)	3.5 (0.35)	0.750 (0.075)	0.750 (0.075)	0.300 (0.030)	0.300 (0.030)
Insulation Resistance (body to mou	unting surface)	MΩ	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
ENVIRONMENTAL		°C	–55 to +121	-55 to +121	-55 to +121	-55 to +121	-55 to +121	-55 to +121	-55 to +121	-55 to +121	-55 to +121	-55 to +121	-55 to +121	-55 to +121
Operating Temperature Range		°F	-67 to +250	-67 to +250	-67 to +250	-67 to +250	-67 to +250	-67 to +250	-67 to +250	-67 to +250	-67 to +250	-67 to +250	-67 to +250	-67 to +250
	(-20 to +85 °C)		<40	0,10,100	<40	07 10 1200	<40	0.100.100	<40	0, 10, 100	<40	0, 10, 100	<40	07 10 1200
Zero Acceleration Shift	(-20 to +121 °C)	mV		<40		<40		<40		<40		<40		<40
Temperature Coefficient	(–20 to +85 °C)	ar 10	±2.1		±2.1		±2.1		±2.1		±2.1		±2.1	
of Sensitivity	(–20 to +121 °C)	% / °C		±3		±3		±3		±3		±3		±3
Temperature Transient Sensitivity		ms ^{−2} /°C	0.5	0.5	0.5	0.5	0.5	0.5	0.2	0.2	0.1	0.1	0.5	0.5
(3 Hz Lower Limiting Freq., 20 dB/o	decade)	g/°F	0.0275	0.0275	0.0275	0.0275	0.0275	0.0275	0.011	0.011	0.01	0.01	0.0275	0.0275
Magnetic Sensitivity (50 Hz, 0.038	т)	ms ⁻² /T	400	400	120	120	70	70	40	40	20	20	4	4
	-,	g/kG	40	40	1.2	1.2	0.7	0.7	0.4	0.4	0.2	0.2	0.04	0.04
Base Strain Sensitivity (in the base	plane at 250 με)	ms ⁻² /με	0.2	0.2	0.2	0.2	0.2	0.2	0.03	0.03	0.05	0.05	0.06	0.06
		g/με	0.02	0.02	0.02	0.02	0.02	0.02	0.003	0.003	0.005	0.005	0.006	0.006
Max. Non-destructive Shock (± pea	ak)	kms ⁻²	100	100	100	100	100	100	100	100	100	100	100	100
		g	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
MECHANICAL			Anodized Aluminium	Anodized Aluminium	Anodized Aluminium	Anodized Aluminium	Anodized Aluminium	Anodized Aluminium	Anodized Aluminium	Anodized Aluminium	Anodized Aluminium	Anodized Aluminium	Anodized Aluminium	Anodized Aluminiun
Case Material Sensing Element			Piezo resistors	Piezo resistors	Piezo resistors	Piezo resistors	Piezo resistors	Piezo resistors	Piezo resistors	Piezo resistors	Piezo resistors	Piezo resistors	Piezo resistors	Piezo resistors
-			4-arm wheatstone	4-arm wheatstone	4-arm wheatstone	4-arm wheatstone	4-arm wheatstone	4-arm wheatstone	4-arm wheatstone	4-arm wheatstone	4-arm wheatstone	4-arm wheatstone	4-arm wheatstone	4-arm wheatstone
Construction			bridge	bridge	bridge	bridge	bridge	bridge	bridge	bridge	bridge	bridge	bridge	bridge
Sealing								-	Hermetically sealed					
								Housing: E	poxy sealed					
								Integra	al cable					
Electrical Connector						3 options available	e: 457X terminating in a	•	al cable vith 7-pin LEMO connec	tor: 457X-002 with 9-pi	n sub-D connector)			

The accelerometers feature an internal temperature compensation (updated at intervals of 40 ms) that minimizes thermal zero shift and sensitivity shift over a wide temperature range. All types will operate from -55 to +121 °C. For standard versions, the thermal zero shift and thermal sensitivity shift are specified in the temperature range – 20 to +85 °C. For high thermal stability, the D-versions are compensated from –55 to +121 °C – see graph below.

D Types: Typical Temperature Response

164

www.bksv.com/<mark>transducers</mark>

INDEX

Numerics	2699
1056	2735
11-0684	2829
1702	2981
1704-A	2981-A
1704-C-102	2cc click-on coupler
1705	3451-A
1706	3506
1nF precision adaptor	3599
2231	360° mounting
2525	3624
2619	3625
2619	3626
	3627
2633	
2634	3628
2635	3629 119, 120, 131, 132
2639	3654
2645	4101-A
2647-A127	4128-C
2647-В127	4128-D
2647-C127	4130
2647-D	4133
2647-D-001127	4134
2647-D-002127	4135
2647-D-003127	4136
2647-D-004127	4137
2647-D-005127	4138 15, 22, 40, 144, 153
2647-Е127	4144
2660	4145
2660-W-00125, 36, 45	4147
2663	4152
2663-В126	4153
2669	4153-W-001
2669-001	4155
2669-C	4157
2669-W-001	4158-C
2670 19, 22, 31, 35, 36, 40, 41, 145	4160
2670-W-001	4165
2670-WB-1419	4166
2671	4176 15, 19, 48, 153
2671-W-001	4178
2673	4178
2683	4179
2690-A	4181
2691-A	4182 17, 28, 29, 45, 51
2692-A	4184
2692-C	4184-A
2693-A	4185
2694	4187
2694-A	4188 15, 19, 26, 40, 48, 144, 153
2695	418915, 16, 17, 18, 19, 26, 40, 41, 144, 153
2697	4190 15, 18, 20, 26, 41, 144, 153

4191		4505-A	73, 95, 155
-			
8			
			80, 109, 158
	102, 147, 135		
4505-001		4524-B-001	

4524-B-004		4942
		4943 15, 18, 21, 41, 145, 153
		4944 15, 22, 41, 153
		4944-A
		4944-W-005
		4944-W-009
		4940
		494715, 22, 30, 38, 135 4948
		4948
		4948-A
		4948-B
		4948-w-005
		4949-B
		4950 15, 20, 153
		4951
		4952 18, 26, 49, 50, 146
		4953
		4954 15, 19, 41, 146, 153
		4954-A
	79	4955 15, 16, 25, 41, 146
		4955-A
		4956 15, 22, 41, 146, 153
		4957 3, 15, 18, 24, 41, 50, 146
4535-B-001		4958 3, 15, 16, 18, 24, 41, 50, 146
		4959
4570-D		4961 16, 23, 39, 41, 50, 146
4571		4961-В23
4571-D		4964
4572		4965
4572-D		5308
4573		5309
4573-D		5310
4574		5311
4574-D		5935-L
4575		5958
4575-D		5958-A
457x series		5958-H
		5960
4606		596191
4808		599767
		5998
		8001
4824		8103
		8104
		8105
		8106
		8203
		8204
		8206
		8206-001
		8206-002
		8206-002
		8200-003
		8207
		8210
		0210

8230	87, 101
8230 - C-003	87
8230-001	87
8230-002	
8230-003	
8231-C	
8305	
8305-001	,
8309	
8315	, ,
8324-100	/
8324-G	,
8324-G-001	,
8324-G-001	-
8339	-
	-, -,
8339-001	-,
8340	
8341	
8344	81, 151, 159
8344-B-001	81, 159
8345	81, 111, 151, 161
8346-C	74, 151, 155
8347-C	71, 74, 150, 156
9640	54, 67, 131
9699	27, 131
9718	
9721	

A

Absorption
Absorption coefficient
AC-0066
AC- 0208 114
AC acceleration output 129
AC displacement output 129
AC velocity output 129
AC-0005
AC-0006 45, 46
AC-0034 32, 46
AC-0043
AC-0066107, 108, 115, 116
AC-0077 113, 117
AC-0079
AC-0080 115, 117
AC-0087 112, 117
AC-0101 32, 46
AC-0104106, 107, 108, 114, 115, 116
AC-0141 112
AC-0194 112, 117
AC-0195107, 109, 115
AC-0200106, 115, 116
AC-0201 112
AC-0202 113, 117
AC-0205108, 109, 114, 115, 116
AC-0208

AC-0219	43, 46
AC-0220110, 11	1, 115, 117
AC-0223110, 11	1, 115, 117
AC-0231	
AC-028943	, 44, 45, 46
AC-0294	109, 111
AC-0299	45, 46
AC-0306	113, 117
AC-3028	43, 46
Acceleration	137
Accelerometer accessories	92
Accelerometer cables	105
Accelerometer calibration	91, 119
Accelerometer dimensions	147
Accelerometer mass	
Accelerometer mounting	
Accelerometer specifications	
Accelerometers	
conditioners	
definition	
selecting	
standard cable length	
Accessories	
for accelerometers	07
for acoustic testing	
Accessory sets	
Accredited calibration	
Accustic coupler	
Acoustic touplet	
Acoustic test	
Active sound field	
Actuator Adaptor cable	
•	
Adaptor for ITE hearing aids	
Adaptor for SLM	
Adaptor for tripod	
Adaptor plate for headphones	
Adaptor ring for calibration	
Adaptor sleeve	
Adaptors	
flexible	
for calibration	
for clip mounting	
for microphones	
Adding gain	
Adhesive tape	
Adhesives	
Adjustable filters	
Adjustable input ranges	
AE-4003-D-020	
Aerospace testing	
Airbag microphone	
Airborne CCLD amplifiers	
Airborne charge amplifiers	126
Alarms	129

Ambient noise
Amplified piezoresistive accelerometers
Amplitude
Amplitude distribution
Analogue filtering
Analogue Intering
Anechoic test box
Angle pieces
AO-0027
AO-0028
AO-0038
AO-0122
AO-0122
AO-0250
AO-0230
AO-0283
AO-0339
AO-040617, 107
AO-040617, 107 AO-0414
AO-041943, 60
AO-0422
AO-0428
AO-0463
AO-0479
AO-0482
AO-0488
AO-0526
AO-0527
AO-0528
AO-0531
AO-0534
AO-0536
AO-0537
AO-0563
AO-0564
AO-0587
AO-0608
AO-0612
AO-0616
A0-0623
AO-0624
AO-0638
AO-0641
AO-0642
AO-0645
AO-0687
AO-0688
AO-0690
AO-0691
AO-0692
AO-0693
AO-0694
AO-0695108

AO-0698109
AO-069945, 108
AO-0700
AO-0701111
AO-0702111
AO-0703109
AO-0704107
AO-0714110
AO-0722
AO-0729113
AO-0730
AO-0740110
AO-0741
AO-0744
AO-0745
AO-0746
AO-0747
AO-0753
AO-0755
AO-0757
AO-0759
AO-1381
AO-1382
AO-1419
AO-1454
Applications7
APS-500
AQ-0015
AR-001445
Array microphones24
Artificial ears
Artificial mastoid
Artificial mastoid with calibrator59
Audibility threshold137
Audiometer testing
Automotive crash test accelerometers
Automotive testing
A-weighting filters
ÆX-9133

В

B types	157
Background noise	
Beeswax	101, 103
Bending radius	
Binaural microphone	
Bird spike	49
Blocks	95
Bone conduction threshold values	59
Brackets	95
Brüel & Kjær transducer history	5
B-weighting filters	129

```
Cable
```

length	47
limitations	
Cable accessories	
Cable adaptor	
Cable bending radius	
Cable connecting/removal tool	
Cable length	
Cable markers	
Cable mounting tool	
Cable splitter	111
Cables	
for accelerometers	105
for hydrophones	
for microphones	43
for triaxial accelerometers	110
for uniaxial accelerometers	106
hardline	113
how to use	105
industrial applications	112
insulation material	115
insulator	105
jacket	105
jacket material	115
maximum length	
raw	
sheathing material	115
standard length	
Calibration	
accelerometers	
accredited	
adaptors	
initial	
microphone	
reference equipment	
regular	
traceable	
Calibration accessories	
Calibration clip	
Calibration exciter	
Calibration fixture	
Calibration jig	
Calibration systems	
primary	-
secondary	
Calibrators	
CCLD	
CCLD accelerometers	
cables	
industrial	
maximum cable length	
triaxial	
uniaxial	
CCLD laser tacho probe CCLD preamplifiers	
CCLD preampliners	
	124, 123

Cement studs	97, 103
Certification	
ISO/IEC 17025	134
Channel control	128
Charge accelerometers	69, 155
industrial	156
maximum cable length	105
triaxial	75, 156
uniaxial	72, 155
Charge amplifier	137
Charge amplifiers	126, 127
Charge converter	137
Charge injection calibration	
Charge signal conditioners	
Charge to CCLD converters	
CIC	
CIC adaptor	
Classical preamplifier	
Click-on coupler	
Clip for holding coupler	
Clip for holding reference microphone	
Clip mounting	
Coaxial cable assemblies	
Coaxial connectors	
Cold temperatures	
Collar for acoustic coupler	
Comparison calibration system software	
Comparison tables	
CCLD accelerometers	157
charge accelerometers	
microphones	
•	
piezoresistive accelerometers Complex intensity	
Complex Intensity Compliance with standards	
Compliance with standards	
5	
Conditioning amplifiers	
Conditioning monitoring accelerometers	
Connectors	
Constant current line drive	
Contact-free target detection	
Controllable turntable	67
Converters	
charge to CCLD	
Converting acceleration	
Corrector	
for microphones	
Coupler adaptor ring	
Coupler hole ring	
Couplers	22, 56
click-on	58
selecting	
Cumulative distribution	
Current limitations	
Curved mounting surfaces	103
Customer care	133

	Dillus
C-weighting filters129	Dimer
	ac
D	m
DA-0150	Direct
Damping	Direct
	Direct
Danish Primary Laboratory of Acoustics	
DB-0111	Direct
DB-013856	Displa
DB-0264	Displa
DB-037548	Distor
DB-0544100	Double
DB-074256	DP-02
DB-084356	DP-02
DB-0900	DP-03
DB-091356	DP-03
DB-0962	DP-05
DB-1021	DP-07
DB-116060	DP-07
DB-1164	DP-07
DB-1425	DP-08
DB-1425	DP-09
	DP-09 DP-09
DB-2015	
DB-2902	DP-09
DB-3041	DPLA
DB-333965	DS-053
DB-334065	DS-054
DB-361150	DS-054
DB-380061	DS-08
DB-3800-W-00161	DS-093
DB-386658	DU-00
DB-3868	Dual p
DB-3869	Dumm
DB-3887	Dust p
DB-3989101	Dusty
DB-4009	DV-04
DB-4010	DV-04
DB-4121	D-wei
DB-4121	Dynan
	'
DB-4339	Dynan
DC response	Dynan
DC response accelerometers	Dynan
DC RMS ouput129	DZ-95
DC static centring unit90	DZ-97
DD-041350	DZ-97
Decibel scale138	
Dehumidifier50	E
DeltaTron69, 138	EA-ML
Depolarize70	Ear mo
Development and production2	Ear mo
Differential amplifier109	Ear mo
Differentiation	Ear plu
Diffraction	Ear sin
Diffuse field	execution execut
Diffuse sound	Earcar
Diriuse souriu	Laitd

Customization of transducers4

Diffuse-field microphones	21
Dimensions	
accelerometers	
microphones	
Direct mounting adaptor	96
Directivity calibration software	
Directivity factor	
Directivity measurement	
Displacement	
Displacement measurement	
Distortion limit	
Double integration filters	
DP-0276	
DP-0286	
DP-0368	
DP-0370	
DP-0530	
DP-0774	
DP-0775	
DP-0776	
DP-0888	
DP-0977	
DP-0978	
DP-0979	
DPLA	
DS-0535	
DS-0540	
DS-0541	
DS-0884	
DS-0934	
DU-0079	
Dual preamplifier	
Dummy accelerometers	
Dust protector	
Dusty areas74, 8	
DV-0459	
DV-0460	,
D-weighting filters	
Dynamic capability	
Dynamic pressure	
Dynamic range	
Dynamic range of microphones	
DZ-9566	
DZ-9769	
DZ-9770	

EA-MLA	
Ear mould holder	57
Ear mould simulator	57, 58, 64
Ear mounting tool	64
Ear plug simulator	58
Ear simulator	53, 55, 57, 60, 65
external	57
Earcap	56

Effects of temperature	17, 70
EL-2019	101
EL-2330	101
EL-4023	45
EL-4025	46
Electroacoustic standards	143
Electroacoustic testing	53
Electroacoustics	
typical system configurations	54
Electronic filters	103
Electrostatic actuators	39
adaptors	39
EN 9100 certified	2
Engineering test services	133
ETFE cables	115, 117
EU-4000	48
Excitation	138
Exciters	
calibration	121
hand-held	
vibration	
Explosive areas	74, 81, 112
Extension cables	43
Extension rods	48
External ear simulator	57

F

Falcon Range	18, 35
Far field	138
FEP cables	46, 115
Ferromagnetic surfaces	103
Fibre adaptor	86
Filters	
electronic	103
mechanical	
Flexible adaptors	48
Flexible cables	115
Flush mounting kit	17
Force transducers	87, 88
Forced vibration	138
Free field	15, 23, 138
Free-field microphones	19
Frequency range	72
lower limiting of accelerometers	
upper limiting of accelerometers	
Frequency response	138
Frequency response function	138
Front-end support	
Full scale	70

G

g, definition of	139
General purpose accelerometers	155, 156, 158, 160
General purpose microphones	153
Global field service	

gn	139
Ground loop	139
cause	103
Grounding terminal	51
Guard ring adaptor	56

н

Hand adaptor	96
Hand-arm transducer set	96
Hand-arm vibration	95
Hand-held analyzer	, 112, 123, 124
Hand-held calibration exciter	120
Hand-held exciter	91
Hand-held probe	104
Handle adaptor	96
Handset alignment rods	65
Handset gauge	65
Handset positioner	64
Hardline cables	113, 117
Hardware maintenance	135
Harmonics	139
Harsh environments	106, 112, 113
HATS	28, 54, 55, 63
HDPE cables	
Head and torso simulators	
Headphone testing	55
Headset testing	55
Hearing aid testing	
Hearing loss	139
Hertz	
Hexagonal key	
High humidity measurements	
High shock transducer calibration software	
High sound pressure level microphones	
High temperatures	
High vacuum environments	
High wind speeds	49
High-frequency accelerometers	155, 158
High-frequency microphones	153
High-intensity testing	
High-leak pinna simulator	
High-pass filter	
High-sensitivity accelerometers	
High-shock transducer calibration	
High-static pressure microphone	31
High-temperature accelerometers	
High-temperature clips	
High-temperature measurements	
High-temperature mounting block	
Hopkinson bar	
Human body measurements	
Human body vibration accelerometers	
Human vibration	
Human vibration analyzer96	
Hydrophone calibration system	
, ,	

Hydrophone calibrator	7
Hydrophones	6
cables and connectors33	
Hz, definition of139	9

I

1	
IEPE	139
IEPE accelerometers	69
ILAC-MRA	134
Imaginary intensity	139
Impact caps	
Impact hammers	
Impact test	139
Impact tips	
Impedance	
Impedance heads	
Impedance tube microphone	28
Industrial accelerometers	
CCLD	81, 159, 161
charge	74, 156
Industrial applications	
Infrasound	
Inherent noise	
Initial calibration	
Input module	15
Insert voltage calibration	
Insulated mounting	
Insulated mounting pads	
Insulated studs	97, 103
Insulator	,
Integration	139
Intensity	139
Intensity conditioner	
ISO 9001 certified	
Isolation	139
IVC	42

J

Jacket	105, 115
Jacket material	115
JJ-0032	51, 114
JJ-0081	48
JJ-0152	114
JJ-0175	114
JJ-0207	114
JP-0012	114
JP-0028	51, 114
JP-0035	47
JP-0056	114
JP-0101	47
JP-0144	51, 114
JP-0145	
JP-0162	114
JP-0169	
JP-0192	114

JP-019611	.4
Junction unit5	51

L

L	
Laboratory standard microphones	27
LAN-XI support	
Laser tacho probe	
Laser-interferometric calibration system	131
LDPE cables	115
Leakage error	139
LEMO connector	47
Level indicator	59
Level quantity	140
Limitations to cable length	47
Linear system	140
Lip ring	62
LIR	141
LKO	140
LN cables	105
Loading test object	
Local dynamic mass	
Loudness	140
Loudspeaker testing	
Low noise cables105, 11	1, 115, 117
Low noise microphones	25
Low outgassing	115
Low sound pressure level microphones	153
Low temperatures	
Lower limiting frequency range	70
Low-frequency microphones	153
Low-leak pinna simulator	60
Low-pass filter	140

М

Machine health monitoring	
Magnetic fields	16
Magnetic transducer	86
Magnets	97
Main sensitivity axis	
Masking	140
Mastoids	56 <i>,</i> 59
Maximum cable length	
Maximum charge input	126
Maximum limits for microphones	16
Maximum SPL	16
Maximum transverse sensitivity	104
Measuring amplifier	124, 126
Measuring direction	
Measuring range	72
Mechanical filters	
Mechanical impedance	139
Mechanical impedance measurements	91
Mechanical mobility	140
MEMS	69
Microdot connector	47

Microphone accessories 48
Microphone adaptor
Microphone calibration
Microphone calibration system 132
Microphone cartridge 16
Microphone comparisons 153
Microphone conditioner 123
Microphone conditioners 124
Microphone dimensions 144
Microphone history5
Microphone holder 50
Microphone holder for tripod
Microphone matrix
Microphone pairs
Microphone preamplifiers
Microphone reciprocity calibration system
Microphone stand
Microphone standards
Microphone testing
Microphone verification
Microphones
selecting
Miniature accelerometers
Miniature transducers
MM-0002
MM-0002
Mobility
Mobility measurements
Modal accelerometers
Modal analysis
Modal exciters
Modal testing
Monitoring applications
Mounted resonance frequency
Mounting 103
considerations103
method 103
position 104
surfaces103
Mounting blocks
for human vibration96
high-temperature95
triaxial
triaxial
Mounting brackets95
Mounting brackets
Mounting brackets95for human vibration96Mounting bushing for mouth simulator65Mounting clips92, 93, 103
Mounting brackets95for human vibration96Mounting bushing for mouth simulator65
Mounting brackets95for human vibration96Mounting bushing for mouth simulator65Mounting clips92, 93, 103Mounting pads103Mouth simulators54, 60, 62
Mounting brackets95for human vibration96Mounting bushing for mouth simulator65Mounting clips92, 93, 103Mounting pads103Mouth simulators54, 60, 62Multi-channel tests128
Mounting brackets95for human vibration96Mounting bushing for mouth simulator65Mounting clips92, 93, 103Mounting pads103Mouth simulators54, 60, 62Multi-channel tests128Multi-field microphones23
Mounting brackets95for human vibration96Mounting bushing for mouth simulator65Mounting clips92, 93, 103Mounting pads103Mouth simulators54, 60, 62Multi-channel tests128Multi-field microphones23Multifunction acoustic calibrator37
Mounting brackets95for human vibration96Mounting bushing for mouth simulator65Mounting clips92, 93, 103Mounting pads103Mouth simulators54, 60, 62Multi-channel tests128Multi-field microphones23

Ν

140
140
23, 124, 127
43
140
140
86
49
140
140
100

0

Operating temperature range	72
Optimized microphone	16
Optional fibre	86
Ordering	
accessories	
transducers	4
O-rings	101
Outdoor microphone kit	26, 50
Outdoor microphones	26
Outdoor protection for microphones	50

Ρ

Pa, definition of	140
Particle velocity	140
Pascal	140
PE accelerometers	69
industrial	156, 159
triaxial	75, 156
uniaxial	72, 155, 157
PE cables	115
Peak	140
Peak output	129
Peak-to-peak value	140
Permanent installations	109
Permanent magnet	103
Permanent magnet exciters	
Permanent monitoring	111
Permanent vibration monitoring	
PFA cables17, 46,	105, 115, 117
Phase	140
Phase mismatch	140
Phase response comparison calibration	132
Phon	140
Photocell tripod	50
Piezoelectric accelerometers	69
industrial	156, 159
triaxial	75, 156
uniaxial	72, 155, 157
Piezoelectric force transducers	
Piezoelectric material	70
Piezoresistive accelerometers	69, 163

amplified84
Pink noise
Pinna
Pinna simulator
Pistonphone
Plastic microphone dummy
Plastic tip
Point mechanical mobilities
Polarization15
Polarization control128
Polychloroprene cables46
Polymers
POP shock calibrator132
Power amplifier54, 68, 91
Power spectrum level140
PR accelerometers69, 163
amplified84
Preamplifier cables43
Preamplifier holders
Preamplifier mounting tool64
Preamplifiers
Pre-loading nut
Pressure field15
Pressure residual intensity index140
Pressure sensors
Pressure-field microphones
Primary calibration
Primary calibration systems
Primary laser calibration
Probe microphone
Probes
Product care
Protection bracket for external microphone preamplifier66
PTFE cables
PULSE audio analyzer
PULSE electroacoustics
PULSE multi-analyzer
PULSE platform29, 35, 42, 45, 47, 51, 54, 111, 119, 120
PULSE support
PUR cables
Push/pull stingers
PVC cables
PZ2370

Q

QA testing microphones	153
QA-0013	84, 88
QA-0029	101
QA-0035	114
QA-0038	101
QA-0041	
QA-0042	
QA-0068	101
QA-0121	101
QA-0141	101

QA-0167	64
QA-0186	
QA-0220	
QA-0223	64
QA-0230	
QH-0006	59
QS-0003	
QS-0007	
QS-0056	
Qualification of anechoic chambers	

R

S

S types	
Sabin	141
Screws	

Secondary calibration		Spa
Seismic		Spe
Self-adhesive disc		Spe
Semi-anechoic field		Spe
Sensitivity		Spi
Service		Spi
engineering test		Spi
repair		Sta
Service agreements		Sta
Severe vibrational inputs		
Sheathing material		
Shielding		
Shock		
Shock accelerometers		
Shock and vibration transducer system		
Shock exciters		
Shock transducer calibration software	132	
Signal conditioners		
CCLD		
charge		
Signal conditioning		
benefits	128	
Silicone cables	17, 46	
Simulators	60	
ear	56, 57	
head and torso	63	
mouth	62	
mouth Single integration filters		
	129	
Single integration filters	129 133	
Single integration filters Single point of contact		
Single integration filters Single point of contact Slide rule		
Single integration filters Single point of contact Slide rule		
Single integration filters Single point of contact Slide rule SLM		
Single integration filters Single point of contact Slide rule		
Single integration filters Single point of contact Slide rule		
Single integration filters Single point of contact Slide rule	129 133 59 , 45, 50, 56, 141 	
Single integration filters	129 133 59 , 45, 50, 56, 141 	
Single integration filters	129 133 59 , 45, 50, 56, 141 	
Single integration filters	129 133 59 , 45, 50, 56, 141 	
Single integration filters	129 133 59 , 45, 50, 56, 141 	
Single integration filters	129 133 59 , 45, 50, 56, 141 105 62 60 141 37 16 24, 30, 141 38 38 153 29	
Single integration filters	129 133 59 , 45, 50, 56, 141 105 62 60 141 37 16 24, 30, 141 38 38 38 	
Single integration filters	129 133 59 , 45, 50, 56, 141 105 	
Single integration filters	$\begin{array}{c} 129 \\ 133 \\ 59 \\ 45, 50, 56, 141 \\ 105 \\ 62 \\ 60 \\ 141 \\ 37 \\ 16 \\ 24, 30, 141 \\ 38 \\ 153 \\ 29 \\ 30 \\ 141 \\ 141 \\ 141 \end{array}$	
Single integration filters	$\begin{array}{c} 129 \\ 133 \\ 59 \\ 45, 50, 56, 141 \\ 105 \\ 62 \\ 60 \\ 141 \\ 37 \\ 16 \\ 24, 30, 141 \\ 38 \\ 153 \\ 29 \\ 30 \\ 141 \\ 141 \\ 141 \\ 153 \end{array}$	
Single integration filters	$\begin{array}{c} 129 \\ 133 \\ 59 \\ 45, 50, 56, 141 \\ 105 \\ 62 \\ 60 \\ 141 \\ 37 \\ 16 \\ 24, 30, 141 \\ 38 \\ 153 \\ 29 \\ 30 \\ 141 \\ 141 \\ 141 \\ 153 \\ 25, 43, 45, 50 \end{array}$	
Single integration filters	$\begin{array}{c} 129 \\ 133 \\ 59 \\ 45, 50, 56, 141 \\ 105 \\ 62 \\ 60 \\ 141 \\ 37 \\ 16 \\ 24, 30, 141 \\ 38 \\ 153 \\ 29 \\ 30 \\ 141 \\ 141 \\ 141 \\ 153 \\ 25, 43, 45, 50 \\ 141 \end{array}$	
Single integration filters	$\begin{array}{c} 129 \\ 133 \\ 59 \\ 45, 50, 56, 141 \\ 105 \\ 62 \\ 60 \\ 141 \\ 37 \\ 16 \\ 24, 30, 141 \\ 38 \\ 153 \\ 29 \\ 30 \\ 141 \\ 141 \\ 141 \\ 153 \\ 25, 43, 45, 50 \\ 141 \\ 141 \\ 141 \end{array}$	
Single integration filters	$\begin{array}{c} 129 \\ 133 \\ 59 \\ 45, 50, 56, 141 \\ 105 \\ 62 \\ 60 \\ 141 \\ 37 \\ 16 \\ 24, 30, 141 \\ 38 \\ 153 \\ 29 \\ 30 \\ 141 \\ 141 \\ 141 \\ 153 \\ 25, 43, 45, 50 \\ 141 \\ 141 \\ 25 \end{array}$	
Single integration filters	$\begin{array}{c} 129 \\ 133 \\ 59 \\ 45, 50, 56, 141 \\ 105 \\ 62 \\ 60 \\ 141 \\ 37 \\ 16 \\ 24, 30, 141 \\ 38 \\ 153 \\ 29 \\ 30 \\ 141 \\ 141 \\ 141 \\ 153 \\25, 43, 45, 50 \\ 141 \\ 141 \\141 \\141 \\141 \\$	
Single integration filters	$\begin{array}{c} 129 \\ 133 \\ 59 \\ 45, 50, 56, 141 \\ 105 \\ 62 \\ 60 \\ 141 \\ 37 \\ 61 \\ 24, 30, 141 \\ 38 \\ 153 \\ 29 \\ 30 \\ 141 \\ 141 \\ 141 \\ 153 \\ 25, 43, 45, 50 \\ 141 \\ 141 \\ 141 \\ 153 \\ 25 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \end{array}$	
Single integration filters	$\begin{array}{c} 129 \\ 133 \\ 59 \\ 45, 50, 56, 141 \\ 105 \\ 62 \\ 60 \\ 141 \\ 37 \\ 16 \\ 24, 30, 141 \\ 38 \\ 153 \\ 29 \\ 30 \\ 141 \\ 141 \\ 141 \\ 153 \\ 25, 43, 45, 50 \\ 141 \\ 141 \\ 141 \\ 153 \\ 25, 43, 45, 50 \\ 141 \\ 142 \\ 1$	
Single integration filters	$\begin{array}{c} 129 \\ 133 \\ 59 \\ 45, 50, 56, 141 \\ 105 \\ 62 \\ 60 \\ 141 \\ 37 \\ 61 \\ 24, 30, 141 \\ 38 \\ 153 \\ 29 \\ 30 \\ 141 \\ 141 \\ 141 \\ 153 \\ 25, 43, 45, 50 \\ 141 \\ 141 \\ 141 \\ 153 \\ 25, 43, 45, 50 \\ 141 \\ 142 \\ 1$	
Single integration filters	$\begin{array}{c} 129 \\ 133 \\ 59 \\ 45, 50, 56, 141 \\ 105 \\ 62 \\ 60 \\ 141 \\ 37 \\ 62 \\ 60 \\ 141 \\ 37 \\ 16 \\ 24, 30, 141 \\ 38 \\ 153 \\ 29 \\ 30 \\ 141 \\ 153 \\ 29 \\ 30 \\ 141 \\ 141 \\ 153 \\ 25, 43, 45, 50 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 142 \\ 142 \\ 142 \\ 142 \\ 141 \end{array}$	

Spanner
Special microphones28
Spectral leakage 139
Speed measurement86
Spiral cable 115
Spirit level94, 103
Spring balance59
Stainless steel plug 114
Standard
ANSI
ANSI S1.12 Type M19
ANSI S1.4 Type 1
ANSI S1.4 Type 2
ANSI S3.13 & S.3.26 (1987)59
ANSI S3.2563
ANSI \$3.3561
ANSI \$3.3663
ANSI \$3.7 (1995)
AS 9100 Rev. C
BS 4009
compliance
electroacoustic
EN 1032.200396
EN/IEC 6094237
EU Directive 2002/44/EC96
IEC 60318 – 156, 60
IEC 60318 – 461, 63
IEC 60318 – 4 (2010)60
IEC 60318 – 556
IEC 60318 – 5 (2006)58
IEC 60318 – 763
IEC 60373 (1990)59
IEC 60565
IEC 6104329
IEC 61043, 1993 Class 1
IEC 61043, Class 1
IEC 6109419
IEC 61094 – 1 (2000)
IEC 61094 – 1 (Laboratory Standards)
IEC 61094 – 2
IEC 61094 – 4 (1995)
IEC 61094 – 4 (Working Standards)
IEC 61094 – 5
IEC 61094 – 5
IEC 61672
IEC 61672 (2000)
IEC/EN 61400 – 11
IEEE 1451.4
IEEE 1451.4 V.1.0
IEEE 269
IEEE 488.1
IEEE 66162, 63
IEEE P1451.4 V.0.940 ISO 10816129

ISO 16063 – 11 (1999)	
ISO 16063 – 21 (2003)	
ISO 16063 – 22	132
ISO 16063–11, Method 3	
ISO 16063–21	,
ISO 17025	120
ISO 2631.1 (1997)	96
ISO 5347–3	
ISO 5349	
ISO 5349.2 (2001)	
. ,	
ISO 8041	
ISO 8041.2005	
ITU-T P.51	62
ITU-T P.58	65
ITU-T Rec. P.51	63
ITU-T Rec. P.57	
ITU-T Rec. P.57, Type 1	
· ••	
ITU-T Rec. P.57, Type 3.2	
ITU-T Rec. P.58	
ITU-T Rec. P.64	63
ITU-T Rec. P.76	65
microphone	
OREM A	
SAE J247 FEB87	
Standard cable lengths	
Standing wave	142
STC	142
Steel tip	
Stinger accessory kit	
Structural accelerometers	
Structural dynamic testing	
Structural testing kit	
Studs	97
mounting	103
Super low noise cables	105, 109, 115
Support feet	
Surface microphones	
Swan neck	
Swivel bases	
System configurations	
for electroacoustic applications	54
т	
Тар	
Technical support	
TEDS	
microphones	
templates	35, 40

TEDS templates4Telephone test heads54, 63, 65Telephone testing55, 60, 63Temperature17, 70Temperature coefficient17

Temperature coefficient of sensitivity70 Temperature range40

The second second second second second second second second	100
Temporary underwater submersion	
Test head	
Test object loading	104
Testing and verification	2
Thermally isolate accelerometer	71
Tip mounting screw	
Titanium microphones	
Tool set	
Tools	
Traceable calibration	
Transducer applications	
Transducer calibration	
Transducer customization	4
Transducer development and production	2
Transducer electronic data sheet	3
Transducer testing and verification	
Transducer, definition of	
Transducers	
	•
for aerospace and defence solutions	
for automotive/ground vehicle solutions	
for telecom and audio solutions	12
in the measurement chain	7
Transient vibration	142
Transmitter adaptor	
Transverse direction	
Triaxial accelerometers	
aablaa	110
cables	
CCLD	82, 160
CCLD charge	82, 160 75, 156
CCLD charge Triaxial mounting block	82, 160 75, 156 95
CCLD charge	82, 160 75, 156 95
CCLD charge Triaxial mounting block	82, 160 75, 156 95 142
CCLD charge Triaxial mounting block Triaxial, definition of	82, 160 75, 156 95 142 142
CCLD charge Triaxial mounting block Triaxial, definition of Triboelectric noise cause	82, 160 75, 156 95 142 142 105
CCLD charge Triaxial mounting block Triaxial, definition of Triboelectric noise cause Trigger	82, 160 75, 156 95 142 142 105 142
CCLD charge Triaxial mounting block Triaxial, definition of Triboelectric noise cause Trigger Trigger for tachometer	82, 160 75, 156 95 142 142 105 142
CCLD	82, 160 75, 156 95 142 142 105 142 86 57
CCLD	82, 160 75, 156 95 142 142 142 142 86 57 58
CCLD	82, 160 75, 156 95 142 142 142 142 142
CCLD	82, 160 75, 156 95 142 142 142 142
CCLD	82, 160 75, 156 95 142 142 105 142 86 57 58 48 131 67
CCLD	82, 160 75, 156 95 142 142 142 86 57 58 48 131 67 67
CCLD	82, 160 75, 156 95 142 142 142 86 57 58 48 131 67 67
CCLD	82, 160 75, 156 95 142 142 105 142
CCLD	82, 160 75, 156 95 142 142 105 142 86 57 58 48 131 67 67 67 67 67
CCLD	82, 160 95 95 142 142 142 142 86 57 58 48 48 131 67 67 67 67 53 50
CCLD	82, 160 75, 156 95 142 142 142 142
CCLD	82, 160 75, 156 95 142 142 142 142
CCLD	82, 160 75, 156 95 142 142 142 86 57 58 48 131 67 67 67 67 50 123, 124 50 111, 112
CCLD	82, 160 75, 156 95 142 105 142 105 142
CCLD	82, 160 75, 156 95 142 142 142 142 142
CCLD	82, 160 75, 156 95 95 142 142 142 86 57 58 48 131 67 67 67 67 67 67 50 123, 124 50 111, 112 59 43 50
CCLD	82, 160 75, 156 95 95 142 142 142 86 57 58 48 131 67 67 67 67 67 67 50 123, 124 50 111, 112 59 43 50

U

UA- 1407	
UA-0023	

UA-0033	UA-119397, 99
UA-003541, 48, 145	UA-120665
UA-0036 48	UA-121065
UA-0078	UA-1218 102
UA-0122 17, 48	UA-1221
UA-0123 17, 48	UA-1243 114
UA-0125 102	UA-1244 114
UA-0130 114	UA-125150
UA-0146	UA-126048
UA-016022, 40, 48	UA-128197, 99
UA-0186 51, 114	UA-128450
UA-0196 17, 48	UA-130460
UA-0207 49	UA-130560
UA-0237 49	UA-131750
UA-0245	UA-137066
UA-0247 59	UA-137566
UA-0253	UA-137666
UA-0254	UA-140065
UA-0258 101	UA-140165
UA-0262	UA-140418, 26, 49, 50
UA-0265	UA-1405
UA-0283	UA-140792
UA-0308	UA-1408
UA-0355	UA-141794
UA-0385	UA-141894
UA-0386	UA-1434
UA-0387	UA-144497, 99
UA-0393	UA-1448
UA-0459	UA-147392
UA-0469	UA-147492
UA-0553	UA-147592, 93
UA-0587	UA-1478
UA-0588	UA-1480
UA-0629	UA-1546
UA-0643	UA-1555
UA-0730	UA-156392, 93
UA-0781	UA-1564
UA-0786	UA-1567
UA-0801	UA-157750
UA-0803	UA-1588
UA-0839	UA-1615
UA-0844	UA-1616
UA-0866	UA-1639
UA-0867	UA-1650
UA-0901	UA-167949, 50
UA-0920	UA-1700
UA-0954	UA-1701
UA-0989	UA-170750
UA-1043	UA-1723
UA-1070	UA-2041
UA-1071	UA-2052
UA-1075	UA-2053
UA-1079	UA-2054
UA-1110	UA-2055
UA-1192	UA-2056

UA-2057
UA-2059
UA-2060
UA-2061
UA-2062
UA-2063
UA-2064
UA-2065
UA-2066
UA-2067100
UA-2068
UA-2069101
UA-2080101
UA-212764
UA-212950
UA-213349
UA-214486
UA-2219
UA-2220101
UA-2221
UA-2222
UA-301495
UA-3015
UA-3016
UA-301796
UC-0195
UC-0196
UC-0199
UC-0205
UC-0210
UC-0211
UC-0213
UC-5269
UC-5270
UC-5290
UC-5322
UC-5349
UC-5360
UC-5366
Ultrasound
Underwater accelerometers
Underwater cable
Uni (fine) gain adjustment
Uniaxial accelerometers
cables
CCLD
charge
piezoresistive
Uni-Gain
Upper-limiting frequency range70
V

VC-LAN support3

Velocity	142
Velocity and displacement detection	
Velocity measurement	86
Vibration definition	
Vibration exciters	87, 90, 91, 121
Vibration transducer calibration software	
Vibration transducer calibration system	119, 120, 131

w

WA-0214	
WA-0224	
WA-0371	
WA-0406	48
WA-0567	121
WA-1544	132
WA-1545	
WA-1665	
WA-1666	
WA-1667	
WA-1668	
WA-1705	114
Waterborne sound transducers	
Wavelength	142
WB-0850	51
WB-1254	67
WB-1372	
WB-1418	
WB-1419	
WB-1421	51
WB-1452	51
WB-1453	
Weatherproof microphone	26
Weighting network	
Wet areas	
WH-3315	
White noise	
Whole body motion	84
Whole body vibration	
Wind tunnel testing	49
Windscreen holder	
Windscreens	
WL-0958	
WL-1248	
WL-1260	46
WL-1287	
WL-1302	
WL-3185	, ,
WQ-1099	
WQ-1133	
WQ-2347	
WQ-2842	
WT-9651	

Y

YJ-0216	 	 	 101

YJ-0305	56
YJ-0430	60
YJ-0431	60
YJ-0892	60
YK-1110	101
YK-1410	101
YK-2206	101
YM-0249	88
YM-0414	88
YO-0073	101
YO-0534	88
YP-0080	100
YP-0150	88, 97, 98
YQ-0093	101
YQ-2003	101
YQ-2004	88
YQ-2007	101
YQ-2960	101
YQ-2962	88, 101
YQ-8168	101

YQ-8941	101
YQ-9209	101
YQ-9215	101
YS-0045	101
YS-0067	101
YS-0290	101
YS-0449	101
YS-0514	
YS-0810	101
YS-0811	
YS-8406	101
YS-9202	
YS-9901	101

Z

ZG-0328	51
ZG-0350	
ZG-0426	
ZH-0632	

WANT TO FIND OUT MORE?

Customer-driven Solutions

Our most important skill is listening to the challenges customers meet in their work processes, where increasing functional demands, time pressures, regulatory requirements and budget constraints mean that getting it right the first time is becoming evermore critical. Receptive dialogue allows us to fully understand specific customer needs and develop long-term sound and vibration solutions.

Over the years, we have developed creative and technically advanced solutions to innumerable customer problems, some of which you can find on our website on: www.bksv.com/ casestudies.

For intriguing features and news related to sound and vibration, you can subscribe to our customer magazine *Waves* on: www.bksv.com/ waves.

Events and Training

If you are interested in a more in-depth understanding of any of the solutions and/or applications featured in this catalogue, please consider our specialist courses, events and webinars that go beyond conventional training and give you access to our world-leading knowledge base. Full details of what is available and when can be found on: www.bksv.com/courses.

Near to You

Brüel & Kjær is a global company. We operate through our network of sales offices and representatives in 55 countries. These local teams are supported by our global group of engineering specialists, who can advise on and solve all manner of sound and vibration measurement and analysis problems. To augment our service, we regularly hold local courses and road-shows, and participate in sound- and vibration-focused exhibitions and conferences worldwide.

To contact a salesperson or support staff nearest you, see our list of offices and agents on: www.bksv.com/contact.

Who we are

How we can help

www.bksv.com

Brüel & Kjær Sound & Vibration Measurement A/S DK-2850 Nærum · Denmark Telephone: +45 77 41 20 00 · Fax: +45 45 80 14 05 www.bksv.com · info@bksv.com Local representatives and service organizations worldwide

