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ABSTRACT 

In last decade, Operational modal analysis has emerged as a technique of choice for identifying dynamic 

characteristics of large complex structures whose identification, using traditional experimental modal 

analysis techniques, is otherwise quite challenging. In this regard, several parameter estimation 

techniques have been suggested, which can broadly be categorized in three categories: 1) those based 

on traditional EMA algorithms, 2) those based on subspace identification and 3) those based on single 

degree-of-freedom system techniques. This paper reviews various algorithms used for modal parameter 

estimation in OMA framework. In the process of reviewing these algorithms, associated data 

preparation and signal processing aspects are also covered. Overall, emphasis is on understanding 

common aspects that these seemingly different algorithms share. 
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1. INTRODUCTION 

Operational modal analysis (OMA) has emerged as a complimentary technique to traditional input-

output based experimental modal analysis (EMA) that is well suited for scenarios where application of 

EMA is either difficult or not feasible at all. OMA does not involve measurement of input force applied 

to the structure. Instead, it relies on structure being excited by natural (or unmeasured operational) 

forces like wind, rain, engine excitations etc. In simple terms, OMA is a framework for finding modal 

parameters without requiring the measurement of input excitation forces.  

Over the years, several algorithms and associated signal processing techniques have been developed to 

work within the OMA framework. This paper intends at providing a review of these techniques by 

emphasizing on common aspects that they share with each other. Section 2 lays the mathematical 

foundation for OMA. Mathematical foundation of OMA is based on modifications to the well-

understood concepts and equations within EMA framework. These modifications are established based 

on the few assumptions made in case of OMA, which are also discussed in section 2. Section 3 describes 

the most commonly used signal processing techniques that prepare the output response data so that it 

can be used by parameter estimation algorithms, which are discussed in section 4. The section 

categorizes various algorithms in three groups: algorithms based on traditional EMA algorithms, 

subspace based algorithms and algorithms that utilize single degree-of-freedom (SDOF) system 

concepts. Finally, the paper concludes with related discussions. 



2. MATHEMATICAL BACKGROUND OF OMA 

As mentioned previously, OMA is a technique of estimating modal parameters of a structure based only 

on the output responses. In other words, unlike traditional EMA, the knowledge of input excitation 

forces is not needed in OMA. This section lays down the mathematical foundation of Operational modal 

analysis. 

When a structure is excited by means of external forces ( )ωf , the resulting response ( ) ωx , of the 

structure, is a function of both the externally applied forces and the dynamic characteristics of the 

structure. This relation is mathematically explained as   

( ) ( ) ( )ωωω fHx      =  (1) 

( )ωH  in Eq. (1) is called Frequency response function (FRF) matrix. FRFs are related to modal 

parameters of the structure by means of the following relation. 
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Eq. (2) shows the frequency response function ( )ωpqH  for a particular input location q and output 

location p being expressed in terms of the modal parameters; mode shape ψ , modal scaling factor rQ  

and modal frequency rλ  and pqrA  is called residue, a quantity containing mode shape and scaling factor 

information for a particular mode r. 

By taking a hermitian of Eq. (1) 

( ) ( ) ( )HHH
ωωω Hfx      =  (3) 

and multiplying Eq. (1) and Eq. (3), one obtains 

( ) ( ) ( ) ( ) ( ) ( )HHH
ωωωωωω HffHxx         =   

or 

( ) ( ) ( ) ( )H
ωωωω HGHG FFXX =  (4) 

where ( )ωXXG is the output response power spectra matrix and ( )ωFFG  is the input force power spectra 

matrix. Eq. (4) forms the basis of Operational Modal Analysis and is often the starting point of all 

discussions related to formulation of various OMA algorithms and related signal processing. 

2.1. OMA Assumptions 

The key to utilize Eq. (4) for the purpose of identifying modal parameters of a structure lies in two 

important assumptions that are made while applying OMA. These assumptions are listed here.  

a) The nature of the input forces is assumed to be random, broadband and smooth. They are also 

assumed to be mutually uncorrelated. 

b) Input forces are distributed randomly in the spatial sense.  



 

 

Mathematically, the first assumption ensures that the term FFG  in Eq. (4) can be replaced by a constant 

and power spectra of output responses XXG  can be expressed as proportional to product of FRF matrix 

and its hermitian. 

( ) ( ) ( )H
ωωω HIHGXX       ∝  (5) 

Recall that modal parameters are related to FRF matrix (see Eq. 2). Thus given the first assumption, 

XXG  can be utilized to estimate the modal parameters. 

The second assumption is related to the principle of observability and ensures that all the modes in the 

frequency range of interest are excited. 

3. SIGNAL PROCESSING 

Eq. (5) paves the way to utilize XXG  for estimating modal parameters. However, modal parameters 

related information is duplicated in XXG due to the presence of hermitian term. Mathematically, this is 

shown by expressing XXG  in the partial fraction form, similar to Eq. (2). 
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where pqkR  and pqkS  are residue terms. These terms are analogues to what is referred as residue in 

traditional FRF based formulation (see Eq. 2), which is used to calculated modal scaling [1]. However, 

it should be noted that identification of modal scaling is not possible directly in OMA due to 

unavailability of input force information.  

The duplication of information in output power spectra, XXG  leads to complications in terms of using 

it directly for modal parameter estimation and a signal processing procedure is required to avoid this 

complication. This procedure, described in the section to follow, relates the method of calculating 

Positive Power Spectra [2-3] (referred as +
XXG ) from output power spectra. 

3.1. Positive Power Spectra 

Positive power spectrum ( +
XXG ) is obtained by Fourier transforming only the positive lag portion of the 

correlation functions. The procedure of obtaining PPS from calculated power spectra is as follows. 

a) Inverse Fourier transform the output response power spectra to obtain Correlation functions. 

b) Removing the negative lags portion of the Correlation functions.  

c) Fourier transforming the resultant function from previous step to obtain PPS in frequency 

domain. 

The above-mentioned procedure is also illustrated graphically in Figure 1. The partial fraction form of 

PPS, shown in Eq. (7), reveals its similarity with Eq. (2), making it possible for traditional EMA 

algorithms to operate directly on PPS functions (instead of FRFs). 
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Figure 1. Calculation of Positive Power Spectrum. 

4. PARAMETER ESTIMATION 

Over the years, several techniques have been proposed for modal parameter estimation within OMA 

framework. In this paper, these algorithms are classified in three categories: 

a) Algorithms based on modal parameter estimation algorithms within traditional input-output 

EMA framework, 

b) Subspace based algorithms, and 

c) Simple Single Degree of Freedom (SDOF) system based algorithms 

Table 1 shows how various algorithms can be classified based on above mentioned classification 

criterions, along with references for detailed explanation and theory associated with these algorithms. 

Instead of providing the classical theory associated with these algorithms, this paper emphasizes on 

explaining the common aspects associated with them. In this context, the concept of Unified Matrix 

Polynomial Approach (UMPA) [16] is first explained, as several OMA (and EMA) modal parameter 

estimation algorithms can be easily formulated using UMPA. Section 4.1 discusses UMPA in the 

process of describing various OMA algorithms that are based on traditional EMA algorithms. 

 

Table 1. Comparison between experimental and numerical results. 

Based on Traditional EMA 

Algorithms 

Subspace based Single Degree of Freedom 

System based 

Polyreference Time Domain (PTD) 

[4, 5] 

Covariance-driven Stochastic 

Subspace Identification 

Algorithm (SSI-COV) [10-12] 

Frequency Domain 

Decomposition (FDD) [13] 



 

 

Eigensystem Realization Algorithm 

(ERA) [6, 7] 

Data-driven Stochastic Subspace 

Identification Algorithm (SSI-

DATA) [10-12] 

Enhanced Frequency Domain 

Decomposition (eFDD) [14] 

Rational Fraction Polynomial (RFP) 

[8] 

 Enhanced Mode Indicator 

Function for OMA (OMA-EMIF) 

[15] 

UMPA based Lower Order 

Frequency Domain algorithm 

(UMPA-LOFD) [9] 

  

 

4.1. OMA algorithms based on traditional EMA algorithms 

UMPA is developed and reviewed extensively for input-output based traditional modal analysis in [17] 

and its extension to operational modal analysis is covered in [16]. Extensions of UMPA equations, for 

OMA in both time and frequency domain, is provided in Eqs. 8-9.  
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XXR  in Eq. (9) is correlation function, obtained by inverse Fourier transformation of response power 

spectra. kα  and kβ  are matrix polynomial coefficients and m is model order. It should be noted that 

only positive lags of XXR  are used in this equation. These equations are analogous to UMPA equations 

for traditional EMA, which are based on IRFs and FRFs respectively. The aim of modal parameter 

algorithms is to obtain the matrix polynomial coefficients in Eq. (8) and (9) based on correlation or PPS 

functions calculated from the measured output responses. 

It is also important at this juncture, before stating mathematical equations of various OMA algorithms 

derived using UMPA, to introduce the concept of projection channels. Unlike EMA, where FRF (or 

IRF) matrix is typically of size oi NN × , oN  being number of outputs and iN  being number of inputs, 

in case of OMA, PPS matrix can be of size oo NN × . In other words, PPS of all outputs can be calculated 

with respect to each other. However, this is normally avoided, as it is computationally intensive and 

adds unnecessary redundancy, which makes parameter estimation difficult. Thus instead of calculating 

complete matrix, certain output responses are chosen as Projection Channels and power spectrum (and 

hence PPS) is calculated only with respect to these select few output responses, resulting in a smaller 

matrix size of oproj NN × . 

Eqs. 8-9 provide the basis for forming most OMA algorithms that originate from traditional input-output 

based formulation (see table 1). Most of these algorithms are manipulation of Eqs. 8-9 with regards to 

model order m and size (and shape) of the correlation (or PPS) matrices oproj NN × . The following 

equations provide formulations, based on UMPA, for four different commonly used parameter 

estimation algorithms in time and frequency domain.  

 

Higher Order Time Domain 
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Algorithm described by Eq. (10) is analogous to the well-known Polyreference Time Domain (PTD) 

algorithm. The size of matrix coefficients in this case is projproj NN × . Typically this algorithm utilizes 

a high model order and is suitable in situations when number of projection channels is much less in 

comparison to total number of output responses i.e. projo NN >> , so that the total number of modes 

estimated using Eq. (10), projmN  is greater than the required number of modes of the structure.  

 

Lower Order Time Domain 

If the number of output response channels is very large, Eq. (9) can be formulated for a much lower 

model order, typically the second order. This is possible because the total number of modes estimated, 

oN2  (m = 2), is still much larger than the actual modes of the structure (since oN  is very large). The 

UMPA equation in this case is formulated such that the size of the coefficient matrices is oo NN × and 

is shown in Eq. (11). 
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Higher Order Frequency Domain 

Eq. (12) shows the higher order frequency domain OMA algorithm akin to Rational Fraction 

Polynomial (RFP) [8] algorithm. 
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Lower Order Frequency Domain 

Lower order, frequency domain algorithms generate first or second order matrix coefficient 

polynomials. The UMPA formulation for this category, based on PPS, is shown in Eq. (13). [9] provides 

details of an OMA algorithm UMPA-LOFD based on this formulation. 
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Once the polynomial coefficient matrices ( βα  , ) are estimated using above equations, they are 

assembled in form of a companion matrix [18]. Eigenvalue decomposition of this companion matrix 

provides an estimate of modal parameters of the structure. Modal frequency and damping information 

is inferred from eigenvalues and modal vectors are recovered from the eigenvectors. 

4.2. Based on Subspace based algorithms 

The most popular class of commercially available subspace based OMA algorithms are Stochastic 

Subspace Identification (SSI) algorithms. There are two popular variants of SSI that differ from each 

other in terms of characteristic functions on which they operate. Covariance-driven SSI or SSI-COV 

[10-12] operate on covariance or correlation functions estimated from the acquired output response time 

histories. It should be noted that correlation functions ( XXR ) are standardized covariance functions and 

hence the two are related. On the other hand, Data-driven SSI or SSI-DATA [10-12] operate directly 

on the acquired output responses. In the following section, these algorithms are briefly discussed. 

4.2.1. SSI-COV  

The stochastic state-space model is represented in discrete time domain as following 

kk

k1k

Cyx

Axx
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 (14) 

where kx  is output response vector at time instant k, ky  is state vector, A  is state transition matrix and 

C  is output matrix. 

The process of estimating state transition matrix A  in case of SSI-COV can be broken down into 

following steps (See [10-12] for more details). 

a) Calculation of Output Covariances XXR . 

b) Formation of Hankel matrix qp,H  for a particular order p. 

c) Perform singular value decomposition of qp,H  to obtain Observability matrix pO  and 

Controllability matrix qC . 
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d) Use block shifted forms of qp,H
←

to obtain state transition matrix A  by means of following relation 
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Above described procedure is based on exploiting the following relationship between state transition 

matrix A , Output matrix C  and Observability matrix, pO . 
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 [19] demonstrates how SSI-COV can be formulated using UMPA model. Adopting this approach, state 

transition matrix A  can be estimated directly from the Hankel matrix qp,H  and its block shifted form, 

without intermediary steps such as estimating observability matrix etc. This work also makes SSI-COV 

comparable to UMPA based formulation of PTD in OMA framework (see Eq. 10), thus bringing SSI-

COV within the UMPA scheme. In this work, it is also shown how state transition matrix is related to 

companion matrix formed by assembling the polynomial coefficient matrices (see section 4.1). Thus, 

for subspace-based algorithms, the procedure of estimating modal parameters once the state transition 

matrix A  has been identified is similar to that explained in section 4.1. In other words, eigenvalue 

decomposition of state transition matrix provides estimates of modal parameter, this procedure being 

similar to that in case of companion matrix explained in section 4.1. 

4.2.2. SSI-DATA  

SSI-DATA differs from SSI-COV in that unlike SSI-COV, which operates on covariance functions 

calculated from raw time histories, it works directly on the response time histories. The aim of SSI-

DATA is to obtain state transition matrix A  based on Eqn. 15, just like SSI-COV. The key algorithmic 

difference between the two variants is that unlike SSI-COV where SVD is performed on Hankel matrix 

of covariances, in case of SSI-DATA, SVD is applied to the projection of future responses on past 

responses. The various steps involved in SSI-DATA are summarized here (For details see [10-12]). 

a) Formulation of Hankel Data matrices px  and fx . 

b) Calculation of the projection P  using px  and fx   as 

( ) p
T
pp

T
pf xxxxxP       

-1
=  (18) 

c) Perform Singular Value decomposition of P  and obtain Observation matrix pO . This step is 

similar to that described in Eq. (15). 

d) Use pO  to obtain state transition matrix, as explained previously for SSI-COV. 

As is the case with SSI-COV, once the state transition matrix A  is obtained, modal parameters can be 

estimated by its eigenvalue decomposition. 

4.3. SDOF System based algorithms 

All the algorithms, including Subspace based algorithms, described previously can be looked upon as 

polynomial curve fitting algorithms. This is more apparent with UMPA based formulation of these 

algorithms. These algorithms are elaborate in terms of their understanding, implementation and 

application and are computationally intensive. In comparison, there are certain other popular OMA 

algorithms like Frequency Domain Decomposition (FDD) and Enhanced Frequency Domain 

Decomposition (eFDD) [14] that are based on simple SDOF system analysis. These algorithms are 

comparatively easy and simple enough to implement though their successful application is not 

guaranteed in complex scenarios such as in case of low Signal-To-Noise (SNR) ratio. In this section, 

these algorithms are reviewed briefly in the paper. 

4.3.1. Frequency Domain Decomposition and enhanced Frequency Domain Decomposition  

FDD involves singular value decomposition of power spectra matrix XXG  at each frequency into left 

and right singular vectors ( VU  , ) and singular values ( )ωS , and plotting the resulting singular values.  



 

 

( ) ( ) H
VSUGXX ωω =  (19) 

From the partial fraction form of XXG  (Eq. 6), it is clear that closer to resonance XXG  is dominated 

only by few terms (typically one or two) in Eq. (6); terms due the modes representing that resonance.  

The expansion theorem [1] states that the response of a system at any instant in time or at any frequency 

is a linear combination of the modal vectors. This is mathematically stated as  

( ) ( )tt qΦx      =  (20) 

where Φ  are mode shape vectors and ( )tq  are modal coordinates [1]. The output correlations are 

calculated as  

( ) ( ) ( ){ } ( ) HT
tt ΦRΦxxR qqxx       E τττ =+=  (21) 

Fourier transformation of Eq. (21) provides following relation in frequency domain 

( ) ( ) H
ΦGΦG qqxx      ωω =  (22) 

where ( )ωqqG is power spectra of modal coordinates.  

It is easy to see the similarity between Eq. (19) and SVD of XXG  i.e. Eq. (22). Thus, singular vectors 

in Eq. (19) near the resonance, are good estimates of the mode shapes and the frequency corresponding 

to the peak in the singular value curve is an estimate of the modal frequency. This is akin to peak-

picking.  

FDD algorithm provides an estimate of the modal frequency and mode shape but it does not provide 

any direct estimate of the modal damping. For estimating modal damping, typically one employs 

another algorithm called enhanced Frequency Domain Decomposition. This algorithm utilizes simple 

SDOF system identification and works in following manner to identify damping associated with a 

mode. In the eFDD algorithm [14], power spectra of a SDOF system is identified around a peak of 

resonance (A peak in the SVD plot). A user defined Modal Assurance Criterion (MAC) [1, 20] rejection 

level is set to compare the singular vectors around the peak and corresponding singular values are 

retained as those belonging to the SDOF power spectrum. This SDOF power spectrum is transformed 

back to the time domain by inverse FFT. The natural frequency and damping are then estimated for this 

SDOF system by determining zero crossing time and logarithmic decrement methods respectively. 

5. DISCUSSIONS AND CONCLUSIONS 

The key to successfully modelling a physical phenomenon mathematically depends on how closely the 

reality adheres to the assumptions made while preparing the model. The stringent these assumptions 

are, the difficult it is for the mathematical model to correctly represent the physical phenomenon. As 

seen in section 2.1, this is quite true for OMA as its application is limited to certain situations, due to 

the strict assumptions regarding the nature of input forces. Since most of the OMA theory revolves 

around these assumptions, it is vital that one is aware of them even if one does not have much control 

over the nature of excitation. This goes long way towards explaining the quality of modal parameters 

one finally estimates. 

The lack of knowledge regarding the input forces also adds complications to the application of modal 

parameter estimation techniques in the OMA domain. This is true even for scenarios when input 

excitation forces are adhering completely to the assumptions regarding their nature and distribution.  

The duplication of information in output power spectra, due to presence of hermitian term, makes the 



parameter estimation complicated and difficult. This also deteriorates the performance of parameter 

estimation algorithms in low SNR situations much more significantly. Transforming power spectra to 

positive power spectra makes it possible to avoid this issue by taking care of the hermitian term and 

paving way for successful application of frequency domain algorithms, such as those described in 

section 4.1.  

Most parameter estimation algorithms in OMA are time domain. This can be attributed to the previously 

discussed issues associated with output power spectra, which makes it imperative to transform them to 

positive power spectra. Time domain algorithms do not require this additional signal processing step as 

they can directly work on correlation (or covariance) functions. However, one has to still remember that 

only positive lags portion of the correlation function is utilized for this purpose. Operating only on 

positive lags portion of correlation function is a necessity similar to that of transforming power spectra 

to positive power spectra in order to ensure that hermitian term is avoided.  

Section 4.1 describes the UMPA framework for OMA making it possible for a wide variety of 

algorithms to be developed, including the ones that are derived from traditional input-output modal 

analysis. On the other hand, algorithms such as SSI-COV and SSI-DATA have traditionally been 

developed using the subspace framework. UMPA framework bridges the gap between the two classes 

of algorithms described in this paper; as it is also able explain the SSI-COV algorithm. This makes it 

possible to compare and assess various OMA algorithms, developed in isolation, with respect to each 

other. Unlike SSI-COV though, SSI-DATA works directly on the raw output time response data, which 

makes it stand out in comparison to other algorithms.  

SDOF system based algorithms are simpler and easy to understand in comparison to parameter 

estimation algorithms described in sections 4.1 and 4.2. However, this simplicity comes at the price of 

accuracy and applicability. Still, there are several situations, such as dealing with simpler structures 

where it is possible to obtain good quality data with high SNR, where these algorithms suffice and 

provide results of comparable quality. 

Due to research efforts in recent years, OMA has become mature as a technique and is a tool of choice 

for several applications. Advance signal processing and parameter estimation algorithms have allowed 

users to obtain better results using OMA, enabling them to understand the dynamics of complex 

structures. The research community is now focussing on expanding the scope of OMA to situations 

where OMA assumptions (or in general, assumptions regarding modal analysis) are not satisfied. Until 

then though, one should be mindful of OMA limitations and apply it judiciously.  
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