
USER GUIDE

LAN-XI Open API

BE 1872 – 15
English

www.bksv.com © Brüel & Kjær. All rights reserved.

Ë
B
E
-
1
8
7
2
-
-
-
7
Î

BE
18

72
–

15

http://www.bksv.com

LAN-XI Open API

User Guide
BE 187215
March 2021

www.bksv.com

http://www.bksv.com

Brüel & Kjær has made every effort to ensure
the accuracy of the information contained in
this document. No responsibility is accepted
for any errors or omissions herein. It is the
responsibility of the user to ensure compliance
with any legal or statutory requirements in the
country of use. Data may change, as well as
legislation, therefore you are advised to obtain
copies of the most recently issued applicable
regulations, standards and guidelines.

All descriptions, illustrations and any other
information relating to the product are made by
way of general description, are approximate
only and for the general guidance and
information of the user. They cannot be
construed to imply representation or warranty
as to their accuracy, currency or completeness
and are not intended to form the basis of any
contract.

The information in this document does not
constitute a warranty, representation or
guarantee concerning the suitability or
performance of the product.

Brüel & Kjær shall not be liable for any loss
whether direct, indirect, incidental or
consequential arising from the use of or
reliance upon any of the content of this
document, regardless of whether such content
has been accurate or complete. Brüel & Kjær
will not pay any damages whether for loss or
injury, punitive or otherwise, because of use of
or reliance upon any of the content in this
document.

Brüel & Kjær and all other trademarks, service
marks, trade names, logos and product names
are the property of Brüel & Kjær or a third-
party company. Nothing in this document may
be construed as granting, by implication, or
otherwise any license or right to use any of the
trademarks without a prior written permission
of Brüel & Kjær or the owner of such
trademark.

© Brüel & Kjær. All rights reserved.

Brüel & Kjær Sound & Vibration
Measurement A/S
DK-2850 Nærum · Denmark

For service and support, contact your nearest
Brüel & Kjær Customer Care support team:

Headquarters: info@bksv.com,
+45 7741 2400
China (Beijing): +86 10 59935811
France: service.fr@bksv.com,
+33 1 69 90 71 02
Germany: bkservice.de@bksv.com,
+49 421 17 87 0
Italy: it.info@bksv.com, +39 02 5768061
Japan: info_jp@bksv.com, +81 3 6810 3500
The Americas: bkservice@bksv.com,
+1 770 209 6907
Spain: servicio.tecnico@bksv.com,
+34 91 659 08 20
UK & Ireland: ukservice@bksv.com,
+44 1223 389800

Go to www.bksv.com/contact for contact
information to our other global offices.

https://www.bksv.com/contact

Contents

CHAPTER 1
Introduction ... 1

1.1 Why LAN-XI? ... 1
1.2 Why use Open API for LAN-XI? ... 2
1.3 What is Open API for LAN-XI? ... 4
1.4 The LAN-XI Module Home Page.. 6
1.5 A REST Command.. 9
1.6 Streaming.. 12
1.7 Ground Rules .. 14

CHAPTER 2
Recorder .. 15

2.1 State Machine... 15
2.2 Generic Flow ... 17
2.3 Managing Stored Recordings .. 17
2.4 Input Related Commands ... 20

CHAPTER 3
Output Generator... 57

3.1 Model.. 57
3.2 Command Sequence for Streamed Waveforms 58
3.3 Command Sequence for Built-in Waveforms 59
3.4 Commands .. 59

CHAPTER 4
General Commands .. 69

4.1 GPS.. 69
4.2 Reboot .. 70
4.3 BatteryInfo .. 71

CHAPTER 5
Web-XI Streaming Protocol... 73

5.1 Time .. 73
5.2 Data From the Device ... 75

CHAPTER 6
General Concepts.. 89

6.1 REST .. 89
6.2 HTTP.. 89
6.3 Data Formats... 94
6.4 State Machine ... 96
6.5 Time .. 96

CHAPTER 7
Calculating the Scale Factor .. 97

APPENDIX A
Firmware versions .. 99

INDEX... 107

Chapter 1
Introduction

This document describes the commands implemented in the REST
protocol for LAN-XI devices, as well as the network streaming protocol
used to stream signals to and from the devices and descriptions on how
to set up and operate this.

This version of the document contains the commands that are related
to the so-called “Open API”.

To enable the Open API on your LAN-XI module, it must have LAN-XI
Open API License BZ-5959-L-N01 installed or be running firmware
version 2.10.0.344 or later.

1.1 Why LAN-XI?
A LAN-XI module offers great flexibility. At one end of the module,
exchangeable front panels connect to a large variety of analog and
digital signal connectors and supply transducers with the necessary
current or voltage. At the other end of the module, an RJ45 Ethernet
connector interfaces to your PC (typically) and to other LAN-XI
modules, which may be distributed over a large area. The Ethernet
cables not only handle data input/output but also supply power and
synchronization at sample-level accuracy, which allows, for example,
cross-spectra between any two channels in a system.

In-between the signal connectors and the network connector, you get
high-quality signal conditioning, and conversion from analog to digital
(and vice versa on LAN-XI modules with a generator).

Distributing the LAN-XI modules typically saves a lot of expensive and
heavy analog cables when measuring on large objects, while effectively
reducing ground-loop problems.
1LAN-XI Open API
User Guide

Why use Open API for LAN-XI?
If you prefer to concentrate many measurement channels in one place,
LAN-XI modules fit into frames that can be stacked or mounted in
racks.

1.2 Why use Open API for LAN-XI?
BK Connect® and PULSE LabShop are Microsoft® Windows®-based
software clients that provide an interface to LAN-XI modules with a
large selection of analysis algorithms as well as graphic displays with
advanced cursors. These applications are able to meet the needs of
many LAN-XI hardware users.

But what about the following scenarios:
• You already own and maintain data-acquisition software, but want

to use high-quality LAN-XI modules as front ends for a specific job.
• Your data-aquisition software interfaces to other specific

hardware, company databases or asset management.
• Your data-aquisition software runs on a Linux® distribution like

Debian® or SUSE®, or on Apple® OS X®.

Open API (application protocol interface) for LAN-XI is the key to all the
above scenarios.

Setting up a LAN-XI system and an individual channel is simple. Open
API supports a variety of setups; from single-module systems to multi-
module systems to distributed systems – all sample-synchronous. It is
also possible to connect modules to a wireless router and then control
them from a phone or similar, but we do recommend starting with a
wired solution, which is easier to debug.

1.2.1 Supported Commands, Modules and Front Panels
LAN-XI Open API will work with all LAN-XI modules with the exception
of 4-ch. Input/HS-Tacho + 8-ch. Aux. Module Type 3056. Some
commands are only supported for specific modules, for example,
commands for bridge settings are only relevant for Bridge Input
Module Type 3057.
2 LAN-XI Open API
User Guide

Chapter 1 – Introduction
Table 1.1 LAN-XI module support of Open API

The numerous, detachable LAN-XI front panels will continue to work
with the module to which they are attached as specified in their
documentation. For example, a front panel that only works with Bridge
Input Module Type 3057 on BK Connect® will also only work with this
module when using the Open API.

1.2.1.1 Number of Channels

For systems with a large number of channels, LAN-XI Open API does
not introduce any limiting factors into the measurement chain. If the
network can handle the large amounts of data, and the application
using Open API is sufficiently optimized, then systems in excess of 400
channels at 100 kHz should be easily achievable.

Module Open API Support
LAN-XI Type 3050 Fully supported

Type 3052 Fully supported
Type 3053 Fully supported
Type 3056 Auxiliary channels not supported
Type 3057 Fully supported, including bridge

configuration
Type 3058 Fully supported, including CAN bus channels
Type 3160 Fully supported, including output channels

(generator)
Type 3161 Fully supported, including output channels

(generator)
Type 2831 Battery modules mounted in frames are

supported, see section 4.3 for more
information.

LAN-XI Light*

* LAN-XI Light modules only work as single-module systems, thus the PTP (precision time
protocol) setup is irrelevant on these modules.

Type 3676 Fully supported
Type 3677 Fully supported
3LAN-XI Open API
User Guide

What is Open API for LAN-XI?
1.2.2 Licenses
From LAN-XI firmware version 2.10.0.344, the license check for the
LAN-XI Open API License BZ-5959-L-N01 is removed. Hence any
module running firmware version 2.10.0.344 (or higher) will have
access to the API. When you look at the module’s licenses on the
module’s web page, you will see the three constituents of the API as
permanent licenses.

LAN-XI firmware is available from this link: bksv.com/lanxi-firmware.

Fig.1.1 Example showing the three constituents of LAN-XI Open API on a module’s
web page

1.3 What is Open API for LAN-XI?
Open API is a wire protocol based on REST and JSON – technologies
known from the Web. This allows you to use it from your own
programs.

The control and setup part of Open API is a wire protocol on top of
HTTP. This means that any modern operating system and language can
be used. Through HTTP commands (GET, PUT and POST) you control
settings in the module and set up TCP sockets that stream data to and
4 LAN-XI Open API
User Guide

https://www.bksv.com/lanxi-firmware

Chapter 1 – Introduction
from your program. Since the setup protocol is based on HTTP, the
necessary libraries come with your favourite programming language,
such as C#, Objective C, Python or C/C++.

Another advantage is that most programmers already understand the
basic “idioms”. See the table below, which also shows the similarity to
the CRUD idioms in database programming.

Streaming data from (or to) a LAN-XI module is a bit more complicated.
At github.com/hbk-world you can find sample code written in C# and
Python. The samples demonstrate how to interpret the binary stream.
If you prefer another programming language, we suggest that you
download Kaitai Struct (available at github.com/hbk-world), and
generate a parser for the streaming format in your chosen
programming language.

Also available at github.com/hbk-world are the latest firmware for
LAN-XI as well as a draft of the latest version of the programmer's
reference.

In the following pages we will use two very nice third-party tools:
• Wireshark® (wireshark.org)

We use Wireshark to monitor the traffic on the cable. This is
indispensable when debugging.

• Postman (postman.com)
We use Postman to generate test commands. An alternative is
cURL.

HTTP
Method

CRUD
(database) Description

POST Create Create a new resource (at parent-to-
be) or perform action

GET Retrieve Retrieve a representation of a
resource without side effects

PUT Update Update a resource
DELETE Delete Delete a resource
5LAN-XI Open API
User Guide

https://github.com/hbk-world
https://www.wireshark.org/
https://www.postman.com/

The LAN-XI Module Home Page
1.4 The LAN-XI Module Home Page
LAN-XI modules come with an embedded web server, or home page,
which provides a lot of relevant information.

Fig.1.2 Example of a LAN-XI module’s home page.

1) IP adddress: Found in the address bar of the browser and under
“About this module”

2) About this module: Serial number, front-panel image, etc.

3) Synchronization: Gives information about PTP status

4) Licenses: For adding licenses that you have received by, for
example, email

5) Firmware: Update the module’s firmware. Alternatively, you can
update a multi-module system in one operation using the Front-
end Setup PC application.

6) Open recorder application: Starts a web application known as
LAN-XI Notar, which is the original foundation for Open API.
LAN-XI Notar is described as the “Recorder” in this guide. You can

1

2

3

4
5

6

6 LAN-XI Open API
User Guide

Chapter 1 – Introduction
try out the Recorder and even use Wireshark to see what goes on
behind the scenes.

Like the setup protocol, the home page is (by definition) based on
HTTP. This makes it a good place to start understanding the REST
protocol, while digging into the functionality of the support we get
from the home page.

Fig. 1.3 shows how the retrieval of the home page looks in Wireshark.
The top window of Wireshark shows each packet as a single line. Here
we have selected packet 34, which is then decoded in the window
below. Often there is a third window below this, which shows the same
in hexadecimal notation. It is not shown here.

Fig.1.3 GET of home page, shown in Wireshark
7LAN-XI Open API
User Guide

The LAN-XI Module Home Page
When you right-click on packet 34 in the top window and select Follow
TCP Stream, you get the dialog shown in Fig. 1.4. This shows all of the
packets in the HTTP conversation, starting with packet 34. The HTTP
request is shown in red, while the response is shown in blue.

Fig.1.4 Request and response of a single HTTP command

Without going into too much detail we see that HTTP messages
contain:
• Two mandatory lines. In the request, the first line contains the

command type (GET), the HTTP standard used (1.1), and the URI
of the command (/), while in the response we see the error code
(200 OK). The second mandatory line of the request contains the
host part of the URI, which in this case, is given as an IP address.

• Several optional lines follow which control pipelining, etc.
8 LAN-XI Open API
User Guide

Chapter 1 – Introduction
• A double line break (\r\n\r\n) marks the end of the header and
the start of the body.

• A GET request has no body, but the GET response does, often with
a lot of data (here, in HTML).

1.5 A REST Command
Instead of using the browser to retrieve web pages containing HTML,
we can use it to send a simple command to get the information in JSON
format from a LAN-XI module. In the address bar of our browser we
write the following (for the same module):

http://10.100.36.194/rest/rec/module/info/.

The first part of this URI is the IP address, which must match the
module's address, followed by /rest/rec, which must always be
there to access LAN-XI Open API. After this we move into the module's
hierarchical object model. In this case we access the module object
and underneath that, the info object. Fig. 1.5 shows the conversation
in Wireshark.

Fig.1.5 Request for the module/info object, shown in Wireshark
9LAN-XI Open API
User Guide

A REST Command
Again, we right-click the start of the HTTP conversation (now packet 19)
and select Follow TCP stream. The resulting dialog is found in Fig. 1.6.
Note that the response this time says the content is in JSON format
(Content-Type: application/json) with a length of 1423
(Content-Length: 1423). This makes it relatively easy for us to
parse the JSON in our code, providing us with the relevant setup
information.

Fig.1.6 HTTP conversation with JSON data

Using the browser's address bar for writing GET commands is fine,
because that is all an address bar does. It implicitly always sends GET
commands with the given URI and these do not contain a body.
10 LAN-XI Open API
User Guide

Chapter 1 – Introduction
However, when you need to send PUT commands, the browser cannot
so easily help you. This might be where you start writing your program,
but if you like to handcraft tests a little bit further, you may use
Postman, which is a third-party program with a large community.
Fig. 1.7 shows a PUT command sent via Postman. Note that PUT is
selected in the drop-down box next to the IP address of the module.
Postman automatically creates good default headers. Below this we
have written four lines of JSON, which Postman will use in the body of
the request. Further below we have the response – here we have
chosen to look at the headers of this, since in this case, the body is
empty.

Postman is clever. You can, for example, set the IP address as a global
variable so that you can save scripts that may work on any module.

Fig.1.7 PUT command is sent via Postman
11LAN-XI Open API
User Guide

Streaming
Please note that when a LAN-XI module is controlled by Open API, the
display still shows correct status. You can even use the small button
next to the display to start/stop your ongoing measurement, etc.

1.6 Streaming
If you look at a typical application, the streaming of data takes 99% or
more of the bandwidth on the wire. For the sake of performance this is
binary. You can find samples on how to parse the binary header data
and process the sample data at github.com/hbk-world. There are some
samples in C#, others in Python. In both cases we use the HTTP/web
libraries that come with the language.

A typical flow could be:

1) Connect to the LAN-XI module and put it in Recorder mode
(Open API mode).
Optionally, do a TEDS detection to learn about transducer
sensitivity, etc.

2) Get or set the sample rate and filters.

3) Tell the module to stream data to your client. By default, data goes
to an inserted SD card.

4) Create a socket and start receiving blocks of data.

5) Parse the header to find metadata and description of channels,
including scale factors.

6) Buffer samples and display, filter and/or store as needed.

7) Repeat steps 6 and 7 per block of data. (Note: This might require a
threaded implementation.)

Fig. 1.8 shows the output from a Python sample named
RealtimePlot.py, available at github.com/hbk-world/LAN-XI-Open-
API-python-examples. This sample is animated and uses threaded
code. The top graph is in the time domain and shows a 1 kHz sine
(simply generated with a phone), while the bottom graph shows an FFT
12 LAN-XI Open API
User Guide

https://github.com/hbk-world
https://github.com/hbk-world/LAN-XI-Open-API-python-examples
https://github.com/hbk-world/LAN-XI-Open-API-python-examples

Chapter 1 – Introduction
of the signal (using a Hamming window). In this case a microphone is
connected, and the Y-axis shows magnitude in dB re 20 µPa (based on
TEDS sensitivity).

Fig.1.8 Output from Python sample program analyzing a 1 kHz tone from a phone

If the LAN-XI module has one or more generators, you can also control
these. Each generator has two specific modes:
• A classic signal generator with two internal sources. You can, for

example, select one source to be a fixed sine, and the other to be a
swept sine. The generator will create the two signals, mix them
internally, and output the summed signal on the front connector of
the module. This will go on until stopped.

• In the same way that you can stream data from a module, you can
stream binary data to the generator in the module, and it will
output the analog data on the module's front connector.

Earlier we saw that the HTTP-based commands are easy to see in
Wireshark. If you want to use this tool with the binary data streams, you
will appreciate the “Wireshark Dissector” found at github.com/hbk-
world/LAN-XI-Open-API-Tools.
13LAN-XI Open API
User Guide

https://github.com/hbk-world/LAN-XI-Open-API-Tools
https://github.com/hbk-world/LAN-XI-Open-API-Tools

Ground Rules
1.7 Ground Rules
When using LAN-XI Open API there are rules that must be respected:
• LAN-XI supports both Open API and BK Connect/PULSE LabShop,

but only one at a time.
You should, for example, power cycle LAN-XI between sessions
with the Open API and other clients.

• Multiple Open API clients directed towards the same LAN-XI
module are possible at the same time, but the LAN-XI module can
only stream to a single client or to the SD card.
Other clients may show status and allow users to start or stop
measurements.

• HTTP-based commands, by definition, operate on a single module.
However, it is possible to arm all modules, and then start sample-
synchronous sampling – see the code samples.

• LAN-XI supports neither HTTPS nor WebSocket streams and has
not been verified with IPv6.
You can, however, select to have one socket per channel, instead of
the default which sends all data on a single socket.

• PTP synchronization requires that modules and frames can “see”
each other via the left connector on frames (rear view). Thus, if you
have only two frames, or a frame and a stand-alone module, you
can connect your PC to the right connector (rear view) on the
frame. Larger setups will require a PTP-aware switch to which the
PC can also be connected. Note that some low-quality switches
may support PTP, but still deliver poor timing. HBK recommends
our UL-0265 or high-quality brands like Hirschmann™ and Cisco®.
14 LAN-XI Open API
User Guide

Chapter 2
Recorder

For historic reasons, LAN-XI Open API is built on top of the LAN-XI
Notar application (described as the “Recorder” in this guide). This has
defined the various states that the application can – and must – go
through.

The Recorder on LAN-XI can be used to record a signal to a network
stream or SD card – and generate a signal on modules with output. All
command paths related to the Recorder are prepended by: /rest/rec/.

The commands are case-insensitive, but the JSON body is case-
sensitive.

The application supports synchronization and alignment of samples
across several LAN-XI modules, but can also be used on a single
module.

2.1 State Machine
The Recorder operates using several state domains. The main states
are the module states. The module states relevant to the Recorder are
illustrated in Fig. 2.1.
15LAN-XI Open API
User Guide

State Machine
Fig.2.1 Module states relevant to the Recorder – and transitions between the states

When using PTP synchronization, two other states are important to
monitor: Input status and PTP status.

Idle

RecorderOpened

RecorderConfiguring

RecorderStreaming

RecorderRecording

PUT/rest/rec/close PUT/rest/rec/open

PUT/rest/rec/create

PUT/rest/rec/finish PUT/rest/rec/channels/input

PUT/rest/rec/measurements/stop POST/rest/rec/measurements

190216/1

PUT/rest/rec/cancel
16 LAN-XI Open API
User Guide

Chapter 2 – Recorder
2.2 Generic Flow

It is not necessary to perform the entire chain of actions for each
recording. If no configuration changes are necessary, it is sufficient to
end streaming with /rec/measurements/stop and restart it with /rec/
measurements/start.

When streaming data in multi-socket mode, all sockets must be
connected before streaming is started, or the module will indicate an
error. Once streaming is started, an overrun condition or a broken
connection on some streams will not affect other streams, which will
continue transferring data.

2.3 Managing Stored Recordings
Recordings stored on the SD card can be listed, downloaded, and
deleted.

Action REST Command Resulting Module
State

Post-boot state Idle
Open Recorder /rec/open RecorderOpened
Create configuration /rec/create RecorderConfiguring
Configure input
channels

/rec/channels/input RecorderStreaming

Get streaming port /rec/destination/socket
or
/rec/destination/sockets

Open Socket Connection(s)
Start streaming /rec/measurements RecorderRecording
Fetch Samples
End streaming /rec/measurements/stop RecorderStreaming
Finish recording
session

/rec/finish RecorderOpened

Close Recorder /rec/close Idle
17LAN-XI Open API
User Guide

Managing Stored Recordings
2.3.1 Obtaining a List of Recordings
Returns a list of recordings stored on the SD card.

Example response:

URI: http://<ip>/rest/rec/measurements
Supported Methods: GET
Valid States: All
Resulting State: Unchanged
Body: None

[
{

"size": 9446395,
"duration": 4000,
"uri": "/rest/rec/measurements/20210126-053627(UTC)---0000074254",
"setup":
{

"channels" : [...],
"datetime" : 1611639387689,
"fileFormat" : "bkc",
"maxSize" : 2147483648,
"module" : { ... },
"name" : "Rec3",
"recordingMode" : "Single"

}
},
... (more recordings) ...

]

size integer The size, in bytes, of the recording
duration integer The length, in milliseconds, of the recording
uri string A URI used to download, delete, or otherwise

reference the recording
setup object The measurement setup used to produce the

recording. This is identical to the setup applied to
/rest/rec/channels/input and contains the name
and date/time of the recording
18 LAN-XI Open API
User Guide

Chapter 2 – Recorder
2.3.2 Downloading a Recording
Downloads a recording stored on the SD card.

To specify the recording of interest, append the <uri> from the list of
recordings obtained from a GET or POST request to /rest/rec/
measurements.

The response will be a WAV or BKC file, depending on the file format
selected at time of recording.

BKC files are downloaded in 32-bit format by default. This format is
supported by all versions of BK Connect, but takes up more space than
strictly necessary.

If using a recent version of BK Connect that supports 24-bit BKC then
it is possible to reduce bandwidth and storage requirements by
appending "?format=bkc24" to download a 24-bit BKC file that is, GET
http://<ip><uri>?format=bkc24.

2.3.3 Deleting a Recording
Removes a recording from the SD card.

URI: http://<ip><uri>
Supported Methods: GET
Valid States: RecorderOpened, RecorderConfiguring,

RecorderStreaming
Resulting State: RecorderDownloading
Body: None
Parameters (optional) format=bkc24

URI: http://<ip><uri>
Supported Methods: DELETE
Valid States: All
Resulting State: Unchanged
Body: None
19LAN-XI Open API
User Guide

Input Related Commands
To specify the recording to be deleted, append the <uri> from the list
of recordings obtained from a GET or POST request to /rest/rec/
measurements.

2.4 Input Related Commands

2.4.1 /rest/rec/open
This command opens the Recorder application on the module.

Body (optional):

Send to slaves first, then the master.

URI: http://<ip>/rest/rec/open
Supported Methods: PUT
Valid States: Idle
Resulting State: RecorderOpened
Body: Optional

{
"performTransducerDetection": true,
"singleModule": true

}

performTransducerDetection boolean If set to true, the module will
automatically perform TEDS
transducer detection when the
Recorder is opened. Otherwise,
initial transducer detection is
skipped.
Skipping transducer detection
reduces the time the Recorder
application takes to open.
If not specified, this parameter
defaults to true.
20 LAN-XI Open API
User Guide

Chapter 2 – Recorder
2.4.2 /rest/rec/close
This command closes the Recorder on the module.

2.4.3 /rest/rec/create
This command creates a recording configuration for the Recorder.

singleModule boolean If set to true, the Recorder
application will open in single-
module mode. This means the
module will be configured to run as
a single, independent module.
Otherwise, the Recorder
application will open in multi-
module mode. This means the
module will prepare to run as part
of a larger, sample-synchronous,
multi-module configuration.
Set this parameter depending on
the desired recording
configuration.
If not specified, this parameter
defaults to true.

URI: http://<ip>/rest/rec/close
Supported Methods: PUT
Valid States: RecorderOpened
Resulting State: Idle
Body: None

URI: http://<ip>/rest/rec/create
Supported Methods: PUT
Valid States: RecorderOpened
Resulting State: RecorderConfiguring
Body: None
21LAN-XI Open API
User Guide

Input Related Commands
2.4.4 /rest/rec/cancel
This command cancels and discards the current configuration.

2.4.5 /rest/rec/finish
This command ends the current recording session, returning the
Recorder to the opened state.

2.4.6 /rest/rec/module/time
This command sets the system date and time in the module. It will not
affect the PTP time.

The module will ignore this command, if its system time already is set
with year >= 2009.

Body example (plain text):

URI: http://<ip>/rest/rec/cancel
Supported Methods: PUT
Valid States: RecorderConfiguring
Resulting State: RecorderOpened
Body: None

URI: http://<ip>/rest/rec/finish
Supported Methods: PUT
Valid States: RecorderStreaming
Resulting State: RecorderOpened
Body: None

URI: http://<ip>/rest/rec/module/time
Parameters: One parameter that is an ASCII string specifying the

number of milliseconds since 1/1-1970 0:00:00
(UTC), including leap seconds

Supported Methods: PUT
Valid States:

1388534400000
22 LAN-XI Open API
User Guide

Chapter 2 – Recorder
1/1-2014 0:00:00 (UTC) used in example: 1000 msec/sec × 60 sec/min
× 60 min/hr × 24 hr/day × 16071 days (between 1/1-1970 and 1/1-
2014) = 1388534400000

2.4.7 /rest/rec/module/info
This command returns information about this module.

Body example from LAN-XI Bridge Module Type 3057 (JSON):

✐Please note: Depending on the module, not all fields may be presented.

URI: http://<ip>/rest/rec/module/info
Supported Methods: GET
Valid States: All

{
"license" : "permanentLicense",
"module" : {

"frontpanel" : {
"serial" : 105002,
"type" : {

"model" : "",
"number" : "2121",
"prefix" : "UA",
"variant" : "030"

},
"version" : {

"hardware" : "2.0.0.0"
}

},
"serial" : 105224,
"type" : {

"model" : "B",
"number" : "3057",
"prefix" : "",
"variant" : "030"

},
"version" : {

"firmware" : "2.7.2669.6",
"hardware" : "1.3.0.0"

}

23LAN-XI Open API
User Guide

Input Related Commands
Most of the above properties are described in section 2.4.8.1. The rest
are described in the following table.

},
"moduleState" : "Idle",
"numberOfInputChannels" : 3,
"numberOfOutputChannels" : 0,
"preampInputSupported" : false,
"sdCardInserted" : false,
"supportedBridgeCompletion" : ["None", "Half", "QuarterPos"],
"supportedBridgeSupply" : ["DC Voltage", "DC Current"],
"supportedConnectors" : ["BNC", "Charge", "Bridge", "Diff Charge"],
"supportedFilters" : ["DC", "0.1 Hz 10%", "0.7 Hz", "1.0 Hz 10%", "7.0 Hz", "22.4 Hz"],
"supportedMaxBridgeCurrent" : 0.0250,
"supportedMaxBridgeVoltage" : 10.0,
"supportedOutputRanges" : [],
"supportedQuarterCompletionImpedance" : ["120 Ohm", "350 Ohm", "1 kOhm"],
"supportedRanges" : ["0.316 Vpeak", "10 Vpeak"],
"supportedRemoteSenseWiring" : ["None", "SinglePos", "Double"],
"supportedSampleRates" : [

262144,
131072,
65536,
32768,
16384,
8192,
4096,
2048,
1024,
512,
256,
128

]
}

license string The kind of license currently in use
{“permanentLicense”, “noLicense”}

module object Describes the module: type/serial
no., firmware version and front
panel details

moduleState string Current state of the module’s state
machine. See section 2.1.
24 LAN-XI Open API
User Guide

Chapter 2 – Recorder
The table below shows some other properties supported by the LAN-XI
CAN module and not shown in the above example.

numberOfInputChannels integer Number of input channels available
in the module

numberOfOutputChannels integer Number of output channels
available in the module

preampInputSupported boolean Whether or not a CCLD preamplifier
is available

sdCardInserted boolean Whether or not an SD card is
inserted in the slot on the back of the
module

supportedFilters array of
strings

The basic low-pass filters available,
presented in an array

supportedOutputRanges array of
strings

Output ranges available, presented
in an array

supportedRanges array of
strings

Input ranges available, presented in
an array

supportedSampleRates array of
integers

Sample rates supported by the
module, presented in an array*

syncModeChangeSupported boolean

* It is possible for a home-made application via Open API to control independent modules with
different sample rates, even if they are in the same C- or D-frame. However, PULSE LabShop
and BK Connect require the entire LAN-XI system to have a common sample rate.

supportedHatsChannelPairs array of
arrays

An array where each element is an
array containing a pair of channels
supporting HATS (AES) input (for
example, [[3,7], [4,8]]). This
property is not shown in the above
example and currently only
supported by the LAN-XI CAN
module.

numberOfChannels integer Number of CAN channels
supported by the module

supportedLowSpeedChannels array of
integers

An array of integers containing
channel numbers supporting low-
speed CAN bus type
25LAN-XI Open API
User Guide

Input Related Commands
2.4.8 Input Channel Configuration
The current input channel configuration can be set and retrieved, and
the module stores a default setup that can be retrieved.

2.4.8.1 Data Exchange

For all input channel commands, the configuration is transferred in the
body of the request. JSON is used to describe the channel setup, and
the following (Type 3057 sample) layout is used:

supportedHighSpeedChannels array of
integers

An array of integers containing
channel numbers supporting
high-speed CAN bus type

supportedObd2Channels array of
integers

An array of integers containing
channel numbers supporting
OBD-II

supportedLowSpeedBaudrates object Supported baud rate range for
low-speed bus type (for example,
{“auto”: 0, “min”: 10000, “max”:
125000 })

supportedHighSpeedBaudrates object Supported baud rate range for
high-speed bus type (for example,
{“auto”: 0, “min”: 10000, “max”:
1000000 })

supportedModes array of
strings

An array of strings describing
supported modes (for example,
[“Passive”, “Active”, “Write”])

supportedBusTypes array of
strings

An array of strings describing the
supported bus type(s)
(for example, [“LowSpeed”,
“HighSpeedWithoutTerminator”,
“HighSpeedWithTerminator”])

{
"channels" : [

{
"bandwidth" : "102.4 kHz",
"bridgeCompletion" : "None",
26 LAN-XI Open API
User Guide

Chapter 2 – Recorder
"bridgeQuarterCompletionImpedance" : "350 Ohm",
"bridgeExcCurrent" : 0.0,
"bridgeExcOn" : false,
"bridgeExcVoltage" : 0.0,
"bridgeRemoteSenseWiring" : "None",
"bridgeShunt" : false,
"bridgeSingleEnd" : false,
"bridgeSupplyType" : "DC Voltage",
"ccld" : false,
"hats" : false, // Supported by CAN modules
"channel" : 1,
“ConnectorSelect” : “BNC”,
"destinations" : ["sd"],
"enabled" : true,
"filter" : "7.0 Hz",
"floating" : false,
"name" : "Channel 1",
"polVolt" : false,
"range" : "10 Vpeak",
"transducer" : {

"requires200V" : false,
"requiresCcld" : false,
"sensitivity" : 1,
"serialNumber" : 0,
"type" : {

"model" : "",
"number" : "None",
"prefix" : "",
"variant" : ""

},
"unit" : "V"

}
},

… // further channels omitted
],
“canChannels” : [

{
“channel” : 1,
“name” : “CAN 1”,
“enabled” : true,
“destinations” : [“socket”],
“baudRate” : 0,
“baudRateDetectionTimeout” : 300,
27LAN-XI Open API
User Guide

Input Related Commands
The properties are as follows:

“mode” : “Passive”,
“busType” : “HighSpeedWithTerminator”,
“loopback” : false

},
{
… // Next CAN channel (not shown)
}

],

"maxSize" : 2147483647,
"name" : "Default setup",
"recordingMode" : "Single",
“fileFormat”: “wav”

}

channels object An array of channel and transducer
parameters where each element is an
object which consists of the parameters
below.

bandwidth string The bandwidth of the channel (sample
rate will be 2.56 times this number)
{“50 Hz”, “100 Hz”, “200 Hz”, “400 Hz”,
“800 Hz”, “1.6 kHz”, “3.2 kHz”,
“6.4 kHz”, “12.8 kHz”, “25.6 kHz”,
“51.2 kHz”, “102.4 kHz”, “204.8 kHz”}
Maximum depends on module type.
The same bandwidth must be used for
all channels.

bridgeCompletion string {“None”, “Half”, “QuarterPos”}
None means no completion.
Type 3057 supports quarter-bridge
completion in positive arm only.

bridgeQuarter
CompletionImpedance

string {“Off”, “120 Ohm”, “350 Ohm”,
“1 kOhm”}
Off is automatically set if
bridgeCompletion is None.
28 LAN-XI Open API
User Guide

Chapter 2 – Recorder
bridgeExcCurrent decimal {0.000-0.0250} [Ampere]
Ignored if bridgeSupplyType is DC
Voltage

bridgeExcOn boolean {true, false}
Excitation must be on for bridge
measurements. Caveat: In current
firmware, this MUST be the same for all
channels

bridgeExcVoltage decimal {0.0 – 10.0} [Volt]
Ignored if bridgeSupplyType is DC
Current

bridgeRemoteSense
Wiring

string {“None”, “SinglePos”, “Double”}
• None = No compensation for voltage

drop over cables
• Single = Compensation calculated by

module at measurement start
• Double = Analogue hardware

compensation
bridgeShunt boolean {true, false}

Tells Type 3057 that the user has
mounted a shunt*

bridgeSingleEnd boolean {true, false}
Must be false when measuring with
bridge

bridgeSupplyType string {“DC Voltage”, “DC Current”}
ccld boolean Enable/disable the CCLD power supply.
channel integer The channel number (1 is the first

channel)
ConnectorSelect string {“BNC”, “LEMO”, “Charge”, “Bridge”,

“Diff Charge”, “T-insert”,
“T-insert ref”}†

destinations array of
strings

List of destinations for this channel.
Specify “sd”, “socket” or “multiSocket”.
(Currently only one destination is
supported for a channel, and the same
destination must be used for all
channels.)
29LAN-XI Open API
User Guide

Input Related Commands
enabled boolean Whether or not to include this channel
in the recording

filter string High-pass filter
{“DC”, “0.7 Hz”, “7.0 Hz”, “22.4 Hz”,
“Intensity”}

floating boolean Whether the channel should be
grounded (false) or floating (true)

name string Name of the channel. This will be
included in the WAV file metadata

polVolt boolean Enable or disable 200 V polarization
voltage. This setting must be the same
for all channels.

range string Input range
{“0.316 Vpeak”, “1 Vpeak”, “10 Vpeak”,
“31.6 Vpeak”}

transducer object Transducer setup
maxSize integer The maximum allowed size of the

recording in bytes
name string Specifies the name of the recording in

UTF-8 encoded Unicode
recordingMode string {“Single”, “Semi-continuous”}
fileFormat string Specifies the format of the recording

file. Options are:
• “wav” to produce a recording in wave

format
• “bkc” to generate a BKC file. BKC is the

Brüel & Kjaer common file format
This property is optional. If the REST
client does not specify a file format, the
recording will be stored in the wave
format.

* Type 3057 contains a fixed 50 kΩ shunt calibration resistor that can be switched on and off as
needed. The resistor is connected to two separate pins in the input connector and can thus be
connected across any of the four arms in the bridge, depending on the desired sign of the
simulated strain. bridgeShunt controls the internal shunt switch, however the calibration
measurement must be handled by the client application.

† The T-insert and T-insert ref options of the ConnectorSelect parameter are special charge input
variants used to measure transducer capacitance. The capacitance determination requires
two measurements, one in each setting. At the time of this writing, this is only supported via
the UA-3122-030 front panel.
30 LAN-XI Open API
User Guide

Chapter 2 – Recorder
The next table shows parameters specific to the CAN module. They are
ignored by non-CAN modules and may be omitted.

hats boolean Enables using AES/HATS (head
and torso simulator) inputs.
It is supported by CAN modules
and requires two input channels
(called pair-channels). Pair-
channel info can be acquired with
the /rest/rec/module/info
command

canChannels object An array of CAN channel
parameters, each element being
an object consisting of the
parameters below

channel integer CAN channel number
name string A descriptive name for the CAN

channel defined by user.
enabled boolean Enables (true) or disables (false)

CAN channel.
destinations array of

strings
List of destinations for CAN
channel. Specify “sd”, “socket” or
“multiSocket”. (Currently only one
destination is supported for a
channel, and the same destination
must be used for all channels.)

baudRate integer CAN bus baud rate setup in Bd
Valid range depends on bus type
as follows:
• Low speed: 10000 – 125000
• High speed: 10000 – 1000000
Set the baud rate to 0 for
automatic baud rate detection.

baudRateDetectionTimeout integer Automatic baud rate detection
time out from 1 to 300 seconds. It
is ignored if automatic detection is
not selected.

mode string Communication mode
{“Passive”, “Active”, “Write”}
31LAN-XI Open API
User Guide

Input Related Commands
✐Please note: Run /rest/rec/module/info to see complete info, layout and
exact value ranges for a given module.

2.4.8.2 /rest/rec/channels/input/default

This command returns the default measurement channel setup for the
Recorder.

2.4.8.3 /rest/rec/channels/input

This command returns the current measurement channel setup for the
Recorder (when issuing a GET request) or does the setup (when issuing
a PUT request).

busType string Selects one of the following
supported CAN bus types:
{“LowSpeed”,
“HighSpeedWithoutTerminator”,
“HighSpeedWithTerminator”}.

loopback boolean For troubleshooting purposes, a
copy of sent messages may be
received if enabled.

URI: http://<ip>/rest/rec/channels/input/default
Supported Methods: GET
Valid States: All
Body: See section 2.4.8.1

URI: http://<ip>/rest/rec/channels/input
Supported Methods: GET, PUT
Valid States: PUT: RecorderConfiguring

GET: RecorderStreaming
Resulting State: PUT: RecorderStreaming

GET: State unchanged
Body: See section 2.4.8.1
32 LAN-XI Open API
User Guide

Chapter 2 – Recorder
2.4.8.4 /rest/rec/channels/cic
This command prepares the desired input channels for CIC (charge
injection calibration) measurement and must be sent prior to /rest/
rec/channels/input command. The selected input channels must
be enabled when issuing the input configuration. CIC measurement
requires a front panel capable of routing CIC signal to transducers, such
as front panels with LEMO connectors. The CIC configuration stays
valid until a /rest/rec/finish command has been issued.

Here is an example of CIC configuration:

URI: http://<ip>/rest/rec/channels/cic
Supported Methods: GET, PUT
Valid States: RecorderConfiguring
Resulting State: (PUT) RecorderConfiguring
Body: See below

channels Array of
numbers

Array of selected input channel numbers for CIC
measurement. The selected channels must be
enabled when /rest/rec/channels/input
issued

generator Object Generator object containing following parameters
gain Number Generator gain in the range of 0.0 to 0.999999,

which corresponds to full scale
offset Number DC offset to be added to generator signal in the

range [– 0.999999, + 0.999999]
frequency Number Generator sine frequency given in Hz
phase Number The phase of sine signal given in degrees

{
"channels" : [1,2,5,6]
"generator" :{

"gain" : 0.9
"offset" : 0.0
"frequency" : 1024
"phase" : 0.0

}
}

33LAN-XI Open API
User Guide

Input Related Commands
It is not possible to use CIC and the generator simultaneously.
Therefore, using a generator module like Type 3160 for CIC
measurement will reserve its output-1 resources and cannot be used at
the same time. However, its second output is still free and can be used.

2.4.8.5 /rest/rec/channels/input/bridgeNulling

This command returns the current bridge nulling value from the
Recorder (when issuing a GET request). This is a DC offset in volts,
typically representing the value of the bridge before applying/
changing the load. The nulling value survives a power cycle and can be
read in any state.

When issuing a PUT request, the command will cause an automatic
nulling or a reset nulling.

This is much like a scale where you can choose to see the full weight
(reset nulling) or let the scale tare out the weight of material that is not
interesting (automatic).

Example (PUT):

URI: http://<ip>/rest/rec/channels/input/
bridgeNulling

Supported Methods: GET, PUT
Valid States: (PUT) RecorderStreaming
Resulting State: (PUT) RecorderStreaming
Body: See section 2.4.8.1

{
"channels" : [

{
"channel" : 1,
“nulling” : “Automatic”,
},

… // further channels omitted
]

}

34 LAN-XI Open API
User Guide

Chapter 2 – Recorder
The properties are as follows:

2.4.8.6 /rest/rec/can/obd2

This command is used to request an OBD-II message and supported by
LAN-XI CAN Module Type 3058. The module can store up to 64 OBD-II
requests for each channel in an internal list and send them with the
desired interval time. The command supports REST GET to retrieve
OBD-II list, PUT to add a new request and DELETE to remove a request
from the internal list.

Body:

channels object An array of channel and transducer
parameters, each element is an object which
consists of the parameters below.

channel integer {1..3}
nulling string {“None”, “Automatic”, “Reset”}

URI: http://<ip>/rest/rec/can/obd2
Supported Methods: GET, PUT, DELETE
Valid States: RecorderStreaming
Resulting State: No change in state
Body: See example below

{
“action”: “KeepList”
"Obd2Messages": [

{
"channel": 2,
"messageID": 2016, // ID = 0x7e0
"cycleTime": 250,
"messageInfo": 0,
"dataSize": 3,
"data": [2, 1, 12] // Request: RPM

},
35LAN-XI Open API
User Guide

Input Related Commands
As shown, several OBD-II messages can be sent with the same
command in order to add to or delete from the internal list. The
following table describes OBD-II parameters.

{
"channel": 2,
"messageID": 2016, // ID = 0x7e0
"cycleTime": 250,
"messageInfo": 0,
"dataSize": 3,
"data": [2, 1, 13] // Request: Speed

},
{

"channel": 2,
"messageID": 2016, // ID = 0x7e0
"cycleTime": 250,
"messageInfo": 0,
"dataSize": 3,
"data": [2, 1, 17] // Request: Throttle position

}
]

}

Parameter
Name Options Type Description

action “KeepList”,
“Overwrite”,
“DeleteAll”

string Selects the action to perform.
• KeepList: Keeps the internal list

and performs an add or delete
operation on it. This is the
default action. Supported with
both PUT and DELETE

• Overwrite: Overwrites the
internal list with the new OBD
messages in the Obd2Messages
object. Supported with PUT only

• DeleteAll: Deletes all the OBD
messages for the selected
channel(s). Supported with
DELETE only

See descriptions below.
36 LAN-XI Open API
User Guide

Chapter 2 – Recorder
The action parameter along with the method type (PUT or DELETE)
defines what to do with the internal OBD-II list. If DeleteAll action is
selected, then the entire OBD-II list for the selected channel is cleared.
If Overwrite action is selected, then the entire OBD-II list is replaced
with the new OBD-II message(s). Use KeepList to add or delete one or
specific message(s). Some combinations, like Overwrite action with
DELETE method type, are not allowed. See table above for supported
methods with the selected action parameter.

✐Please note: If the mode parameter described in section 2.4.8.1 is not set to
Write mode, then the OBD-II messages will not be transmitted to
CAN bus.

Obd2Messages object An array of OBD-II messages
where each element is an object
which consists of the parameters
below.

channel 1, 2 number To select CAN channel
messageID 11- or 29-bit

ID
number CAN message ID

cycleTime 1 – 65535 ms number Time in milliseconds between two
consecutive messages (defines
number of messages per second)

messageInfo See
description

number This is a bitwise field, with the
following meaning:

Bit[0]: ExtendedID
(0 = 11-bit, 1 = 29-bit)

Bit[1]: RTR (1 = remote
transmission request)

Bit[2 – 7]: Reserved

✐Please note: When RTR is set,
then no data is allowed

dataSize 0 – 8 number Number of data bytes in the next
field

data Up to 8 bytes
of data

array of
numbers

OBD-II data to be sent to CAN bus
37LAN-XI Open API
User Guide

Input Related Commands
2.4.8.7 /rest/rec/can/sendMessages

This command is used to transmit a number of CAN messages once.
The mode parameter described in section 2.4.8.1 must be set to Write
mode in order to use this command.

Body:

Command parameters are described in table below.

URI: http://<ip>/rest/rec/can/sendMessages
Supported Methods: PUT
Valid States: RecorderRecording
Resulting State: RecorderRecording

{
"TxMessages": [

{
"channel": 1,
"messageID": 2016, // ID = 0x7e0
"messageInfo": 0,
"dataSize": 3,
"data": [2, 1, 12] // Request: RPM

},
{

"channel": 2,
"messageID": 2016, // ID = 0x7e0
"messageInfo": 0,
"dataSize": 3,
"data": [2, 1, 13] // Request: Speed

}
]

}

Parameter
Name Options Type Description

TxMessages object An array of messages where each
element is an object which consists
of the parameters below.

channel 1, 2 number To select CAN channel
38 LAN-XI Open API
User Guide

Chapter 2 – Recorder
2.4.9 Detect Commands

2.4.9.1 /rest/rec/channels/input/all/transducers

This command returns information about the transducers connected
to the module. The information returned is stored in the module. To
perform TEDS detection on connected transducers, refer to the POST /
rest/rec/channels/input/all/transducers/detect command.

Body (JSON):

The body returned is a JSON array of N objects (which may be null
values), with N being the number of input channels available. The
objects are arranged by channel number, beginning with the first
channel.

messageID 11- or
29-bit ID

number CAN message ID

messageInfo See
description

number This is a bitwise field, with the
following meaning:

Bit[0]: ExtendedID (0 = 11-bit,
1 = 29-bit)

Bit[1]: RTR (1 = remote
transmission request)

Bit[2 – 7]: Reserved

✐Please note: RTR is used to
request CAN message from a
specific CAN device.

dataSize 0 – 8 number Number of bytes in the data field
data Up to 8

bytes of
data

array of
numbers

Data to be sent to CAN bus. The
maximum is 8 bytes.

URI: http://<ip>/rest/rec/channels/input/all/
transducers

Supported Methods: GET
Valid States: All
39LAN-XI Open API
User Guide

Input Related Commands
A null value indicates that either nothing is connected to the channel,
or no TEDS data is available. Otherwise, an object presents the
information gathered.

Example:

The fields returned for each transducer may vary.

2.4.9.2 /rest/rec/channels/input/all/transducers/detect

This command starts the TEDS detection of transducers. Any TEDS
information retrieved is stored and not returned with this call. Use GET
/rest/rec/channels/input/all/transducers to fetch the data.

[
{

"direction" : "x",
"requires200V" : 0,
"requiresCcld" : 1,
"sensitivity" : 0.01029344982280505,
"serialNumber" : 50891,
"teds" : "EdAaIYJlYwBgpD1kBZ4Zm24NaGNNhADgIBAIBAKBQA==",
"type" : {

"model" : "B",
"number" : "4525",
"prefix" : "",
"variant" : "001"

},
"unit" : "m/s^2"

},
null,

… // further transducers are omitted
]

URI: http://<ip>/rest/rec/channels/input/all/
transducers/detect

Supported Methods: POST
Valid States: All
Body: None
40 LAN-XI Open API
User Guide

Chapter 2 – Recorder
2.4.9.3 /rest/rec/can/detectCables

This command is used to detect and gather information on cables
attached to CAN channels. The module scans both CAN channels
simultaneously and returns a JSON object containing the result of
scanning.

Here is an example of the returned information by this command.

URI: http://<ip>/rest/rec/can/detectCables
Supported Methods: POST
Valid States: All except RecorderRecording
Body: None

{
"channels": [

{
"cable": {

"BkNo": "ZH-0717",
"ID": 17,
"description": "CAN breakout box",
"lemoID": "A",
"supportedChannels": [1, 2],
"typeName": "DB9",
"typeNo": 7

},
"channel": 1,
"frontPanel": "UA-3101-080",
"status": "OK"

},
{

"cable": {
"BkNo": "",
"ID": 0,
"description": "No cable or it is not recognized, use on own risk",
"lemoID": "",
"supportedChannels": [1, 2],
"typeName": "Unknown",
"typeNo": 0

},
"channel": 2,
"frontPanel": "UA-3101-080",
41LAN-XI Open API
User Guide

Input Related Commands
The table below describes the information returned by this command.

"status": "OK"
}

]
}

Parameter Name Type Description
channels object An array where each element is an

object containing the scanning result
for each channel. Each object has the
parameters below.

cable object An object containing cable information
with the parameters below

BkNo string The assigned number by Brüel & Kjær
(for example, “AO-0790”)

ID number A unique ID used for each Brüel & Kjær
cable type

description string Cable description
lemoID string Cable variant

A character used to differentiate cables
with the same Brüel & Kjær number.

supportedChannels array An array containing CAN channel’s
number supporting the attached cable

typeName string CAN connector type name (for
example, “OBD-II”)

typeNo number Cable type number
channel number CAN channel number
frontPanel string Front panel type
status string A string describing the status of the

scanning (for example, “OK”)
42 LAN-XI Open API
User Guide

Chapter 2 – Recorder
2.4.9.4 /rest/rec/can/detectBaudRate

In addition to auto baud rate detection of CAN bus described in section
2.4.8, this command may be used to determine CAN-bus baud rate.

✐Please note: The auto baud rate detection requires CAN bus activity, otherwise
it will fail.

Body:

The next table describes parameters used in the command body.

URI: http://<ip>/rest/rec/can/detectBaudRate
Supported Methods: PUT
Valid States: RecorderStreaming
Resulting State: RecorderStreaming

{ "channels": [
{

"channel": 1,
" baudRateTimeout ": 5,
"busType": "LowSpeed"

},
{

"channel": 2,
" baudRateTimeout ": 5,
"busType": "HighSpeedWithTerminator"

}
]

}

Parameter Name Options Type Description
channels object An array where each

element is an object
which contains baud
rate detection
parameters for a
channel defined in
the parameters below

channel 1, 2 number To select CAN channel
43LAN-XI Open API
User Guide

Input Related Commands
The information returned by this command looks similar to the
following:

2.4.10 /rest/rec/channels/all/disable
This command cancels a recording session.

baudRateTimeout 1 – 300 number Time out time in
seconds

busType “LowSpeed”,
“HighSpeedWithoutT
erminator”,
“HighSpeedWithTer
minator”

string Selects the supported
bus type

{ "channels": [
{

"channel": 1,
"baudRate": 250000

},
{

"channel": 2,
"baudRate": 0

}
]

}

URI: http://<ip>/rest/rec/channels/all/disable
Supported Methods: PUT
Valid States: RecorderStreaming
Resulting State: RecorderConfiguring
Body: None
44 LAN-XI Open API
User Guide

Chapter 2 – Recorder
2.4.11 /rest/rec/onchange
This command is used to obtain status information while recording.

Body:

Much of the information may also be acquired using GET /rest/
rec/module/info (see section 2.4.7).

URI: http://<ip>/rest/rec/onchange
http://<ip>/rest/rec/onchange?last=<last update
tag>

Supported Methods: GET
Valid States: All

{
"moduleState": "Idle",
"sdCardInserted": false,
"buttonEnabled": true,
"lastSdCardUpdateTag": 0,
"transducerDetectionActive": false,
"lastTransducerUpdateTag": 0,
"canStartStreaming": false,
"lastUpdateTag": 2,
"recordingMode": "",
"fanStatus": {

"event": "",
"speed": "",
"mode": ""

},
"batteryStatus": {

"event": ""
},
"temperatureStatus": {

"event": "",
"level": ""

},
"ptpStatus": "Locked",
"inputStatus": "Unknown"

}

45LAN-XI Open API
User Guide

Input Related Commands
The update tags indicate when certain changes have occurred.
Whenever a change is detected, the lastUpdateTag field increases its
value. If anything was changed in the state of the SD card, or if
transducers were detected (TEDS detection), lastSdCardUpdateTag
and/or lastTransducerUpdateTag will have changed values, indicating
that some action may have to be taken to make sure the system is
properly configured.

If ”<last update tag>” is equal to lastUpdateTag, the on-change
request will wait for a change before returning. If no change has
occurred, there is a time out of 30 seconds and the request will return
with the same response as last request.

The client program must keep a copy of the last response to figure out
what has changed.

moduleState string Current state of the module’s state
machine. See section 2.1.

sdCardInserted boolean Whether or not an SD card is inserted
in the slot on the back of the module

buttonEnabled boolean Whether or not the button on the
front of the module is configured to
be used, for example, to cancel a
recording

transducerDetectionActive boolean
lastSdCardUpdateTag integer

See abovelastTransducerUpdateTag integer
lastUpdateTag integer
recordingMode string
fanStatus object Contains changes in fan speed and

mode. It is relevant for frames only.
batteryStatus object Contains information on any changes

in battery’s predefined capacity
levels. It is relevant for frames only.

temperatureStatus object Contains information on any changes
in module’s predefined temperature
levels
46 LAN-XI Open API
User Guide

Chapter 2 – Recorder
2.4.12 /rest/rec/destination/socket
When streaming to a single TCP socket (destinations specified as
socket), this command can be used to get the TCP port to connect to.

Refer to the protocol documentation in Chapter 5 for more information
on how to use the streaming socket.

Body:

This body tells the client to connect to TCP port 1536 on the module to
retrieve the streaming samples.

2.4.13 /rest/rec/destination/sockets
When streaming to multiple TCP sockets (destinations specified as
multiSocket), this command is used to get the TCP ports to connect to.

Refer to the protocol documentation in Chapter 5 for more information
on how to use the streaming sockets.

ptpStatus object PTP state and is relevant if PTP is used
for synchronization

canStatus array of
objects

URI: http://<ip>/rest/rec/destination/socket
Supported Methods: GET
Valid States: RecorderStreaming, RecorderRecording

{
“tcpPort”: 1536

}

URI: http://<ip>/rest/rec/destination/sockets
Supported Methods: GET
Valid States: RecorderStreaming, RecorderRecording
47LAN-XI Open API
User Guide

Input Related Commands
Body:

This response tells that the client can connect to TCP ports 1536 – 1539
on the module to retrieve the streaming samples from each input
channel. In this example, four input channels are enabled on the
module, causing four TCP ports to be opened. Data from the first
enabled input channel will be streamed to the first TCP port in the
returned array, etc.

2.4.14 /rest/rec/measurements
Starts the streaming of samples to the destination (socket, multiSocket
or SD card). Streaming starts as soon as the command is received and
processed, and data needs to be consumed by the client before buffers
overflow.

Sent to slaves first, then the master.

✐Please note: It is possible for a home-made application via Open API to control
independent modules with different sample rates, even if they are in
the same C- or D-frame. However, PULSE LabShop and BK Connect
require the entire system to have a common sample rate.

2.4.15 /rest/rec/measurements/stop
Stops the streaming of samples to the destination (socket or SD card).
Streaming is stopped as soon as the command is received and
processed. If the destination is socket/multiSocket, this means that no
effort is made to send any remaining packets for the current time (that
is, channels may seem to end at different times).

{
“tcpPorts”: [1536, 1537, 1538, 1539]

}

URI: http://<ip>/rest/rec/measurements
Supported Methods: POST
Valid States: RecorderStreaming
Resulting State: RecorderRecording
Body: None
48 LAN-XI Open API
User Guide

Chapter 2 – Recorder
2.4.16 Commands for PTP synchronization
When using two or more PTP (precision time protocol) synchronized
modules, setting up requires some extra commands and parameters.
The additions compared to the single-module setup are described
here.

2.4.16.1 Master and Slaves

In a LAN-XI system, we operate with master and slaves regarding
distributing the time and a trigger.

The time master, called the PTP Master, sends the time to the slaves.

The Trigger Master uses the time from the PTP system to tell the slaves
when to fire the trigger.

Normally, the PTP Master and the Trigger Master are the same LAN-XI
module. However, if the system includes an external time reference you
can set preferredMaster to false in all LAN-XI modules and set the
domain to the same as the time reference. Then you must define one
of your LAN-XI modules as Trigger Master by setting triggerMaster to
true.

A PTP Master module is always Trigger Master. A PTP slave module can
be either Trigger Master or trigger slave.

A stand-alone LAN-XI module is automatically its own Trigger Master.

In a single LAN-XI frame, the module in slot 1 is automatically the
Trigger Master.

In the above two examples, the triggerMaster is reported as false in the
syncmode (GET) command, because the module is not sending triggers
out on the Ethernet.

URI: http://<ip>/rest/rec/measurements/stop
Supported Methods: PUT
Valid States: RecorderRecording
Resulting State: RecorderStreaming
Body: None
49LAN-XI Open API
User Guide

Input Related Commands
2.4.16.2 Domain

In LAN-XI, we operate with two domains: PTP and trigger. A domain is
a number between 0 and 127.

Normally, the PTP and trigger domains use the same number, but in
special cases they are different.

If you have a common time server on your network and two different
LAN-XI systems on the same network, then select the same PTP domain
for both LAN-XI system and the time server, and select different trigger
domains for the individual LAN-XI systems.

2.4.16.3 TAI, UTC and Leap Seconds
• International Atomic Time (TAI) – see definition in Wikipedia®
• Coordinated Universal Time (UTC) – see definition in Wikipedia

See the latest news at:
• “leap seconds.pdf” from the International Bureau of Weights and

Measures (BIPM) – https://www.bipm.org/utils/en/pdf/
time_ann_rep/Time_annual_report_2019/9_Table2_TAR19.pdf

• “bulletinc.dat” from the International Earth Rotation and Reference
Systems (IERS) – https://hpiers.obspm.fr/iers/bul/bulc/
bulletinc.dat

On the wire, PTP uses TAI time. When delivering time to the user, UTC
time is used. This requires information about the offset (leap seconds)
between UTC and TAI; in 2019 this is 37 seconds.

BIPM sends out information six months ahead of adding an extra leap
second. This information is distributed by the GPS. If your PTP Master
has GPS receiver, you do not need to do anything.

Without GPS receiver, you can enter the new number on the module
home page or use the Open API command syncmode.

When the offset changes, it is distributed to the PTP slaves and all
modules store it in an EEPROM (electronically erasable programmable
read-only memory).

Change of offset will not affect an ongoing measurement.
50 LAN-XI Open API
User Guide

https://en.wikipedia.org/wiki/International_Atomic_Time
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://www.bipm.org/utils/en/pdf/time_ann_rep/Time_annual_report_2019/9_Table2_TAR19.pdf
https://www.bipm.org/utils/en/pdf/time_ann_rep/Time_annual_report_2019/9_Table2_TAR19.pdf
https://hpiers.obspm.fr/iers/bul/bulc/bulletinc.dat
https://hpiers.obspm.fr/iers/bul/bulc/bulletinc.dat

Chapter 2 – Recorder
2.4.16.4 States

PTP synchronization adds several sub-steps to the initialization
sequence – several of these require some time for systems to settle and
synchronize between modules.

The module state has not been changed; no extra states need to be
handled, but two new states need to be taken into account: PTP state
and Input state.

The PTP state is used to tell when modules are settling and when they
are locked, meaning that clocks are in sync.

The Input state similarly tells when the inputs are settled or
synchronized.

2.4.16.5 Flow

Order Action REST Command
Resulting State

Module PTP Input
Post-boot
state

Idle Unknown* Unknown*

Master
Slave(s)

Set synch-
ronization
mode

/rec/syncmode Unlock
Settling
Locking
Locked

Slave(s)
Master

Open
Recorder

/rec/open RecorderOpe
ned

Slave(s)
Master

Create con-
figuration

/rec/create RecorderCon
figuring

Slave(s)
Master

Configure
input channels

/rec/channels/
input

Settled

Slave(s)
Master

Synchronize
modules

/rec/
synchronize

Synch-
ronized

Slave(s)
Master

Start internal
streaming

/rec/
startstreaming

RecorderStre
aming
51LAN-XI Open API
User Guide

Input Related Commands
2.4.16.6 /rest/rec/syncmode

Sets PTP mode on the module. This command can also designate the
preferred master in the PTP setup.

This command should generally be issued to the desired PTP Master
first, then all slaves.

After this command is issued, the PTP state should change to Locked on
all modules.

Get streaming
port

/rec/
destination/
socket
or
/rec/
destination/
sockets

Open Socket Connections (to all modules)
Slave(s)
Master

Start
streaming

/rec/
measurements

RecorderRec
ording

Fetch Samples (from all modules)
Master
Slave(s)

Stop
streaming

/rec/
measurements/
stop

RecorderStre
aming

Close Socket Connections (to all modules)
Master
Slave(s)

Finish
recording
session

/rec/finish RecorderOpe
ned

Master
Slave(s)

Close
Recorder

/rec/close Idle

* PTP and input status may be Unknown if PTP, and the like, are not set up – but may also be any
of the other states mentioned. This depends on the previous configuration and state. The
example covers setting up PTP synchronization from scratch.

URI: http://<ip>/rest/rec/syncmode
Supported Methods: GET, PUT
Valid States: Idle
Resulting State:
52 LAN-XI Open API
User Guide

Chapter 2 – Recorder
Body:

The synchronization object carries the PTP configuration.

{
"synchronization": {

"mode": "ptp",
"domain": 45,
"triggerDomain": 46,
"preferredMaster": true
“triggerMaster” : true
“usegps”: false,
“switchmethod”: “ptp”,
"UtcTaiOffset": 37,
“settime”: 1552478528000,
“difftime”: 1500

}
}

mode string Set to “ptp” to enable PTP.
Set to “stand-alone” to disable PTP.

domain integer The PTP domain to use for clock distribution. All
time-synchronized modules must be set to the
same PTP domain. No other systems should use
this PTP domain, as this may severely impact the
precision of the PTP, or may break
synchronization altogether.

triggerDomain integer If this keyword is absent from the JSON object
(the normal situation), the default value is the
value from domain.
All trigger synchronized modules must have the
same triggerDomain set.

preferredMaster boolean Set to true on the desired PTP Master, and false
for the slaves. The PTP implementation will
ensure that, at any given time, there is only one
PTP Master for the PTP domain.
53LAN-XI Open API
User Guide

Input Related Commands
triggerMaster boolean If this keyword is absent from the JSON object
(the normal situation), the default value is the
value from preferredMaster.
When using an external PTP Master, like a time
server, set preferredMaster to false on all
modules and triggerMaster to true on one
module in your system.

usegps boolean In frames with a GPS receiver, use this to
timestamp measurements.
Not used in PTP slave frames

switchmethod string This determines the type of LAN switch used:
• “ptp”: A switch configured to use PTP
• “nonptp”: A switch not using PTP (store-and-

forward assumed)
When mixing 100 Mb and 1 Gb LAN it is
important to set this parameter. If wrong, you
can get a phase error around 60° at 51200 Hz.
This could, for example, happen when using a
stand-alone module together with a frame.
Default is ptp (used when this keyword is absent)

UtcTaiOffset integer Offset between UTC and TAI in seconds
settime Int64 Milliseconds since midnight 1970-jan-01,

including leap seconds
Set the system time and PTP time on a master
module.
If applied (see difftime), a PTP slave will receive
new time from the master and will have to lock
again.
epochconverter.com has good information
about time.
1552478528000 is 13 March 2019 12:02:08.000

difftime Int64 Difference in milliseconds, default: 0
Use only on a master module.
If the module system time differs less than
difftime from settime, then the module time is
not altered.
54 LAN-XI Open API
User Guide

https://www.epochconverter.com

Chapter 2 – Recorder
If mode = stand-alone, there is no need to specify domain,
preferredMaster, triggerMaster, and usegps; settime and difftime are
optional.

If mode = ptp, you must specify domain, preferredMaster, and usegps;
triggerMaster, settime and difftime are optional.

If you only want to change the time, then specify only settime and
difftime.

2.4.16.7 /rest/rec/synchronize

This command should be sent to all the PTP slaves before being issued
to the master module. After this command is issued, the input state
should change to Synchronized on all modules.

2.4.16.8 /rest/rec/startstreaming

Starts the internal streaming in the module. Send this command to all
PTP slaves before the master module.

URI: http://<ip>/rest/rec/synchronize
Supported Methods: PUT
Valid States: RecorderConfiguring
Resulting State:
Body: None

URI: http://<ip>/rest/rec/startstreaming
Supported Methods: PUT
Valid States: RecorderConfiguring
Resulting State: RecorderStreaming
Body: None
55LAN-XI Open API
User Guide

Input Related Commands
56 LAN-XI Open API
User Guide

Chapter 3
Output Generator

3.1 Model
Fig.3.1 Generator model for one generator

BNC Connector

30 dB A�enuator

Offset

Offset

Gain Gain

Gain

Offset

Input

Input 1 Input 2

D/A Output

�

��

�

Mixer

190217/1
57LAN-XI Open API
User Guide

Command Sequence for Streamed Waveforms
The term ‘input’ in this model is a predefined waveform like a sine or a
waveform streamed from the client to the generator module.

The mixing function can be summation, multiplication or pass. Pass is
selected by the module when only one input is active.

The generator module Type 3160 has two outputs.

✐Please note: This means that the above model is duplicated.

It is recommended to check the output signal both in the time domain
and the frequency domain. When using a new setting, it is easy to get
a wrong signal. For example, gain at max then an offset added could
give a clipped signal.

3.2 Command Sequence for Streamed Waveforms

RecorderOpen
Generator/Prepare Start clock, reset mixer, enable

output, etc.
Generator/Output Setup Configuration

Start sending data to generator 0
Start sending data to generator 1
When n*6000 samples sent to
each generator

n is minimum 3

GeneratorStart
…. Binary Streaming …
Generator/Output 0 Level change while streaming …
….

Generator/Stop 0
Generator/Stop 1

RecorderClose
58 LAN-XI Open API
User Guide

Chapter 3 – Output Generator
3.3 Command Sequence for Built-in Waveforms

3.4 Commands

3.4.1 /rest/rec/generator/output

RecorderOpen
Generator/Prepare Start clock, reset mixer, enable

output, etc.
Generator/Output Setup Configuration

GeneratorStart
….
Generator/Output 0 Level change
….

Generator/Stop 0
Generator/Stop 1

RecorderClose

URI: http://<ip>/rest/generator/output
Supported Methods: GET, PUT
Valid States: Idle
Resulting State:
59LAN-XI Open API
User Guide

Commands
This is the Setup. Information is in JSON format, for example, from a
GET:

{
"outputs" : [

{
"number" : 1,
“gain” : 0.75,
“offset” : 0.0,
"floating" : false,
“inputs” : [
{

“number” : 1,
“signalType” : “stream”,
“gain” : 1.0,
“offset” : 0.0,

“samplingRate” : 1
“source” : “socket”
“port” : 34709,
“errorcode” : 0

},
{

“number” : 2,
“signalType” : “none”

}
]

},
{

"number" : 2,
“gain” : 1.00,
“offset” : 0.0,
"floating" : false,
“mixfunction” : “sum”,
“inputs” : [
{

“number” : 1,
“signalType” : “sine”,
“gain” : 1.0,
“offset” : 0.0,
60 LAN-XI Open API
User Guide

Chapter 3 – Output Generator
The properties are as follows:

“frequency” : 40960.0
“phase” : 0.0,
“errorcode” : 0

},
{

“number” : 2,
“signalType” : “square”
“frequency” : 256.0
“gain” : 1.0,
“offset” : 0.0,

}
]

}
]

}

number integer Output connector, or input source for the mixer
gain float Between 0.0 and +0.999999

Values outside the range will be truncated.
The signal is multiplied by the gain. Thus, it is only
possible to attenuate the signal.
If the output gain is below 0.0316227766, the
generator will increase the digital level 30 dB and
turn on the 30 dB analogue attenuator to get a
better signal-to-noise ratio on the analogue output.

offset float Values outside the range [– 0.999999, +0.999999]
will be truncated

floating boolean true or false
61LAN-XI Open API
User Guide

Commands
Unless otherwise noted, all input waveforms have a gain and an offset.

3.4.1.1 Stream Parameters

Data streamed to the generator is 32-bit integers, with only the upper
24 bits used.

Each word is little-endian.

signalType string To each output you can assign 0, 1 or 2 inputs with
different waveforms. If two inputs are chosen, a
mixer is used, adding the two signals. Adjust the
input gain and offset so that the output of the mixer
does not exceed the range [–0.999999, +0.99999].
• “stream”: Means streaming from host to module,

stream is only allowed in input number 1
• “sine”, “linsweep”, “logsweep”, “random”,

“p_random”, “dc”, “square”
• “none”: This input is not used
Other waveforms may be included on request in the
future

mixfunction string “sum”: Summation
“mul”: Multiplication

errorcode integer 0 = success, other codes to be defined (relevant only
in GET and PUT responses)

samplingrate integer The generator is always running at full speed. If your
data to be streamed has a lower data rate, the
generator can up-sample the data.
Example with Type 3160 values:
0 = full speed 131072 samples per second
1 = 1/2 speed 65536
2 = 1/4 speed 32768
3 = 1/8 speed 16384

port integer The TCP port number where to connect (relevant
only in GET and PUT responses)
62 LAN-XI Open API
User Guide

Chapter 3 – Output Generator
3.4.1.2 Sine Parameters

3.4.1.3 Linsweep Parameters

Linear sweep

3.4.1.4 Logsweep Parameters

Logarithmic sweep

frequency float The frequency in Hz (for example, 1024.0)
Maximum depends on module type.

phase float Start phase 0.0 – 359.9999 degrees, default 0.0

start_frequency float The frequency in Hz (for example, 1024.0)
Maximum depends on module type.

stop_frequency float The frequency in Hz (for example, 10240.0)
Maximum depends on module type.

phase float Start phase, 0.0 – 359.9999 degrees
direction integer 0: Frequency goes from start to stop, when

stop is reached, frequency jumps to start
and starts again.
1: Frequency goes from start to stop, when
stop is reached, frequency goes from stop
to start.

hz_second float Sweep speed in Hz per second

start_frequency float The frequency in Hz (for example, 1024.0)
Maximum depends on module type.

stop_frequency float The frequency in Hz (for example, 10240.0)
Maximum depends on module type.

phase float Start phase, 0.0 – 359.9999 degrees
63LAN-XI Open API
User Guide

Commands
3.4.1.5 Random Parameters

3.4.1.6 P_random Parameters

Pseudo random is a short time sequence with a configurable number
of sine waves having random phase and equal amplitude.

The time signal is constructed using inverse FFT.

direction integer 0: Frequency goes from start to stop, when
stop is reached, frequency jumps to start
and starts again.
1: Frequency goes from start to stop, when
stop is reached, frequency goes from stop
to start.

decades_sec float Sweep speed in decades per second

center_frequency float The frequency in Hz (for example, 1024.0)
Maximum depends on module type.

bandwidth float Bandwidth in Hz
hp_filter boolean Enable high-pass filter.

Special high-pass filter used to remove the
lower frequency part of random noise.
F3dB = bandwidth/100; Can only be
activated if bandwidth max_bandwidth/8

pink_filter boolean Enable pink filter
gen_number integer Value 0 – 15 (up to 16 uncorrelated

generator signals)
gen_number controls the seed for the
random generator

Center_frequency float The frequency in Hz (for example, 1024.0)
Maximum depends on module type.

bandwidth float Bandwidth in Hz
fftlines integer Legal values: 50, 100, 200, 400, 800, 1600,

3200, 6400
Sequence length = fftlines × 2.56 [samples]
Sequence length = (fftlines × 2.56)/
(bandwidth × 2.56) [sec]
64 LAN-XI Open API
User Guide

Chapter 3 – Output Generator
3.4.1.7 DC Parameters

3.4.1.8 Square Parameters

3.4.2 rest/rec/generator/prepare

nbseq integer Sequence repetition count
Value = 1 or value 4

pink_filter boolean Enable pink filter
gen_number integer Value 0 – 15 (up to 16 uncorrelated generator

signals)
gen_number controls the seed for the random
generator, controlling the phase of the
pseudo-random signal

gain float The only parameter to “dc”, offset does not exist

frequency float The frequency in Hz (for example, 1024.0)
Maximum depends on module type. Frequency above
half of the maximum is not recommended.

phase float Start phase, 0.0 – 359.9999 degrees, default: 0.0
repetitions integer Number of pulses, default: 0 = forever
dutycycle float Value 0.0 – 100.0, default: 50.0
highlevel float Should be in the range [–0.999999, +0.999999]

Values outside the range will be truncated.
lowlevel float Should be in the range [–0.999999, +0.999999]

Values outside the range will be truncated.
offset float Common offset added to high-and low-level, gain

does not exist

URI: http://<ip>/rest/rec/generator/prepare
Supported Methods: PUT
Valid States: Idle
Resulting State:
65LAN-XI Open API
User Guide

Commands
Body:

This command will start the clock if not started already.

For the outputs mentioned in the JSON command, the signal
generation will be stopped.

The input selector will be reset, so it is ready for a different waveform.

If the body looks like this:

Only Output 2 will be reset. Output 1 will continue sending signal out
(if already started).

3.4.3 rest/rec/generator/start
This command starts the generators in sync.

{
"outputs" : [

{
"number" : 1

},
{

"number" : 2
}

]
}

{
"outputs" : [

{
"number" : 2

}
]

}

URI: http://<ip>/rest/rec/generator/start
Supported Methods: PUT
Valid States: Idle
Resulting State:
66 LAN-XI Open API
User Guide

Chapter 3 – Output Generator
Body:

To start all generators synchronized, we need a trigger. The module has
a single trigger system used to start measurement or generators.

When using only a single module, the trigger is embedded in the
start command. This maintains backward compatibility. In a system
with more than one module, we need an apply command sent to the
Trigger Master module, after all generators have received the start
command. This rule applies even if there is only a single generator in
the system.

In a single-module system, between a GeneratorSetup and a
GeneratorStart, it is not allowed to start a recording on a stand-alone
module.

In a multi-module system, between a GeneratorSetup > GeneratorStart
and the following apply command, it is not allowed to start a
recording on a stand-alone module.

3.4.4 rest/rec/apply

Only used in a multi-module system. Multi-module systems can
consist of a single frame (housing multiple modules), multiple frames
(PTP) and/or several single modules (PTP). Send this command to the

{
"outputs" : [

{
"number" : 1

},
{

"number" : 2
}

]
}

URI: http://<ip>/rest/rec/apply
Supported Methods: PUT
Valid States: Idle
Resulting State:
67LAN-XI Open API
User Guide

Commands
Trigger Master module. This module will then send a trigger on the PTP
system and/or the frame trigger bus. Now, all generators will start
synchronized.

3.4.5 rest/rec/generator/stop

Body:

URI: http://<ip>/rest/rec/generator/stop
Supported Methods: PUT
Valid States: Idle
Resulting State:

{
"outputs" : [

{
"number" : 1

},
{

"number" : 2
}

]
}

68 LAN-XI Open API
User Guide

Chapter 4
General Commands

4.1 GPS

Get data from the GPS receiver.

Only LAN-XI frames have a built-in GPS receiver. Only the frame
controller module (slot 1) has access to the GPS receiver.

If the command is sent to a module without a GPS receiver or the GPS
receiver is not ready, the following JSON data comes back:

If the GPS data is OK, the returned JSON data looks like this:

URI: http://<ip>/rest/rec/gps
Supported Methods: GET
Valid States: All
Resulting State:
Body: None

{
"gps" : {

"quality" : "bad"
}

}

{
"gps" : {

"quality" : "ok",
"latitude" : {
69LAN-XI Open API
User Guide

Reboot
4.2 Reboot

Unconditional reboot of the module.
NOTICE: If the module is recording, use the stop command described in

section 2.4.15 before rebooting the module. Otherwise, some or all
of the recorded data may be lost.

"deg" : 55,
"minute" : 48.99547958374023
"char" : "N",

},
"longitude" : {

"deg" : 12,
"minute" : 32.02425003051758
"char" : "E",

},
"utc_time" : {

"year" : 2019
"month" : 6,
"day" : 19,
"hour" : 13,
"minute" : 56,
"second" : 19.0,

}
}

}

URI: http://<ip>/rest/rec/reboot
Supported Methods: PUT
Valid States: All
Resulting State: Idle
Body: None
70 LAN-XI Open API
User Guide

Chapter 4 – General Commands
4.3 BatteryInfo

This command is used to retrieve battery information. The command
must be sent to the frame controller module that manages battery
monitoring. Since the frame controller monitors batteries every
12 seconds, the returned data can be up to 12 seconds old.

 Body:

URI: http://<ip>/rest/rec/batteryInfo
Supported Methods: GET
Valid States: All
Resulting State: No state change
Body: See below

{
"supplySource": "battery",
"remainingTime": 463,
"batteries": [

{
"slot": 11,
"capacity": 95,
"status": " discharging",
"current": -1164,
"voltage": 16585,
"serialNumber": 100713

 }, {
"slot": 10,
"capacity": 68,
"status": " chargingSuspended",
"current": -3,
"voltage": 15468,
"serialNumber": 100717

}
]

}

71LAN-XI Open API
User Guide

BatteryInfo
The properties are as follows:

Any changes in supply sources (such as removing or inserting the
battery or external power) is not reflected immediately. The update
time depends on the frame type. The maximum time for Type C- and D-
frames is 4 – 5 seconds while for the Type A-frame it is 20 seconds.

supplySource string If there is more than one supply source (for
example, AC and battery), this field will show
which source is selected to supply the frame.
Supported supply sources are: “AC”, “DC” and
“battery”

remainingTime number The remaining time in minutes. This
information is available only if the supplySource
is battery

batteries object An array where each element is an object
containing battery-related information. Each
object has the parameters below

slot number Frame slot number where the battery is
inserted

capacity number Battery capacity in percentage, with the
0 – 100% range

status string Battery charging status, which can be one of
the following: “charging”, “discharging”,
“charged”, “chargingSuspended”

current number Battery current in mA
voltage number Battery voltage in mV
serialNumber number Battery serial number
72 LAN-XI Open API
User Guide

Chapter 5
Web-XI Streaming Protocol

The Web-XI® streaming protocol is used for transmitting samples
through the network in the Recorder on the LAN-XI modules.

5.1 Time
Time in Web-XI is based on the concepts from the BK Connect time
format. It is, however, expanded to support absolute time.

5.1.1 BK Connect Relative Time
The relative time in BK Connect is held in a 64-bit integer and contains
a number of ‘ticks’.

There are 222 × 32 × 53 × 72 ticks per second, so each tick is
approximately 4.33 picoseconds. The maximum duration of this time is
approximately 461 days.

We can specify the following sample frequency families with this:

Name Frequency Frequency Range
65 kHz family 2n × 30 × 50 × 70 From 1 to 222 Hz (4 MHz)

51.2 kHz family 2n × 30 × 52 × 70 From 25 to 222 × 25 Hz (105 MHz)
256 kHz family 2n × 30 × 53 × 70 From 125 to 222 × 125 Hz (524 MHz)
48 kHz family 2n × 31 × 52 × 70 From 375 to 222 × 375 Hz (1.6 GHz)

44.1 kHz family 2n × 32 × 52 × 72 From 11025 to 222 × 11025 Hz
(46 GHz)
73LAN-XI Open API
User Guide

Time
Here, a family is defined as a group of frequencies that are equal except
for a factor of 2n.

The frequency listed in the family “name” is just a typical frequency
within the family.

Note that this time wraps in 64 bits after 461 days. We are not satisfied
with such a short wrap time, and we need an absolute time, so this leads
to the format described in the next section.

5.1.2 The Web-XI Absolute Time
The time for Web-XI is based on the ideas in the BK Connect time
described above.

It is a 12-byte quantity in 2 parts:
The first part is the family: It is a 32-bit quantity defining the
exponents used for 2, 3, 5 and 7 (one byte for each). This defines the
size of a clock tick:

This family corresponds to a tick size of:
2–k × 3–l × 5–m × 7–n seconds
The second part is the count: It contains the number of ticks since
0 hours on 1 January 1970 (modified Julian Day: 40 587.0).
This is a 64-bit number.

5.1.3 Important Notes About the Time Format

5.1.3.1 Compatibility with BK Connect

Note that BK Connect signal analysis only supports part of the values
that this time format supports.

Name Description Size in Bytes
K Exponent for 2 1
L Exponent for 3 1
M Exponent for 5 1
N Exponent for 7 1
74 LAN-XI Open API
User Guide

Chapter 5 – Web-XI Streaming Protocol
BK Connect sample frequencies that can be expressed by:
2k × 3l × 5m × 7n Hz
where:
k 22, l 2, m 3, and n 2

5.1.3.2 PTP and LXI Compatibility

The PTP time-stamp format (as defined by IEEE 1588) is different from
the format above:

Zero time for this is 0 hours on 1 January 1970 (modified Julian Day: 40
587.0), which is the same as proposed for Web-XI format above.

The Web-XI application will have to convert to and from this format
when implementing LXI and PTP specific protocols.

5.2 Data From the Device
The device generates data of different kinds:
• Signal Data: Measured data from analogue inputs
• Interpretation Messages: Describe how to interpret Signal Data
• Aux Sequence Data: Messages received on CAN inputs (LAN-XI

Module Type 3058 only)
• Data Quality: Information about overload and other error

conditions

Name Data Type Description
Seconds 6-byte Time in seconds

In LXI (an abbreviation for LAN
extensions for instrumentation), this
value is split into two parts:
• The 4-byte Seconds field
• The 2 byte Epoch field in the header

Nanoseconds 6-byte In LXI, this is divided in the 32-bit
Nanoseconds field and the 16-bit
Fractional_Nanoseconds field
75LAN-XI Open API
User Guide

Data From the Device
Data is sent to the client as Messages in a TCP/IP stream.

The client does not need to enable or subscribe to messages – all
messages are enabled by default.

Typically, the module will start off by sending Interpretation Messages
for each enabled channel, followed by signal Signal Data and/or Aux
Sequence Data messages for the duration of the recording.

Errors are reported using Data Quality messages that are added
asynchronously to the stream.

5.2.1 Streaming
The module streams messages over a TCP/IP connection. The protocol
will attempt to transfer all data and guarantees that any data loss
caused by, for example, a slow network connection will be reported in
a subsequent Data Quality message.

The device can either stream data from all input channels on a single
TCP connection, or it can stream data from individual channels on their
own, separate TCP connection. To select between single-socket or
multi-socket operation, specify a destinations value of socket or
multiSocket when sending the channel setup to /rest/rec/
channels/input (see section 2.4.8.3).

5.2.2 Data Types and Value Domains
Data types below are typically specified as being signed, even when it
is obvious that the value domain is in fact unsigned (such as the
number of values in a message). The reason for this is to be compliant
with the Microsoft® Common Language Specification (CLS).

Of course, it will be an error to specify a negative number of values for
a count even though it is, in fact, possible.

IDs (such as SignalId) are also signed. In this case, all values except for
0 are valid IDs unless otherwise specified.

The value 0 is used to indicate an unknown ID.
76 LAN-XI Open API
User Guide

Chapter 5 – Web-XI Streaming Protocol
5.2.2.1 Strings

Strings are in UTF-8 format. They are represented as a byte count
followed by that number of bytes when part of binary data:

5.2.2.2 Streaming Message Format

A message consists of a fixed-length header followed by content. The
table below shows the message header.

Name Length
(in bytes) Contents

Count 2 The number of bytes in the UTF-8 string as an
Int16
If Count is 0, then the string is empty. Count may
not be negative.

Bytes Length The actual content of the string ✐Please note: The count is NOT the length of
the string since a single character may be from
1 to 4 bytes in length.

Name Length
(in bytes) Contents

Magic 2 The ASCII characters BK
HeaderLength 2 The length of the rest of the

header up to but not including
the message data length
Currently, this is 20*.

* If new fields are needed in the header, they should be appended after the Timestamp
field. Existing fields must never be removed from the header. If these rules are
followed, the header length will always increase for each new header version. The
client can use the HeaderLength as a kind of header-version field.

MessageType 2 Identifies the content of the
message.

Reserved1 2 For future use. Set to 0.
Reserved2 4 Used for debugging.
Timestamp 12 Time of message
LengthOfMessageContent 4 Length of the message

content in bytes
77LAN-XI Open API
User Guide

Data From the Device
This header is followed by the content part of the message:

The actual content depends on the message type. See the section on
message types below.

All multi-byte values in a message are little-endian.

5.2.3 Message Types
This section describes the different types of messages that can be sent
to the client.

Each message type has an associated structure that is sent right after
the header.

The following sections describe these structures.

MessageContent LengthOfMessageContent Depends on the message type.

Message Type Value Description
Unknown 0 Value not set

Should never be used in an actual
message.

SignalData 1 Data values from a signal
DataQuality 2 Indicates the data quality of a certain

signal’s data. The quality message is
typically only generated when the quality
of a signal changes.

Interpretation 8 Describes how to interpret SignalData.
AuxSequenceData 11 Similar to SignalData but contains relative

time for non-equidistant data (for
example, CAN data).
78 LAN-XI Open API
User Guide

Chapter 5 – Web-XI Streaming Protocol
5.2.3.1 SignalData

Messages of this type contain data values from a signal.

The message content is:

The following structure is repeated NumberOfSignals times:

The type of the values is given by the ContentDataType as defined in the
Interpretation status message, see section 5.2.3.7.

5.2.3.2 DataQuality

Messages of this type contain quality information about a certain
signal. The quality message is typically only generated when the quality
of a signal changes.

Name Stream
Type

REST
Type Description

NumberOfSignals Int16 Number Number of signals with data in this
message.* The number of signals in
the message should be non-zero.

* It is up to the device to decide whether it wants to group signals into one message or not.

Reserved Int16 For future use
Set to 0 when producing stream,
ignore when consuming stream.

Name Stream
Type

REST
Type Description

SignalId Int16 Number Identifies the signal that produced
the following values

NumberOfValues Int16 Number Number of values
The number of values should be
non-zero.

Values Array of
values

Array of
numbers

Data from the signal
Number of values must be a
multiple of the vector length.
79LAN-XI Open API
User Guide

Data From the Device
The message content is:

The following structure is repeated NumberOfSignals times:

5.2.3.3 DataValidity Flags (Int16)

The DataValidity flags (Int16) is exactly as it is in BK Connect. The values
are ‘flags’ that can be OR’ed together if more than one condition exists.

Name Stream
Type Description

NumberOfSignals Int16 Number of signals with data in this message
The number of signals in the message should
be non-zero.

Name Stream Type Description
SignalId Int16 Identifies the signal that produced the quality.
Validity DataValidity

flags
Quality info

Reserved Int16 For internal use
Set to 4 when producing stream, ignore when
consuming stream.

Name Value Description
Valid 0 Data is valid.
Clipped 2 The signal was clipped.
Invalid 8 The signal is invalid.

Commands that return status information (for
example, GET /rest/rec/onchange?last=0)
give the status of the bits that are OR’ed into the
‘invalid’ bit:
• cf = cable fault (includes CCLD overload)
• cmol = common mode overload
• anol = analogue overload
The history within this run is also given:
• none = no fault occurred during this record
• now = the fault is there now
• prev = the fault was there previously

Overrun 16 Overrun happened right before this value.
80 LAN-XI Open API
User Guide

Chapter 5 – Web-XI Streaming Protocol
5.2.3.4 AuxSequenceData

Messages of this type contain non-equidistant data values from one or
more signals. While SignalData messages are optimized for time-
equidistant data, this message type contains a relative time, and thus
is better suited for non-equidistant data.

Currently this message type is only used for CAN messages.

The message content is:

The following structure is then repeated NumberOfSignals times:

Name Stream
Type

REST
Type Description

NumberOfSignals Int16 Number Number of signals with data in this
message*
The number of signals in the
message must be greater than zero.

* It is up to the device to decide whether it wants to group signals into one message or multiple
messages.

Reserved Int16 Reserved
Set to 0.

Name Stream
Type

REST
Type Description

SignalID Int16 Number Identifies the signal (where the
data originates).

NumberOfValues*

* An AuxSequenceData message may be sent with NumberOfValues set at 0. This indicates that
the time of the sequence has reached the time specified in the header. This may be used by
non-periodic sequences to inform that there will be no data at or before the given time (in
BK Connect signal analysis parlance, this is called a ‘Synchronade’).

Int16 Number Number of values included in
this message
81LAN-XI Open API
User Guide

Data From the Device
The following structure is then repeated NumberOfValues times:

5.2.3.5 CAN Messages

CAN messages are transmitted as AuxSequenceData described in the
previous section. The value of AuxSequenceData is an array where each
element is an object containing CAN data as shown in the table below.

Name Stream
Type

REST
Type Description

RelativeTime Int32 Number Time since the absolute time
specified in the header

Value A CAN
message

Array of
numbers

A single CAN message
See 0 for the contents of this data
message type.

Fields Name Type Description
status byte CAN bus and message status.

Bit[0–1]: ControllerStatus
(0 = errorActive, 1 = errorPassive, 2 = BusOff)

Bit[2]: txErrorCounter
(0 = No error, 1 = txErrorCounter >0)

Bit[3]: rxErrorCounter
(0 = No error 1 = rxErrorCounter >0)

Bit[4]: LostMessage
(0 = OK, 1 = At least 1 message lost)

Bit[5-7]: Reserved
CanMessageInfo byte This is a bitwise field, with the following meaning:

Bit[0]: ExtendedID
(0 = 11-bit, 1 = 29-bit)

Bit[1]: RTR info
(0 = Send, 1 = RTR)

Bit[2]: Data direction
(0 = Received, 1 = Transmitted)

Bit[3–7]: Reserved
82 LAN-XI Open API
User Guide

Chapter 5 – Web-XI Streaming Protocol
The status field contains important information about the CAN-bus
state and message errors. It can be compared to overload info for
analogue data. The first two bits contain information about the CAN-
bus state and are the most important bits (the names are defined by
CAN protocol). errorActive means OK, while errorPassive means
missing data (cable is removed/disconnected). BusOff is a fatal error
and means that the channel is disabled, and all communication has
been stopped. The channel can be enabled by reconfiguring it or by
sending a stop and start command. The next two bits
(rxErrorCounter and txErrorCounter) contain info whether an RX/TX
error has occurred. The onchange command can be used to obtain the
actual number of RX/TX errors. The last status field, LostMessage, is a
sticky bit meaning that at least one message has been lost. This bit can
be cleared by restarting the channel. The example below shows a
complete Web-XI message containing 2 values that encapsulate CAN
packages received from CAN channel 1.

CanDataSize byte This is equal to the DLC (data length code) in the
original received CAN message. Normally it is
equal to number of bytes in the data field.
However, it is not required to be the same for RTR
messages.

Reserved byte Reserved for future use.
CanMessageID 4-byte 11-bit or 29-bit CAN message ID
CanData 8-byte CAN data

Number of valid data is defined by CanDataSize
field.

Field Name Field
Size Value Description

Magic 2 BK
HeaderLength 2 20
MessageType 2 11 AuxSequenceData
Reserved1 2 0
Reserved2 4 0
TimeStamp 12 45620142821 Absolute time of arrival of

first packet in this message
83LAN-XI Open API
User Guide

Data From the Device
LengthOfMessageCon
tent

4 48 2 + 2 + 2 + 2 + 2×20 = 48

NumberOfSequence 2 1 It means that all data is
coming from same source.

Reserved 2 0

SequenceID 2 101 CAN channel 1
NumberOfValues 2 2 2 CAN package

RelativeTime 4 7345610
CanStatus 1 0
CanMessageInfo 1 0
CanDataSize 1 3
Reserved 1 0
CanMessageID 4 0x7e0 CAN frame ID (11 or 29 bits)
CanData 8 5,6,7,0,0,0,0,0 8-byte CAN data including

padding

RelativeTime 4 20242601
CanStatus 1 0
CanMessageInfo 1 0
CanDataSize 1 3
Reserved 1 0
CanMessageID 4 0x7e0 CAN frame ID (11 or 29 bits)
CanData 8 5,6,7,0,0,0,0,0 8-byte CAN data including

padding
Dark shading = Web-XI header
Medium shading = AuxSequenceData header
Light shading = AuxSequenceData values that encapsulate CAN message
84 LAN-XI Open API
User Guide

Chapter 5 – Web-XI Streaming Protocol
5.2.3.6 Interpretation

This message is sent when information about one or more signals
changes. A piece of information about a signal, such as its unit, is called
a descriptor.

All relevant descriptors are sent automatically when a new stream is
opened.

The message contains one or more descriptors.

The content of a single descriptor is as follows:

5.2.3.7 DescriptorType enum (Int16):

The DescriptorType enum (Int16) contains:

Name Stream Type Description
SignalId Int16 Identifies the signal to which this

descriptor refers. If SignalId is 0 then
the descriptor is for all signals.

DescriptorType DescriptorType enum Identifies the descriptor; see table of
possible descriptor types below.

Reserved Int16 Reserved for future use, set to 0.
ValueLength Int16 Length of value in bytes, not

including any padding, that may
have been added to Value to make it
a multiple of a 32-bit word.

Value Depends on
descriptor type

The value of the descriptor
This value must be a multiple of a
32-bit word.

Name Value Description
Type of

Corresponding
Descriptor Value

Default
Value

DataType 1 Data type of a single
value in signal

ContentDataType
enum

None
85LAN-XI Open API
User Guide

Data From the Device
5.2.3.8 ChannelType enum (Int16):

The ChannelType (Int16) enum has the following possibilities:

ScaleFactor 2 Scale factor to multiply
with each value in signal
data to obtain a value in
the specified unit.*

Float64 1.0

Offset 3 Offset to add to each
value in signal data to
obtain a value in the
specified unit.

Float64 0.0

PeriodTime 4 Time between 2
consecutive values of the
signal

Timestamp None

Unit 5 The SI unit of the signal
The corrected value
(after applying scale
factor and offset) will be
in this unit.

See section 5.2.2.1 Empty
string

VectorLength 6 Length of one value
0 means scalar

Int16 0

ChannelType 7 ChannelType enum Int16 1

* The scale factor is applied before the offset (CorrectedValue = ScaleFactor × signalValue +
Offset)

Name Value Description
WebXiChannelType_None 0 Unknown type
WebXiChannelType_Input_Analog 1 Analogue input channel
WebXiChannelType_Input_Auxiliary 2 Auxiliary input channel
WebXiChannelType_CANBus 3 CAN bus
WebXiChannelType_Output_Analog 20 Analogue output channel
WebXiChannelType_Output_Auxiliary 21 Auxiliary output channel
86 LAN-XI Open API
User Guide

Chapter 5 – Web-XI Streaming Protocol
5.2.3.9 ContentDataType enum (Int16)

The ContentDataType (Int16) enum has the following possibilities:

Name Value Description
Unknown 0 ContentDataType not set (should never happen)
Byte 1 8-bit byte
Int16 2 16-bit integer
Int24 3 24-bit integer
Int32 4 32-bit integer
Int64 5 64-bit integer
Float32 6 32-bit float
Float64 7 64-bit float
Complex32 8 32-bit complex float
Complex64 9 64-bit complex float
String 10 UTF-8 string. Content is an Int16 length followed by the

given number of bytes. See section 5.2.2.1
87LAN-XI Open API
User Guide

Data From the Device
88 LAN-XI Open API
User Guide

Chapter 6
General Concepts

This section briefly explains some of the basic concepts used
throughout this document and the REST protocol.

6.1 REST
REST is an abbreviation for “representational state transfer”, meaning
that changes are made to the settings on the device by transferring
configurations rather than performing actions.

That is, if a switch is off and should be set on, the REST method would
be to tell the device that the switch should be on, rather than flipping
on the switch.

This concept is used throughout the REST protocol for any
configuration task.

6.2 HTTP
The REST protocol uses the standard HTTP protocol for
communication. The LAN-XI module includes a Web server that reacts
to the REST commands and calls the relevant sub-systems.

A client may send an HTTP request to the server (LAN-XI module). This
request contains:
• Header: Containing information about the request
• Body (optional): Carrying the contents of the request
89LAN-XI Open API
User Guide

HTTP
When finished processing the request, the server sends an HTTP
response to the client. This has the same basic header/body structure.

An HTTP request is made to a specific path, which determines the
resource to target. Furthermore, the request specifies an HTTP method
that tells what kind of request is made. The basic methods are as
follows:
• GET – retrieve information from the requested path.

The request body should be empty, and the information will be
returned in the response body.

• PUT – update the requested resource.
The new configuration should be sent in the request body. The
response body should be empty.

• POST – create an element on the requested resource.
The configuration should be sent in the request body. The
response body should be empty.

• DELETE – delete an element on the requested resource.
Both request and response bodies should be empty.

The request may look as follows (real examples picked up with
Wireshark):

GET – request:

GET /rest/rec/onchange?last=0 HTTP/1.1
Host: 192.168.1.166
Connection: keep-alive
Accept-Encoding: gzip, deflate
User-Agent: Sonoscout/1.04.210 CFNetwork/672.0.8 Darwin/14.0.0
Accept-Language: da-dk
Accept: */*
90 LAN-XI Open API
User Guide

Chapter 6 – General Concepts
GET – response:

PUT – request:

HTTP/1.0 200 OK
Date: Tue, 19 Nov 2013 19:33:53 GMT
Connection: close
Server: Microsoft-WinCE/5.0
Content-Type: text/plain
Content-Length: 1330

{ "recordingStatus": { "measState": "Streaming", "errorState": 21, "recordingUri": "",
"timeElapsed": "00:01:17", "timeRemaining": "00:00:00", "spaceRemaining": 0,
"bufferStatus": { "cpu": { "fullPercentage": 0, "fullPercentageMax": 0 }, "dsp": {
"fullPercentage": 0, "fullPercentageMax": 0 } }, "channelStatus": [{ "rms":
0.000002026557922, "peak": 0.000038146972656, "cf": "none", "anol": "none",
"cmol": "none" }, { "rms": 0.000001430511475, "peak": 0.000008225440979, "cf":
"none", "anol": "none", "cmol": "none" }, { "rms": 0.000001430511475, "peak":
0.000006675720215, "cf": "none", "anol": "none", "cmol": "none" }, { "rms":
0.000001430511475, "peak": 0.000006437301636, "cf": "none", "anol": "none",
"cmol": "none" }, { "rms": 0.000001549720764, "peak": 0.000006914138794, "cf":
"none", "anol": "none", "cmol": "none" }, { "rms": 0.000001549720764, "peak":
0.000007033348083, "cf": "none", "anol": "none", "cmol": "none" }] }, "moduleState":
"RecorderRecording", "sdCardInserted": false, "buttonEnabled": false,
"lastSdCardUpdateTag": 0, "transducerDetectionActive": false,
"lastTransducerUpdateTag": 2, "canStartStreaming": true, "lastUpdateTag": 409,
"recordingMode": "Single", "fanStatus": { "event": "", "speed": "", "mode": "" },
"batteryStatus": { "event": "" }, "temperatureStatus": { "event": "", "level": "" } }

PUT /rest/rec/module/time HTTP/1.1
Host: 192.168.1.229
Accept-Encoding: gzip, deflate
Accept: */*
Content-Length: 13
Accept-Language: da-dk
Connection: keep-alive
Cache-Control: no-cache
User-Agent: Sonoscout/1.04.210 CFNetwork/609.1.4 Darwin/13.0.0

1383664328651
91LAN-XI Open API
User Guide

HTTP
PUT – response:

6.2.1 Return Codes
Standard HTTP return codes are generally used to indicate the
outcome of an operation. This description covers the ones typically
encountered when working with the REST protocol.

6.2.1.1 Successful Operations

These codes indicate that the request was valid and has either been
carried out or will be carried out later.

HTTP/1.0 200 OK
Date: Tue, 05 Nov 2013 15:12:08 GMT
Connection: close
Server: Microsoft-WinCE/5.0
Content-Length: 0

200 OK The request succeeded. Any changes to the module
state have already occurred by the time the response is
returned. This means there is no need to GET /rest/
rec/onchange after each request to check the
module state. If you get 200 OK, then the module has
transitioned to the expected state and you can send the
next request

202 Accepted The request succeeded. Any changes are pending (may
be sent to a PTP slave module, waiting for the master to
trigger the execution, or may be handled
asynchronously on the module)
92 LAN-XI Open API
User Guide

Chapter 6 – General Concepts
6.2.1.2 Client Errors

In general, any 4xx return code points towards a client error, such as
accessing a non-existing resource or providing invalid data.

400 Bad Request There was a problem with the request. Bad JSON or
invalid parameters will cause this. Attempting to
configure output channels on a non-generator module
will also result in 400. The response body will include an
error message explaining what the problem was.
Typically caused by a bug in the client.

401
Unauthorized

The request was well-formed but the module is unable
to carry it out, either because the current state of the
module doesn’t permit it, or the operation requires a
license which is not available.

403 Forbidden The request was well-formed but the module is unable
to carry it out. Typically encountered when a request is
not allowed in the state that the module is currently in,
for example, attempting to start a recording without
first sending a setup. The module will also return 403 if
there is no SD card inserted and a request is made to
start recording to it. Again, the response body will
include an error message explaining why the request
failed.
Mainly caused by the client trying to do something that
the current state does not allow.

404 Not Found The resource does not exist. This should normally only
be encountered if the client is trying to download a
recording that has been deleted (or never existed). May
otherwise be due to a bug in the client.

405 Method Not
Allowed

Means the HTTP method used was not allowed on that
resource. For example, DELETE /rest/rec/
channels/input would result in a 405.
Typically caused by a bug in the client.
93LAN-XI Open API
User Guide

Data Formats
6.2.1.3 Server Errors

5xx errors are typically caused by errors on the server. They may be
caused by the client’s use of the server.

6.3 Data Formats
Different parts of the REST protocol use different data formats for
exchanging information.

The formats used are primarily JSON and XML, but for certain uses
simple plain text and BMP images have been used.

6.3.1 JSON
JSON is an abbreviation of ‘JavaScript object notation’ and provides a
means of compact description of data structures and relations.

A detailed description is available at www.json.org.

500 Internal
Server Error

Something went wrong in the firmware, typically a failed
API call or memory allocation. As with 400 and 403, an
error message is returned in the response body, though
in some cases the content may only make sense to
firmware developers

503 Service
Unavailable

Caused by the client(s) having more than 10 concurrent
connections to the module. As the module firmware
does not support persistent connections, this error
should only be encountered if the module stops
responding to requests, that is, if the requests start
‘hanging’ or get stuck in the module
94 LAN-XI Open API
User Guide

http://www.json.org

Chapter 6 – General Concepts
Example:

6.3.2 XML
Extensible Markup Language – XML – is another method of describing
data structures.

More information can be found in this tutorial: www.w3schools.com/
xml/.

Example:

The example is taken from section 2.4.7.

A FrontPanel element surrounds the attributes Version, Present, Legal,
etc.

{
“a”: 42, // Value for a has the integer value 42
“b”: “Hello, world!”, // Value for b is a string
“c”: [1, 2, 3, 4], // c is an array of integers
“d”: { // d is an object

“a”: 5.1, // … with an element a which is a float
“b”: [] // … and an empty array b

}
}

<?xml version="1.0" encoding="UTF-8"?>
<FrontPanel>

<Version>0.0.0.1</Version>
<Present>TRUE</Present>
<Legal>TRUE</Legal>
<Type>

<Prefix>UA</Prefix>
<Number>2107</Number>
<Model/>
<Variant>120</Variant>

</Type>
<Serialnumber>102</Serialnumber>
<HwVersion>1.0.0.0</HwVersion>
<DataBlocks/>
<Extensions/>

</FrontPanel>
95LAN-XI Open API
User Guide

http://www.w3schools.com/xml/
http://www.w3schools.com/xml/

State Machine
Each element has a start tag and an end tag, for example <Version>
and </Version>. Empty elements can be written in shorthand as, for
example, <DataBlocks/>, which acts as both start and end tag.

6.3.3 Other
In some places, other data types are used. These may include BMP
images and simple clear text representations of single values.

6.4 State Machine
LAN-XI modules are governed by a central state machine. This is used
to isolate certain uses from each other and makes it possible for clients
to see what the module is currently doing.

That is, if a module is performing a firmware update, clients may
discover that by looking at the module’s state. While in the firmware
update state, the module will not permit many other actions (that is,
there are no valid state transitions), so opening the Recorder will not be
possible at this point.

6.5 Time
The module operates with two types of time:

1) SystemTime, the time in the operating system

2) Measurement time or PTP time
96 LAN-XI Open API
User Guide

Chapter 7
Calculating the Scale Factor

Sample data from the module is normalized in signed 24-bit two’s
complement. This is also known as Q23.

When you have a stream with normalized values, you need to convert
the data to get the units you are interested in, for example, pascals. The
conversion is described as:

calibratedValue = sampleValue × scaleFactor

where calibratedValue is the value of interest, and sampleValue is the
data received from the module. So, we need to calculate the
scaleFactor:

scaleFactor = inputRange × headroom / sensitivity

headroom is a factor used by the DSP (digital signal processor) to
protect against signal clipping. It is normally 1.5 dB or 10^(1.5/20),
which is about 1.18850.

An example:
If we are in 10 V range and the transducer has a sensitivity of
0.00918 V/Pa you get:
scaleFactor = 10 V × 1.18850 / (0.00918 V / Pa) 1295 Pa
Thus, a floating-point value of 1 (also known as the full-scale value)
will be 1295 Pa with the given microphone.
97LAN-XI Open API
User Guide

98 LAN-XI Open API
User Guide

Appendix A
Firmware versions

The table contains an overview of LAN-XI firmware versions and their
features.

Version Date Feature

2.10.0.344 January 4, 2021 Free, unlimited access to Open API

Added parameters in /rec/
syncmode (GET) in Open API

CIC support in Open API

2.10.0.150 April 3, 2020 T-insert support for UA-3122 front
panel in Open API

Added switchmethod in /rec/
syncmode in Open API

Support for T-insert ref
measurement with Type 3057

2.10.0.44 November 15, 2019 Fixes problem on Type 3057

2.10.0.27 October 3, 2019 New Open API features and
improved long-term stability

Last check-in in a series for TAI and
UTC timing (UTC only before), GPS
rollover and u-blox fixes

CAN module can be used as master
in a multi-module configuration, etc.
99LAN-XI Open API
User Guide

2.10.2.27
(cont.)

October 3, 2019
(cont.)

Support for battery information in
Open API (JSON format) and
FrameCtrl (XML)

GPS-sync quality updated to settle in
minimum 30 seconds

Leap seconds handled when module
is on

Added time in /rec/syncmode
(GET) in Open API

Avoid unnecessary restart of PTP

Added signal validity in streaming in
Open API

Added triggerMaster,
triggerDomain in /rec/syncmode
in Open API

2.9.0.552 August 12, 2019 Unlicensed Notar/SD recording;
Notar no longer requires a license

Added /rec/gps (GET)

Fixed multi-module BK Connect
Clock-ID error

Retry CAN board initialization up to
three times

Corrected CIC generator level of
Type 3160 module

Front panel button disable support in
Open API

Implemented single channel TCP
streams

Version Date Feature
100 LAN-XI Open API
User Guide

Appendix A – Firmware versions
2.9.0.458 May 9, 2019 Added fix for UA-310x-04x front
panels

Fixed generator DC calibration
failure

Corrected frame PTP slave internal
configuration in Open API

Added /rec/reboot (PUT)

URI of commands case insensitive in
Open API

Added rec/apply (PUT) in Open
API

Fixed Dyn-X attenuators

Added /rec/syncmode (GET) in
Open API

Support for built-in generator (not
streaming) in Open API

Fixed “Notar UI doesn't refresh in
semi-continuous mode”

CAN status/event support for
BK Connect + CAN Self test

“force standalone” sample clock
generation for use in frame in Open
API

Added PCB ID for bridge completion
board

CAN support for BK Connect

Version Date Feature
101LAN-XI Open API
User Guide

2.9.0.458
(cont.)

May 9, 2019 (cont.) Fixed bridge excitation voltage loop-
back measurement (V-meas) bug

Fixed bridge “activate” command
bug

2.9.0.294 September 28, 2018 Added fix for Type 3056

Support for UA-3122 front panel

Fixed restoring factory firmware bug

Support for high resolution
generator level

Fixed Notar for Type 3676 in Open
API

Notar handles incorrectly
programmed TEDS 0.9 transducers

2.9.0.215 August 30, 2018 Released with BK Connect 2018.1

2.9.0.112 June 25, 2018 Released with BK Connect 2018.0

Added REST command (<ip>/
rest/maxConnection) to query
the number of connections

Fixed “disk full” error observed when
recording files of size close to 4 GB

Fixed thermometer initialization
failure which prevented the
temperature monitor to start

Version Date Feature
102 LAN-XI Open API
User Guide

Appendix A – Firmware versions
2.9.0.33 October 25, 2017 Fixed BKC file generation with
1.6 kHz bandwidth (small block/
record size) in Notar

Fixed 24 to 32 conversion with small
files in Notar

Fixed decreasing firmware update
progress percentage

Improved response format /rec/
module/info (GET)

Fixed NULL pointer dereference on
non-CAN modules for Notar/Open
API

Updated information on browser
compatibility in Notar

2.7.0.568 May 17, 2016 Improved 30 V linearity and AUX
timing

2.7.0.417 November 26, 2015 Released with PULSE 20.0.0.455

SNTP service implemented for
LAN-XI

Support for set nulling on bridge
module, including REST

Support for LAN-XI Bridge Input
Module Type 3057 in Open API

ConnectorSelect and bridgeNulling
dependent on module type in Open
API

Version Date Feature
103LAN-XI Open API
User Guide

2.7.0.417
(cont.)

November 26, 2015
(cont.)

Changed bridgeCompletion from
Full to None

Support for front panels: UA-3100
and UA-3102

Bridge fast nulling support which
cases on analogue hardware version
3.10 or greater

2.7.0.185 June 9, 2015 Released with PULSE 19.0

Fixed TEDS bugs

Support for 1-wire bus short
detection

Changed GPS system to handle
u-blox GPS chip

UDP streaming, added Notar UI to
specify destination IP address and
port

Clock synchronization system
changed, full support for GPS

Fixed repeating of streaming output
for duration of ~32 seconds

Fixed ramping and sweeping of sine
output

Added A-Frame with GPS in
frame_tab.h

Added GPS support from REST
interface to PTP

Added frame support for multi-
module streaming in Open API

Version Date Feature
104 LAN-XI Open API
User Guide

Appendix A – Firmware versions
✐Please note: Support for new modules (for example, the CAN module)
implemented before they were introduced is not included in the
table above. The same goes for various clean-ups and internal test-
code as well as support for new FPGAs (field-programmable gate
array), displays, etc.

Some features are bundled on newest date.

2.7.0.185
(cont.)

June 9, 2015 (cont.) Timestamp in streaming headers
changed to 64-bit PTP format, 32-bit
sec + 32-bit subseconds

Added time parameter to REST
command syncmode so it is possible
to set the PTP time

Version Date Feature
105LAN-XI Open API
User Guide

106 LAN-XI Open API
User Guide

Index

A
AES ...25, 31
Auxiliary channels 3

B
Battery module3, 46, 72

Get information 71, 100
Baud rate, see CAN module
BK Connect3, 73, 74, 75
BMP images94, 96
Bridge module2, 23, 26, 28, 29, 103

C
CAN module25, 31, 35, 75, 99, 101

Baud rate 26, 31, 43
Cable information 41
CAN bus type(s) 25, 32
Channel(s)25, 31, 37, 41, 83
Connector(s) 42
Data 78, 82, 84
Message(s) 37, 81, 82, 84
OBD-II, see OBD-II
Package(s) 83
State ... 83
Transmit messages 38

Case sensitivity 15
Charge input 30
CIC ..33, 99
Commands

apply (multiple modules) . 67, 101

bridgeNulling34
cancel22
cic ...33
close17, 21, 52
create17, 21, 51
default32
detect39, 40
detectBaudRate43
detectCables41
disable44
finish17, 22, 33, 52
gps69, 100
info 23, 31, 32, 45, 103
input 17, 32, 33, 51, 76, 93
measurements .. 17, 19, 20, 48, 52
obd2 ...35
onchange45, 80, 83, 92
open17, 20, 51
output (generator)59
prepare (generator)65
reboot70, 101
sendMessages38
socket17, 47, 52
sockets17, 47, 52
start (generator)66, 67
start (measurements)17, 83
startstreaming51, 55
stop (generator)68
stop (measurements)17, 48
52, 70, 83
synchronize51, 55

syncmode 49, 50, 51, 52
time .. 22
transducers 39, 40

D
Data formats 94
Data types 76, 96
Date and time 18, 22
DC offset 33, 34
Default measurement channel setup 32
Descriptor(s) 85
Determine CAN-bus baud rate 43

F
Finish recording session17, 22, 52

G
Generator(s)3, 13, 33, 57, 61, 67

DC parameters 65
Linear sweep parameters 63
Logarithmic sweep parameters 63
Prepare 65
Pseudo-random parameters 64
Random parameters 64
Set up 60
Sine parameters 63
Square parameters 65
Start ... 66
Stop .. 68
Stream parameters 62

GPS
Data .. 69
Receiver 50, 54, 69

H
HTTP ... 7, 89

Method 4, 90, 93

Protocol89
Request8, 89
Response8, 90
Return codes92

I
Input channel configuration26

J
JSON description94

L
LAN-XI

Domain(s)50, 53
Firmware 4, 6, 24, 94, 96, 99
Notar (Recorder)6, 15, 99
See also

Battery module
Bridge module
CAN module
Open API

LAN-XI Light
Module Type 3676102

M
Module

Get information23
Module state(s) 15, 24, 46, 51, 96

Idle17, 51
RecorderConfiguring17, 51
RecorderOpened17, 51
RecorderRecording17, 52
RecorderStreaming17, 51

N
Null value(s)40

O
OBD-II ... 36

Channel(s) 26
Data .. 37
List 35, 37
Message(s) 35, 36, 37
Parameter(s) 36
Request(s) 35

Open API ..1, 99
Description 4
Ground rules 14
License 1, 4
Support 2
Use scenarios 2

P
Parameters

action 36, 37
bandwidth 28, 64
batteryStatus 46
baudRate 31
baudRateDetectionTimeout 31
baudRateTimeout 44
BkNo .. 42
bridgeCompletion 28
bridgeExcCurrent 29
bridgeExcOn 29
bridgeExcVoltage 29
bridgeQuarterCompletionImpedan
ce ... 28
bridgeRemoteSenseWiring 29
bridgeShunt 29
bridgeSingleEnd 29
bridgeSupplyType 29
busType 32, 44
buttonEnabled 46
cable ... 42
canChannels 31
canStatus 47

ccld ...29
Center_frequency64
center_frequency64
channel . 29, 31, 35, 37, 38, 42, 43
channels28, 33, 35, 42, 43
ConnectorSelect29
cycleTime37
data37, 39
dataSize37, 39
decades_sec64
description42
destination31
destinations29, 47, 76
difftime54
direction63, 64
domain53
duration18
dutycycle65
enabled30, 31
errorcode62
fanStatus46
fftlines64
fileFormat30
filter ..30
floating30, 61
frequency33, 63, 65
frontPanel42
gain33, 61, 65
generator33
gen_number64, 65
hats ...31
highlevel65
hp_filter64
hz_second63
ID ..42
lastSdCardUpdateTag46
lastTransducerUpdateTag46
lastUpdateTag46
lemoID42

license 24
loopbac 32
lowlevel 65
maxSize 30
messageID 37, 39
messageInfo 37, 39
mixfunction 62
mode 31, 38, 53, 55
module 24
moduleState 24, 46
name 30, 31
nbseq 65
nulling 35
number 61
numberOfChannels 25
numberOfInputChannels 25
numberOfOutputChannels 25
Obd2Messages 37
offset 33, 61, 65
performTransducerDetection .. 20
phase 33, 63, 65
pink_filter 64, 65
polVolt 30
port .. 62
preampInputSupported 25
preferredMaster 49, 53, 54
ptpStatus 47
range .. 30
recordingMode 30, 46
repetitions 65
samplingrate 62
sdCardInserted 25, 46
settime 54
setup .. 18
signalType 62
singleModule 21
size ... 18
start_frequency 63
status 42

stop_frequency63
supportedBusTypes26
supportedChannels42
supportedFilters25
supportedHatsChannelPairs25
supportedHighSpeedBaudrates 26
supportedHighSpeedChannels .26
supportedLowSpeedBaudrates 26
supportedLowSpeedChannels ..25
supportedModes26
supportedObd2Channels26
supportedOutputRanges25
supportedRanges25
supportedSampleRates25
switchmethod54
syncModeChangeSupported25
temperatureStatus46
transducer30
transducerDetectionActive46
triggerDomain53
triggerMaster49, 54
TxMessages38
typeName42
typeNo42
uri ...18
usegps54, 55
UtcTaiOffset54

Power cycling14, 34
Power supply 1, 29, 72
PTP

Domain50
Master and slaves49, 50, 92
Set PTP mode52
Synchronization 14, 16, 49, 51, 52
Time22, 50, 54, 96
Time-stamp format75

R
Reboot the module70

Recorder6, 15, 52, 73, 96
Bridge nulling value 34
Close recorder 21
Create configuration 17, 21, 51
Default setup 32
End recording session 22
Open Recorder 20, 51
Setup .. 32

REST4, 30, 35, 81, 103, 104
Command(s) .17, 51, 89, 102, 105
Description 89
Protocol 1, 89, 92, 94
Type 79, 81, 82

RTR (remote transmission request) .. 39

S
Samples5, 12, 14
Scale factor12, 86, 97
Start multi-module system 67
States

Input 16, 51, 52, 55
Module15, 24, 46, 51, 92, 93
PTP6, 16, 47, 51, 52

Status
Get information 45

Streaming4, 76, 100, 101, 104
End streaming 17, 52
Generator 58, 62
Get TCP port(s) 17, 47, 52
Message types 78
Messages 76
Multiple sockets 17, 47, 48
Network streaming protocol
(Web-XI) 1, 73
SD card 15, 48
Single socket 47, 48
Start internal streaming 51, 55
Start streaming 17, 48, 52
Stop streaming 48

Streams with normalized values97
String format77

T
TCP/IP

Connection76
Port(s)47, 48, 62
Socket(s)4, 47
Stream76

TEDS ..40, 102
Detection20, 39, 40, 46

Time ..73
In BK Connect73, 74
In module96
In system22, 49, 54
In Web-XI74
TAI ...50
UTC ...50

Transducer(s)
Get information39
Parameters28, 35
Setup ..30

Trigger ...49, 92
Domain50
Trigger Master49, 67

U
Units ..97

V
Value domains76

W
Waveform(s) 58, 62, 66

Command sequence58, 59

X
XML description95

USER GUIDE

LAN-XI Open API

BE 1872 – 15
English

www.bksv.com © Brüel & Kjær. All rights reserved.

Ë
B
E
-
1
8
7
2
-
-
-
7
Î

BE
18

72
–

15

http://www.bksv.com

	LAN-XI Open API
	Contents
	Introduction
	1.1 Why LAN-XI?
	1.2 Why use Open API for LAN-XI?
	1.3 What is Open API for LAN-XI?
	1.4 The LAN-XI Module Home Page
	1.5 A REST Command
	1.6 Streaming
	1.7 Ground Rules

	Recorder
	2.1 State Machine
	2.2 Generic Flow
	2.3 Managing Stored Recordings
	2.4 Input Related Commands

	Output Generator
	3.1 Model
	3.2 Command Sequence for Streamed Waveforms
	3.3 Command Sequence for Built-in Waveforms
	3.4 Commands

	General Commands
	4.1 GPS
	4.2 Reboot
	4.3 BatteryInfo

	Web-XI Streaming Protocol
	5.1 Time
	5.2 Data From the Device

	General Concepts
	6.1 REST
	6.2 HTTP
	6.3 Data Formats
	6.4 State Machine
	6.5 Time

	Calculating the Scale Factor
	Appendix A
	Firmware versions
	Index

