
 

 

Subspace Algorithms in Modal Parameter Estimation for Operational Modal 

Analysis: Perspectives and Practices 

 

 

 

S. Chauhan 

 

Bruel & Kjær Sound and Vibration Measurement A/S 

Skodsborgvej 307, DK 2850, Naerum, Denmark 

 

Email: schauhan@bksv.com 

 

Nomenclature 

 

x  State vector 

y  Response vector 

A  State Transition matrix 

C  Output matrix 

w and v  Process and measurement noise vectors 

Y  Hankel data matrix 

H  Hankel matrix of covariance matrices 

Λ   Covariance matrix 

O   Extended Observability matrix 

C   Extended Controllability matrix 

Σ   State Covariance matrix 

α   Matrix polynomial coefficients 

fpP   Projection of future output responses on past output responses 

iX̂   Kalman filter state estimate 

 

Abbreviations 

 

OMA  Operational Modal Analysis 

SSI  Stochastic Subspace Identification 



SSI-Cov  Covariance-driven SSI 

SSI-Data  Data-driven SSI 

ITD  Ibrahim Time Domain 

ERA  Eigensystem Realization Algorithm 

SVD  Singular Value Decomposition 

 

ABSTRACT 

Subspace based algorithms for estimating modal parameter have now become common within modal analysis domain. This is 

especially true for Operational Modal Analysis, where Stochastic Subspace Identification (SSI) algorithm is a well-known and 

commonly used algorithm. Despite their increasing use and popularity, one often encounters basic questions such as (and not 

limited to) 

1. How are these algorithms related to (or different from) traditional matrix polynomial coefficient based algorithms like 

Polyreference Time Domain (PTD) etc.? 

2. What is the link between covariance and data driven approaches to SSI? 

3. What is the need for having different variants of SSI (Covariance-driven and Data-driven)? 

In fact, even before addressing the questions listed above, there is a fundamental need to look at these algorithms from the 

perspective of modal parameter estimation, whose requirements and demands differ from those of system identification within 

Control Systems Engineering, where these algorithms originated.  

This paper aims at addressing these issues and examine subspace algorithms from a purely modal parameter estimation 

perspective. The author expects that this paper will provide readers with a simple and clear understanding of these algorithms 

towards their utilization for modal parameter estimation. 

 

Keywords: Stochastic Subspace Identification, Data-driven, Covariance-driven, state space modelling, modal parameter 

estimation 

1. Introduction 

There are several applications, including modal parameter estimation where parametric models are sought. These include signal 

processing, defect detection, design of control systems and many others. Subspace algorithms belong to the class of system 

identification algorithms that utilize state-space models of time series for estimating parametric models. The use of these 

algorithms for parameter estimation in modal analysis is not new. Several popular algorithms, such as Ibrahim Time Domain 

(ITD) [1, 2] and Eigensystem Realization Algorithm (ERA) [3, 4], use state space formulations for estimating modal parameters. 

The aim of this paper is to understand state space modelling in context of modal parameter estimation, with a focus on one of 

the most commonly used Operational Modal Analysis (OMA) algorithm, Stochastic Subspace Identification (SSI) [5-7], along 

with its two variants: Covariance-driven SSI (SSI-Cov) and Data-driven SSI (SSI-Data).  

In order to understand state-space models in the context of modal analysis, it is vital to state the objective of modal analysis, 

which is to estimate modal parameters, i.e. natural frequency, damping and mode shape, of a structure. Thus, unlike system 

identification problem in control system design or forecasting problem in econometrics, the goal of a parameter estimation 

algorithm is not estimation of matrices A, C (defined in section 2) or associated quantities such as state vectors, observability 

or controllability matrix, etc. but modal parameters. 

The paper starts with a general discussion on SSI algorithm and describes sequentially its two variants, Covariance-driven SSI 

(SSI-Cov) and Data-driven SSI (SSI-Data). In section 2.1, two separate approaches are provided for the development of SSI-

Cov. First, traditional formulation of SSI-Cov is provided along with a modified formulation. Then an alternate formulation is 

provided that takes inspiration from, and explores, the relationship between the polynomial model and state-space model 

representation of a dynamic system. Additionally, this section explains how estimation of extended observability matrix in the 

conventional formulation is not a requirement from modal analysis point of view and desired results can be achieved in 

comparatively simple steps. The section concludes by noting how various formulations of SSI-Cov simply differ in how the 

covariance matrices are stacked. 



Same approach is taken while discussing SSI-Data (Section 2.2). Given the framework of modal parameter estimation, the aim 

is to connect the two variants of SSI. In this context, it is explained how the need to estimate state vectors necessitates the 

availability of raw output data for SSI-Data algorithm and it is emphasized that these requirements do not form a part of modal 

parameter estimation. The formulation of SSI-Data is then explained in light of this knowledge and it is shown how SSI-Data 

is not much different from SSI-Cov in the absence of the need to estimate state vectors. 

 

2. Stochastic Subspace Identification algorithm 

Stochastic Subspace Identification (SSI) is a well-known operational modal analysis (OMA) algorithm [5-7]. It is based on 

state-space representation of a discrete linear time invariant (LTI) system described as 
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where y is the vector of measured responses, x is the vector of state variables matrix, A is the state transition matrix, C is the 

output matrix and w and v are process and measurement noise vectors. As is clear from Eqn. 01, SSI algorithm operates on 

measured output response data only (input excitation is not measured in OMA). From the point of view of modal parameter 

estimation, it is the estimation of state transition matrix A that is most important as eigenvalue decomposition of this matrix 

reveals modal parameters.  

There are two variants of this algorithm that are popular in practice: data-driven (SSI-Data) and covariance-driven (SSI-Cov) 

[6]. These variants differ in terms of the data on which they operate. SSI-Data operates directly on measured output response 

data without processing it. On the other hand, SSI-Cov requires that covariance functions are first estimated from raw output 

time histories and it is these covariance functions that SSI-Cov utilizes for the purpose of modal parameter estimation. The 

discussion in this section centers on understanding the finer aspects of these two variants. In this context, traditional 

development of these algorithms is studied to understand the reasons that led to the development of these two variants. 

Typically, the output response data is assembled in a Hankel data matrix, which is further divided into a partition of past ( pY

) and future responses ( fY ) (see [6, 7] for more details). This arrangement aids in theoretical formulation of SSI and is given 

as 
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The two variants of SSI are now discussed in section 2.1 and 2.2. 

2.1 Covariance driven Stochastic Subspace Identification algorithm 

SSI-Cov algorithm, as the name suggests, operates on covariance functions. Typically, the raw response data is processed into 

covariance functions, which are then utilized in SSI-Cov algorithm. This processing of raw response data to covariance (or 

correlation) functions can be done in several ways, including obtaining covariance functions directly from response data 

without involving any intermediary signal processing steps. This is in contrast to, for e.g. Welch Peridogram method [8], where 

data is processed to estimate power spectra, which is then inverse Fourier transformed to obtain covariance functions, and 

involves signal-processing techniques like averaging, windowing etc.  

In literature, SSI-Cov is generally developed using the Hankel (or Toeplitz) matrix of covariance functions. The algorithm then 

utilizes the fact that the Hankel matrix equals the covariance between future responses and past responses, i.e. 
T
pf YYH = . In 

case of SSI-Cov, it is typically assumed that covariance functions are calculated a priori and access to raw output responses is 

not available. 

This section is arranged in the following manner. First, the traditional formulation of SSI-Cov, based on estimation of extended 

observability and controllability matrices, is presented. It is then shown that estimation of extended observability and 

controllability matrices is redundant from the perspective of modal parameter estimation and how state transition matrix A can 

be directly obtained from Hankel matrix of covariance functions. Finally, a new formulation of SSI-Cov is suggested in section 



2.1.2 underlining the fact that SSI-Cov can be formulated in multiple ways; each differing in the manner the covariance 

functions are arranged. 

2.1.1 SSI-Cov based on traditional formulation 

Traditional formulation of SSI-Cov begins with formulation of a Hankel (or Toeplitz) matrix of covariance matrices, which 

equals 
T
pf YYH =  ( pf YY ,  are defined in Eqn. 02). 
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As explained previously, for modal parameter estimation purposes, one is interested in estimation of state transition matrix A. 

Typically, estimation of state transition matrix A is done on the basis of extended Observability matrix O , which is obtained 

using singular value decomposition (SVD) of H. 

COVSUH     ==
T

   (04) 

Note that C  in the Eqn. 04 represents extended Controllability matrix. The extended observability matrix is obtained in 

following manner, 

½  SUO =     (05) 

and state transition matrix A is estimated as  

+
= 1-m   OOA
r

    (06) 

where O
r

 is the block shifted version of extended observability matrix (obtained after removing the first block of O ) and 
+

1-m O  represent pseudo-inverse of first (m-1) rows of O . 

The reason for taking this approach in conventional system identification framework is that identification of observability and 

controllability matrices is often part of the overall identification problem. This however, is not the case with modal parameter 

estimation, where the aim is to obtain modal parameters. Shown below is another approach of estimating state transition matrix 

A, using the Hankel matrix expressed in Eqn. 03. This formulation is based on the work presented in [9], where it is shown that 

state transition matrix A, can be directly obtained from Hankel matrix H in following manner. 

+
= 1-m   HHA     (07) 

where H  is the block shifted version of Hankel matrix and 
+

1-m H represent pseudo-inverse of first (m-1) rows of H. 

It should be noted that state transition matrix estimated using Eqn. 07 is related to that obtained using the traditional approach 

(described by Eqn. 04-06) by means of a similarity transformation (see [9] for details) and hence possesses the same Eigen 

structure. In other words, modal parameters estimated on the basis of either state transition matrix will still be the same.  

2.1.2 Alternate formulation  

By defining state vectors kx , in Eqn. 01, in following manner, it is easy to understand the relationship between state-space 

representation and the polynomial model representation of a dynamic system. The state transition matrix in this case becomes 

a companion matrix.  
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Defining covariance matrix between output responses as ][ T
kiki E yyΛ += and state covariance matrix as ][ T

kkE xxΣ = , it is 

easy to show, using Eqn. 01, that  
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Expanding state equation in Eqn. 01 and using Eqn. 08, 
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Since the state transition matrix A is constant (the system is time invariant), a number of equations similar to Eqn. 10 can be 

formed as shown below. 
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For the sake of simplicity, Eqn. 11 can be written in a compact form as 

FAP  =     (12) 

which can be solved for A in a least squares manner as, 
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The two products in the above equation, 
TT PPFP  , are two Toeplitz matrices comprising covariance functions 
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It is recognizable that the two matrices 
TT

PPFP  ,  have similar structure as 1 , −mHH , described in Eqn. 07. This explains the 

connection between the traditional approach (based on 
T
pf YYH = ) and the approach suggested in this paper. 



Based on above observations, it can be argued that there is no fundamental difference between various formulations of SSI-

Cov. The biggest difference is perhaps how the covariance matrices are formed and stacked, and as shown in this paper, this 

can be done in several ways without having any impact on the final outcome in terms of estimation of modal parameters. 

2.2 Data driven Stochastic Subspace Identification algorithm 

Formulation of SSI-Cov algorithm assumes that covariance functions are available and raw output data does not play any role 

irrespective of whether it is available or not. Various formulations shown in previous section assume that raw data is available, 

but it is easily noticeable that this is not a requirement and, starting with Eqn. 03 (or Eqn. 13) the formulations can be arrived 

at without much difficulty by simply using the covariance functions in case they are available a priori. SSI-Data, on the contrary, 

makes it mandatory to have the raw data available. This is the oft-quoted difference between the two popular variants of SSI. 

However, it can be argued that this requirement is driven more by the need to estimate state vectors x  within controls 

engineering domain than by requirements associated with modal parameter estimation. Estimation of state vectors is typically 

done by means of Kalman filter [5-7], which provides optimal prediction of state vector. It is this requirement that necessitates 

the availability of raw output time data. 

SSI-Data is based on the concept of projection [5, 10], where future outputs are projected on the past outputs. This projection 

is defined as  
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The Kalman filter state estimates are given as 
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Using Eqns. 03-04, it is easy to follow that projection defined in Eqn. 14 can be written as  
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This paves the way for decomposing projection fpP  such that extended observability matrix O  and Kalman filter states iX̂  

can be estimated. This is done by means of singular value decomposition of fpP . It is noticeable that estimation of extended 

observability matrix remains same.  
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The state transition matrix can now be easily obtained using the expression provided in Eqn. 06. However, it is common to 

provide an alternate expression based on the estimated Kalman filter state and its shifted version 1
ˆ

+kX . Using Eqn. 01 it is 

easy to obtain A, in terms of estimated state vectors, as 

kk XAX ˆ  ˆ
1 =+     (18) 

It is clear from above discussion that the reason for using SSI-Data is estimation of state vectors. However, as has been 

mentioned, this is not a requirement from modal parameter estimation perspective. More importantly, even after estimation of 

Kalman filter states, one can still utilize the extended observability matrix for estimating state transition matrix [7]. Thus, if 

estimating the state vectors is not the goal, it is easy to follow that SSI-Data can be formulated simply on the basis of extended 

observability matrix. In that case, there is no difference between this approach and the one expressed in previous section that 

described SSI-Cov. Note that basic formulation of SSI-Cov is based on covariance functions and one cannot estimate state 

vectors only on the basis of covariance functions.  

The major distinction between the two variants of SSI is in terms of implementation; unlike SSI-Cov, SSI-Data can be 

implemented such that calculation of covariance matrices is not required [6]. Otherwise, the only distinction between the two 



approaches is that in case of SSI-Cov, covariance functions are supposed to be pre-calculated, which is not the case with SSI-

Data. SSI-Cov starts directly from the formation of Hankel matrix H (Eqn. 03) where as in SSI-Data the raw output data is 

arranged in terms of past and future responses (Eqn. 02) so that the covariance functions are calculated as a part of the algorithm. 

3. Conclusions 

This paper reviews the Stochastic Subspace Identification (SSI) algorithm and its two variants (SSI-Cov and SSI-Data) within 

the framework of modal parameter estimation. One underlining aspect of SSI pointed out in this paper is the fact that the goals 

of modal parameter estimation stage of operational modal analysis, i.e. estimation of natural frequency, damping and unscaled 

mode shape, can be achieved through several formulations of SSI. This fact is highlighted by means of an alternate formulation 

of SSI-Cov presented in this paper. This is done by exploring the relationship between state-space model and high order 

polynomial model representation of a dynamic system. 

The paper further emphasizes that, when viewed within the framework of modal parameter estimation, there is not much 

difference between SSI-Cov and SSI-Data. This is due to the fact that the aim of these variants differ from when they are 

applied in Controls Engineering domain (where these algorithms were originally developed) to their application in modal 

analysis domain. It is understandable from the formulation of SSI-Data that one of its primary goal is state estimation, a goal 

that is not shared by modal parameter estimation. That state transition matrix can be obtained using the estimated states is an 

auxiliary step, as estimation of state transition matrix does not rely solely on state vector. State transition matrix can be obtained 

simply on the basis of extended observability matrix, in which case, there is not much distinction between SSI-Data and SSI-

Cov. 
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