PRODUCT DATA

PULSE Wind Turbine Sound Power Determination according to IEC 61400–11 Type 7914

Wind turbine noise is an increasingly important environmental issue throughout the world. International standards are constantly being developed to ensure consistency and accuracy in the measurement and analysis of noise emitted by wind turbine generator systems.

PULSE[™] Wind Turbine Sound Power Determination according to IEC 61400-11 Type 7914 allows you to measure the sound power of wind turbines and their component parts according to edition 2.1 from 2006 and edition 3.0 from 2012.

Uses and Features

Uses

- Wind turbine manufacturers can define and verify/validate acoustic emission performance
- Wind turbine purchasers can check the expected acoustic emission performance of new or refurbished units
- Planners and consultants can calibrate or validate their calculated environmental noise maps for single wind turbines or extensive wind farms

Features

- Measures operational and background noise with simultaneous CPB and FFT analysis
- Determines tonality
- Flexible interface to turbine and weather data
- PULSE LabShop-based system gives access to other PULSE LabShop analysis packages (licenses permitting)

Edition 3.0

- Determines the sound power of wind turbines according to IEC 61400-11 2012 edition 3.0
- Plot of all measured data pairs containing measured total noise and background noise
- Plot of all measured total noise versus electrical power data
- Table and plot of sound power spectrum in 1/3 octaves for each bin centre wind speed
- Table showing total noise and background noise

Edition 2.1

- Determines the sound power of wind turbines according to IEC 61400-11 2006 edition 2.1 and fulfils the requirements of FGW-Richtlinie rel. 18 (Fördergesellschaft Windenergie Technischen Richtlinie für Windenergie)
- Spectra for sound power and sound pressure for each wind bin

Wind Turbine Sound Power Determination System

Brüel & Kjær has developed a number of applications for the measurement, analysis and reporting of acoustic emission of wind turbines (Table 1). Type 7914 deals with wind turbines with a maximum power output greater than 100 kW. Both edition 2.1 and edition 3.0 of the IEC standard are supported to fulfil the requirements of different countries.

Table 1 Current standards for acoustic measurements on wind turbines and the corresponding Brüel & Kiær PULSE applications

	PULSE Wind Turb Determination	ines Sound Power on Type 7914	PULSE Small Wind Turbine Acoustic Sound Testing					
Standard	IEC 61400-11, edition 2.1	IEC 61400-11, edition 3.0	BWEA	AWEA	IEC Annex F			
Wind Turbine Type	Not restricted to particular s	wind turbines of a size or type	Applies to wind tu swept area of (rotor diameter horizontal a	rbines with a rotor 200 m ² or less 16 m or 52 ft for xis turbines)	Applies to wind turbines with a maximum power output of less than 100 kW			

A typical system incorporates a portable LAN-XI data acquisition unit (Type 3056-A-040), one Type 4189 microphone and preamplifier, a DC Signal Converter Box (to interface the turbine parameters and the weather parameters to the auxiliary channels), one LAN-XI Battery Type 2831-A and a laptop PC, see Fig. 1. With PULSE, simultaneous CPB and FFT analyses can be made in real time on the laptop PC and the portability of the system enables it to be easily transported to sites around the world.

System Setup

To determine the sound power of a wind turbine, it is necessary to place the microphone at the downwind reference position, according to the standard, and measure the main operating parameters. The position of the microphone is determined by the wind turbine height, the blade diameter and the wind direction. Other optional directions are allowed.

The data from the microphone is measured together with other parameters, such as wind direction, wind speed and turbine power output. The results are analysed in PULSE and a report produced.

During the measurements, Type 7914 permanently monitors the wind speed and direction to determine whether enough data has been acquired in the necessary wind classes, known as "bins", to fulfil the standard. This means that you can optimize the time spent at the measurement site.

The main differences between the two editions of the standard are that in edition 2.1, the calculations are based on at least 3×1 minute measurements, whereas in edition 3.0, at least 10×10 second measurements are required. Furthermore, in edition 2.1, the width of the wind bins is 1 m/s and in edition 3.0 it is 0.5 m/s.

Fig. 1

For further information, refer to IEC 61400-11, which specifies all the parameters and measurements relevant to the measurement of wind turbine sound power. A complete solution for this application can be supplied from the customized projects department.

Non-acoustic Measurements

According to IEC 61400-11, the wind speed measurements can be determined by one of two methods:

- Method 1: Determination of the wind speed from the electric output and power curve of the turbine. This
 is the preferred method and mandatory for certification and declaration measurements. During
 background noise measurements, the wind speed must be measured with an anemometer at a height of
 at least 10 m.
- Method 2: Determination of wind speed with an anemometer at a height of between 10 m and hub height.

According to IEC 61400-11 edition 3.0, the power curve must be used to determine wind speed. Anemometer measurements with the wind turbine in operation in edition 3.0, must be based on an anemometer situated on the nacelle.

DC Signal Converter Box

The electrical power and weather data from the turbine and data from the anemometer (weather station) can be in many formats. DC signals are dealt with via a converter box (customized product). For serial data (CAN) or a digital protocol, a customized solution can be supplied.

Weather Station

The weather station, based on Vaisala WXT560, is a customised product for the measurement of wind speed and wind direction. In IEC 61400-11, the following weather station specifications are given:

- Anemometer: The anemometer and its signal processing equipment shall have a maximum deviation from the calibration value of ±0.2 m/s in the wind speed range from 4 m/s to 12 m/s. It will be capable of measuring the average wind speed over time intervals synchronized with the acoustic measurements
- Wind Direction Transducer: The wind direction transducer shall be accurate to within ±6°

The Vaisala weather station can provide a wind speed accuracy of ± 0.3 m/s in the wind speed range from 0 to 35 m/s and a wind direction of $\pm 3^{\circ}$. It also measures temperature, atmospheric pressure and relative humidity.

Secondary Windscreen

A secondary windscreen is recommended by IEC 61400-11. The influence of Windscreen for Boundary Layer Microphone UA-2133 is included in the PULSE transducer database.

Fig. 2 Windscreen for Boundary Layer Microphone UA-2133

Fig. 3 Secondary windscreen removed to reveal microphone Type 4189 fitted with the primary windscreen

Acoustic Measurements

Type 7914 software guides you through the acoustic measurement procedure. Once you have made the measurement, you can then determine the following information about the noise emission from the wind turbine at various wind speeds:

- apparent sound power level (that is, equivalent continuous A-weighted sound pressure level)
- 1/3-octave band levels
- wind turbine noise and background noise in the form of narrow band measurements
- tonality
- impulsivity

Optional measurements may include directivity, infrasound and low-frequency noise.

Typical Measurement Interface

Fig. 4 to Fig. 7 show the typical interface when using Type 7914 during a measurement.

W Vna	ind spe c,m	eed @ hub I	height VH,n		Wi	nd Bin	[Pow	er, m		Yaw	(Wind Directi	on) 	Bin N 8.5 13 9.0 30 9.5 30 10.0 46 10.5 38	
Fotal Noise		Re	eset list									7		٠ III	•
Act	ive	Date /	Time	Bin	Ch.	P	LAeg,n.j	LWA	VH,n	Vnac,m	илас	VZ,m	жΖ	Remarks	
1		09-07-2013	16:01:40	10.5	0	1609	48.9	97.8	10.66	11.10	0.960	11.10	0.960		
2		09-07-2013	16:01:50	11.0	0	1677	49.1	98.0	10.91	10.81	1.009	10.81	1.009		
3		09-07-2013	16:02:00	11.5	0	1787	48.8	97.8	11.49	11.15	1.030	11.15	1.030		
4		09-07-2013	16:02:10	11.5	0	1752	48.7	97.6	11.29	11.10	1.016	11.10	1.016		
5		09-07-2013	16:02:21	10.0	0	1425	49.2	98.2	9.98	10.75	0.929	10.75	0.929		
6		09-07-2013	16:02:31	10.0	0	1415	49.2	98.1	9.95	10.43	0.954	10.43	0.954		
7		09-07-2013	16:02:41	10.0	0	1469	49.0	98.0	10.14	9.88	1.026	9.88	1.026		
8		09-07-2013	16:02:51	10.5	0	1629	49.3	98.3	10.73	10.59	1.013	10.59	1.013		
9		09-07-2013	16:03:01	10.5	0	1545	48.6	97.5	10.42	10.91	0.955	10.91	0.955		
10		09-07-2013	16:03:11	10.5	0	1564	48.9	97.9	10.49	10.39	1.010	10.39	1.010		
11		09-07-2013	16:03:21	10.0	0	1441	48.8	97.7	10.04	10.87	0.923	10.87	0.923		
12		09-07-2013	16:03:31	9.5	0	1316	49.1	98.1	9.65	10.70	0.902	10.68	0.904		
13		09-07-2013	16:03:41	10.0	0	1429	48.5	97.4	9.99	10.78	0.927	10.78	0.927		
14		09-07-2013	16:03:51	10.0	0	1469	48.7	97.6	10.14	10.54	0.962	10.54	0.962		
15		09-07-2013	16:04:01	10.0	0	1417	49.2	98.2	9.96	9.67	1.030	9.67	1.030		
16		09-07-2013	16:04:11	10.5	0	1608	48.8	97.7	10.65	11.01	0.968	11.01	0.968		
17		09-07-2013	16:04:21	11.5	0	1783	48.8	97.7	11.46	10.98	1.044	10.98	1.044		
18		09-07-2013	16:04:31	11.0	0	1669	48.8	97.7	10.88	10.61	1.025	10.61	1.025		
19	/	09-07-2013	16:04:41	10.5	0	1621	49.0	98.0	10 70	10 79	0.992	10 79	0.992		

with indication of the number of measurements per wind bin

Typical measurement

Fig. 4

Fig. 5

Example of the DC Values tab showing typical values during a measurement

Fig. 6 Wind turbine noise measurement ed.3 parameters Example of the Characteristics General Information | Technical Information | Rotor Information | Gearbox Data Power Curve Measurement Information Environmental Characteristics Wind Turbine Characteristics Environmental Measurements Wind screen Uncertainties Measurements tab showing typical values V = 126 0 kW Update Values! Power Signal 2 kW Power during a 3125 Details 10 V = kW measurement 0 m/s Wind Speed Hub Wind Speed Hub -1 V = 1 m/s 10 35 Details m/s V = 0 m/s Wind Speed Z Wind Speed Z -1 V -1 m/s 35 Details 10 m/s V = 2 0 0 • Yaw/Direction Wind Direction -V = • 9.99 357 Details V = 15 °C 0 Temperature $\overline{\mathbf{v}}$ V = °C Manual Input Details 0 0 °C V = 101.3 kPa 0 0 Ambient Pressure -V = kPa Manual Input Details V = 0 kPa 7914 version: 18.0.0.4 Restart Calibration OK

Fig. 7 Example of the Rotor Information tab showing typical values

Wind turbine noise measurement	t ed.3 parameters			
Characteristics Wind Turbine	Characteristics Environmenta	Measurements	Wind screen	Uncertainties
General Information Technical I	nformation Rotor Information	Gearbox Data	Power Curve N	leasurement Information
Blade manufacturer Blade type name Blade angle Number of blades Rotor speed range Rotor speed at rated power Rotor speed at 8 m/s Distance tower centre to rotor plane	A&R • DW 64 • 0 • 3 • 1 • 16 1 14 1/min 10 1/min 5 m	/min		
Restart	7914 version: 18.0.0.4		Calibra	ation OK

When the measurement procedure is completed, Type 7914 allows you to produce a report according to IEC 61400-11 edition 3.0, including an overview page (see Fig. 8) with the apparent sound power levels $L_{WA,k}$ at bin centre wind speeds at hub height and at 10 m height; plots of all measured data pairs of measured total noise and background noise; table and plot of sound power spectrum in 1/3-octaves for each bin centre wind speed; tonal audibility and frequency for each identified tone.

Fig. 8 Edition 3.0; overview page from a typical report

Wind turbine noise emission test report

According to IEC 61400 Part 11: "Wind turbines - Acoustic noise measurement techniques", edition 3

						F	Ove	rview p	age						
					00 5000	d emissio	n from	the wind t	urbine tvn	e Turbine	Type				
_			Gene	al inform	nation	a cinissic			areine typ	Те	choical dat	1.			
Mind	turbina	manul	lacturer.	Turbine	Manufa	cturer		Bated now	er (generati	wik.					
ward.	Carterine		accurer	Street 1	-runur e			Botor diar	veter-	orj.	80	0			
				12345 C	it.			Hub height	above grou	ind-	100				
Serial	numbe	HE1		1234	.,			Tower desi	above giot	anna.	Tube				
Turbi	neloca	tion:		NUS. 1	0 00 EV			Power con	trol:		Pitch				
TODA	ne ioca	NOTE	Addition	niro: d	or roto	. 0.00		P Ower COI	Additio	nal data f	or geathor	and gene	rator		
Blade	manul	Eacture	i i	Blade M	lanufaci	turer		Gearbox m	anufacture		Gearbor	Manufactu	Tero		
Blade	tune d	eciona	tion:	Blade T	Ine	.urei		Gearbox h	ne designa	tion	Gearbor	Tane			
Blade	nitch	e argina	angen :	Didde i	30~			Generator	manufactur	WHT-	Generato	r Manufac	turer		
Num	ver of h	lades:		3			-	Generator	tune decian	ation	Generato	r Tene			
Boto	r sneed	tanne		10.00 - 2	0 00 1/2	nin		Generator	rated speed	6	0 - 0 1/mir				
Powe	e curve	test	enort-	10100 - 1					and apres			-			
1.046	a curve	vest h	epore:												
Bin	iΠ	i	Lwak	"Lwas	Lyna	"L _{VLk}	L _{VD,k}	"Lyp.s	V.,	s۸.	- 7V.	"com _{vk}	Remarks		
7,5	5	2	95,9 dB	0,781 dB	47,1 dB	0,747 dB	33,2 dB	1,226 dB	7,54 m/s	0,060 m/s	0,283 m/s	0,289 m/s	j total noise < 10		
8,0	13	2	96,2 dB	0,557 dB	47,5 dB	0,520 dB	35,5 dB	0,493 dB	7,95 m/s	0,043 m/s	0,283 m/s	0,286 m/s			
8,5	13	7	96,7 dB	0,541 dB	48,0 dB	0,506 dB	35,8 dB	0,503 dB	8,55 m/s	0,040 m/s	0,283 m/s	0,286 m/s			
9,0	30	28	96,9 dB	0,612 dB	48,3 dB	0,562 dB	37,1 dB	0,586 dB	9,02 m/s	0,027 m/s	0,283 m/s	0,284 m/s			
9,5	30	23	97,4 dB	0,623 dB	48,7 dB	0,593 dB	35,3 dB	0,407 dB	9,49 m/s	0,030 m/s	0,283 m/s	0,284 m/s			
10,0	46	16	97,9 dB	0,648 dB	49,1 dB	0,619 dB	35,6 dB	0,482 dB	9,98 m/s	0,021 m/s	0,283 m/s	0,284 m/s			
10,5	38	8	98,1 dB	0,592 dB	49,4 dB	0,558 dB	36,8 dB	0,657 dB	10,51 m/s	0,023 m/s	0,283 m/s	0,284 m/s			
11,0	19	7	98,3 dB	0,513 dB	49,6 dB	0,483 dB	36,9 dB	0,761 dB	10,97 m/s	0,027 m/s	0,322 m/s	0,323 m/s			
11,5	27	3	98,5 dB	0,579 dB	49,7 dB	0,557 dB	35,4 dB	0,616 dB	11,50 m/s	0,027 m/s	0,337 m/s	0,338 m/s			
12,0	10		98,7 dB	0,443 dB	49,8 dB	0,443 dB			11,94 m/s	0,038 m/s	0,412 m/s	0,414 m/s	No bgd. noise corr.		
12,5	13		98,8 dB	0,534 dB	49,8 dB	0,534 dB			12,53 m/s	0,047 m/s	0,283 m/s	0,287 m/s	No bgd. noise corr.		
13,0	13		98,6 dB	0,582 dB	49,7 dB	0,582 dB			12,99 m/s	0,031 m/s	0,283 m/s	0,285 m/s	No bgd. noise corr.		
13,5	9		99,1 dB	0,736 dB	50,1 dB	0,736 dB			13,37 m/s	0,017 m/s	0,283 m/s	0,283 m/s	No bgd. noise corr.		
Resu	lts relat	ted to '	10 m heigt	ht											
6,0	56	37	96,5 dB	0,804 dB	48,0 dB	0,714 dB	37,6 dB	1,137 dB	8,66 m/s	0,062 m/s	0,283 m/s	0,289 m/s			
7,0	114	47	97,8 dB	0,736 dB	49,1 dB	0,701 dB	35,8 dB	0,378 dB	10,03 m/s	0,039 m/s	0,283 m/s	0,286 m/s			
8,0	56	10	98,4 dB	0,681 dB	49,7 dB	0,645 dB	36,7 dB	0,718 dB	11,40 m/s	0,050 m/s	0,347 m/s	0,350 m/s			
9,0	35		98,8 dB	0,571 dB	49,8 dB	0,571 dB			12,92 m/s	0,061 m/s	0,283 m/s	0,289 m/s	No bgd. noise corr.		
This	excerpt	from t	he test re above	port is only mentioned	y valid in o d test repo	connection ort (especi	with the i ally not in	manufactur	er's certifica on with predi	ate dated ax. iction regard	xx.xxxx. Thes fing sound in	e informatio nmission).	n do not replace the		
Bema	arks:														
Hace		har													
meas	sured	by:													
Date			29-07-2	2013											

Fig. 9

Edition 3.0; excerpt of report showing: Upper: L_{Aeq} (equivalent continuous Aweighted sound pressure level) vs VH,n (wind speed at hub height H at speed n) Middle: L_{Aeq} vs power generated in kW Lower: Wind speed (VP,n) derived from the power curve vs wind speed at height Z, (VZ,m)

Wind turbine noise emission test report

According to IEC 61400 Part 11: "Wind turbines - Acoustic noise measurement techniques", edition 3

Fig. 10 Edition 3.0; results from wind bin 9.0 m/s

					W	ind t	urbin	e no	oise e	emis	sion	test	repo	rt				
			Acco	ording to	IEC 614	00 Part	11: "Win	d turbi	nes - Ad	oustic	noise m	easure	ement te	chniqu	es", edi	tion 3		
								ŀ	esults	Bin 9.0	,							
im	j (B)	Lwale	"Lwa,s	Lera	$\tau_{\rm era}$	$L_{\Psi B,k}$	*L _{98,6}	V.	۶V	-v.	com	Yaw	Yaw	Yaw_i	Pitch	n _{ratar}	Rema	rks
30	28	96,9	0,61	48,3	0,56	37,1	0,59	9,02	0,03	0,28	0,28	65,98	66,57	65,22	-12,45	27,36		
Frq.	Lwales	$L_{\Psi, \sigma, i, k}$	u _{stak}	Lenak	Lynak													
20	57,2 dB	8,2 dB	0,38 dB	8,7 dB	-1,2 dB		110	A MEL										
25	58,5 dB	9,6 dB	0,64 dB	10,9 dB	5,1 dB		100	- [w]				- , .		,	,			-, -
31,5	63,3 dB	14,3 dB	0,51 dB	15,3 dB	8,2 dB													
40	67,2 dB	18,3 dB	0,55 dB	19,0 dB	11,1 dB			ł										
50	71,0 dB	22,0 dB	0,61 dB	22,7 dB	14,4 dB													
63	75,4 dD	24,4 0D	0,54 db	25,0 dB	10,3 0D		901	+ -				- , .	· · 💼	,	,			-, -
100	81 3 dB	32.3 dB	0.64 dB	32.5 dB	18.9.4B							1.1		Lane.				
125	78.6 dB	29.7 dB	0.71 dB	30.2 dB	20.8 dB			1						1 1 1	*****			
160	79.2 dB	30.3 dB	0.57 dB	30.9 dB	22.3 dB		00.			.	1					h .		-1 -
200	80,7 dB	31,8 dB	0,96 dB	33,3 dB	27,9 dB						14141					1		
250	83,3 dB	34,4 dB	0,86 dB	35,6 dB	29,4 dB			Į.										
315	85,8 dB	36,8 dB	0,74 dB	37,3 dB	26,9 dB				· .								h.	
400	86,1 dB	37,1 dB	0,70 dB	37,4 dB	25,1 dB		70-	+ -	· · 📫									- 1 -
500	90,2 dB	41,2 dB	0,20 dB	41,3 dB	24,2 dB				· •									
630	87,3 dB	38,4 dB	0,71 dB	38,5 dB	23,6 dB			t.									1.1.	LL AL
1000	00,2 0D	37,2 0D	0,71 dB	37,4 0D	23,7 0D													1.1.1
1250	84 7 dB	35,7 dB	0.71 dB	36.0 dB	24.0 dB		00	L it										
1600	84.1 dB	35.1 dB	0.71 dB	35.4 dB	23.6 dB		· .											
2000	83.4 dB	34,4 dB	0.72 dB	34.7 dB	22.6 dB													
2500	81,2 dB	32,3 dB	0,69 dB	32,6 dB	21,4 dB		50-											L,L,
3150	77,4 dB	28,5 dB	0,77 dB	29,3 dB	21,6 dB			3	1.5	63	125	250	500	1k	2k	4	ik	8k
4000	73,6 dB	24,7 dB	0,95 dB	26,2 dB	20,8 dB							Fr	equency[H	z]				
5000	70,3 dB	21,4 dB	1,26 dB	23,0 dB	18,0 dB													
6300	[66,4]dB	[17,5]dB	[1,72]dB	20,5 dB	17,6 dB													
8000	[63,3]dB	[14,4]dB	[1,26]dB	17,4 dB	16,9 dB													
10000	[63,6]00	[14,7]00	[1,19]00	17,7 08	10,2 GD													
Total n	oise						LA	iq, k [dB]										
IHz1	532,3	108,0					⁵⁰ I						- 1	, -				
Lptx	39,4 dB	32,8 dB																
ΔL _k	1,0 dB	-0,6 dB					40	1.1		'					- 1 -	- ' -	- 1-	- +
ΔL _{a,k}	-0,6 dB	-2,6 dB																
Countj	23	1																
Status	Tonality	No tone								,	· · ,						· .	
Backgr	ound noi	se							li .									
Frq.	90,0						20+	Π.	12.5	· · · ,								
Las	22,4 dB							10. T	1.0	P								
ΔL _k	0,1 dB						10-	11.2	and the last	we down				- 2 -				
ΔL _{a.k}	-1,9 dB									1.19		. ·						
Countj	2							1			S. W. W.	الارباك	والمتحافية	uk Lu		1.1		
Status	No tone						, united and a second s		-				of the design	1.00	di la casa	المألل قا	ht do a	authorit
				17									2 89 .6	146 W.F	1000 14	1.20.26		1.1
	= No bac	kground n	oise corre	ction	40		-10		7	New York								
	= (Total n	oise - bao	xground r	oise) < 3	05 anihu data	stad					and the second	-	all a destruction					
	= Nore m	nati < Dac easureme	nground for the	uae or to	vsis requir	red	-								all the second s	11000	10-110	a straight
	= No tona	lity detect	ed	any ana	y sis requi			10	00 200	0 30	4000	500	6000	7000	8000	9000	10000	11000
												Fre	quency[Hz	1				
														-				

Reporting for IEC 61400-11 Edition 2.1

When the measurement procedure is completed, Type 7914 allows you to produce a report according to IEC 61400-11 edition 2.1 to document your findings.

A typical report contains the configuration of the wind turbine and its operating conditions, including wind turbine details, operating details, rotor, gear and generator details (see Fig. 11). For each integer wind speed from 6 to 10 m/s (for each measurement series) the acoustic data includes the A-weighted sound power and any identified tones, plus the impulsivity.

Fig. 11

Edition 2.1; excerpt from a typical report, according to FGW (Fördergesellschaft Windenergie) Technischen Richtlinie für Windenergie, on sound emission from a wind turbine

General inform	ation					Т	echnic	cal da	ata (PI)					
Wind turbine m	anufacture	er	Windstrasse 1				atedp	owe	r (gener	ator):		1650	w	
			ę	50000 Köl	n	R	otor d	iame	ter:	,		90.00	m	
						н	ub hei	ight a	above gr	ound:		100 n	n	
Serial number:				XY123456			Tower design:							
Turbine locatio	n:	N/	S: 123418	30.00 E/W: 4562121.00 P			Power control:					Pitch		
	Additiona	l data	for roto	r (PI)		A	dditio	nal d	ata for q	earbox	and gener	rator (PI)	
Blade manufac	turer:	GL	ASFIBER	. /		G	earbo	x ma	nufactur	er:		POWE	RGEA	R
Blade type des	ignation:	AB	C 12.5		earbo	x typ	be desig	nation:		ABCD-123				
Blade pitch:	-					G	enera	tor m	nanufact	urer:		POWE	RGEN	
Number of blac	les:	3				G	enera	tor ty	vpe desi	gnatio	ו:	ABC-	2345-	A
Rotor speed ra	inge:	9,6	0 - 16,90 1	l/min		G	enera	tor ra	ated spe	ed:		744 -	1310 1	/min
Power curve te	est report:		Dok	. Nr. 123	45_A11_	DE, Rev	v. 1							
			Bin ref	erence				Soun	id em iss values	ion		Remarks		
	Standardiz at 10	ed wi mhei	nd speed ght	Effective	e electric	al pow e	er							
Sound pow er	er 6 m/s				929 kW			10	4.0 dB(A)	Signal to noise ratio = 2.7 dB(A)!			
level L _{WA,P}		7 m/s			1,314 kV	V		10	4.1 dB(A)	Signal to n	oise ra	tio = 2.	2 dB(A)!
8 m/s 8.3 m/s (5					1,575 kW				04.1 dB(A)	Signal to noise ratio = 2.3 dB(A			3 dB(A)!
			(95%) 1,613 kW					104.1 dB(A)						
Near field	TOTIVS			<u> </u>										
tonality penalty		om/s 7 m/s		929 KVV			1	dB dB	at 3236	5.0 Hz				
κ _{īN}	Kny 9 m/o				1,514 KV	v V	1	dB	at 3276	0 H 7				
9 m/s		9 m/s			1,070 10	v		ub	ut 0270	.0112				
	1	0 m/s												
Near field		6 m/s			929 kW				2 dB					
impulse penalty		7 m/s			1,314 kV	V			1 dB					
K _{IN}	-	8 m/s			1,575 kW				2 dB					
		9 m/s												
		Umvs	1/3	octave s	ound no	werle	velat	v10 =	= 7 0 m/s					
Frequency	50	63	80	100	125	160	2	00	250	315	400		500	630
Lwap	70.9	71.0	78.3	84.6	83.6	82.1	8	8.1	89.3	89.7	89.6		92.4	87.8
Frequency	800	1000	1250	1600	2000	2500) 3'	150	4000	5000	6300		8000	10000
L _{WA.P}	86.8	90.0	87.4	87.8	87.1	87.2	2 8	6.8	84.2	81.4	76.8		71.2	68.0
			1/1	octave s	ound po	owerle	vel at	v10 =	- 7.0 m/s					
Frequency	63		125	250		500		1000) 2	2000	400	00		8000
L _{WA,P}	79.7	_	88.3	93.9		95.1		93.1		92.1	89.	4		78.3
This excerpt from	n the test rep	oort is	only valid	in connect	tion with	the mar	nufactu	irer's	certificate	e dated	XX.XX.XXXX	Thi inf	ormatio	on does
				sopeoidily				. prou	Juonney	ar any c				
Remarks:										7				
weasured by:														
Date	03/06	/2013	;											
			Sig	nature			-		Sig	nature	1			

Spectra from a Typical Report According to IEC 61400-11 Edition 2.1

Fig. 12 and Fig. 13 show spectra for the wind bin at 8 m/s from a typical report.

All levels are background noise corrected. L_{WA} is also corrected by -6 dB to account for the approximate pressure doubling that occurs for the sound level measurements on a ground board plate, while $L_{Aeq, c}$ is not.

1000

130376

Specifications - Wind Turbine Sound Power Determination According to IEC 61400-11 Type 7914

Type 7914 fulfils the following requirements:

MEASUREMENTS

Measurement Positions: Records site layout, conditions (roughness) Acoustic Measurements: Measures CPB, FFT, overall operational and background noise

Non-acoustic Measurements: Matches turbines with DC signals (aux. channels); includes an interface for the anemometer (hardware required); includes an interface for receiving output power signals from the turbine (hardware required); obtains wind speed from the power curve; includes an interface for the wind direction transducer (hardware required)

Parameters Measured: Wind speed, correction for background noise, apparent sound power levels, 1/3 octave levels, tonality, impulsivity

REPORTING

Generated in Microsoft® Excel®

Type 7914 System with LAN-XI Module Type 3056

A Windows[®]-based application for use with PULSE LabShop. The software is delivered via DVD or USB

SYSTEM REQUIREMENTS

- Microsoft[®] Windows[®] 10 Pro or Enterprise (x64) with either Current Branch (CB) or Current Branch for Business (CBB) servicing model
- Microsoft[®] Office 2016 (x32 or x64) or Office 2019 (x32 or x64)
- Microsoft[®] SQL Server[®] 2017 or SQL Server[®] 2019

Minimum Licence Requirements:

- BK Connect Data Viewer Type 8400
- BK Connect Hardware Setup Type 8401
- BK Connect Data Processing Type 8403

Note: Microsoft SQL Server 2017 is included in BK Connect installation

RECOMMENDED SYSTEM CONFIGURATION

- Intel[®] Core[™] i7, 3 GHz processor or better
- 32 GB RAM
- 480 GB Solid State Drive (SSD) with 20 GB free space, or better
- 1 Gbit Ethernet network
- Microsoft® Windows® 10 Pro or Enterprise (x64) with CB
- Microsoft[®] Office 2016 (x32)
- Microsoft[®] SQL Server[®] 2017
- Screen resolution of 1920 × 1080 pixels (full HD)

POWER REQUIREMENTS

Fulfils the requirements of ISO 7637-1 and 7637-2 with batteries \mbox{DC} Input: 10 to 32 V DC

Power Consumption:

- DC Input: <15 W
- Max.: 26 W (while charging battery)
- Ext. Power Connector: LEMO coax., FFA.00.113, ground on shield

FRONT END

The software automatically detects the front-end hardware connected and configures the system. If IEEE 1451.4 capable transducers (with standardized TEDS) are being used, these are also detected and attached automatically to the correct channel of the input module For information about LAN-XI data acquisition modules, see product data BP 2215

LAN-XI BATTERY TYPE 2831-A

Typical Operating Time: >7 hours with single module Charging Time: 2 hours with included mains charger (ZG-0469)

ACOUSTIC NOISE EMISSION (AT 1 M)

Silent operation to 35 $^{\circ}$ C (95 $^{\circ}$ F) when not charging batteries. When charging batteries, fan operation may start at a lower ambient temperature

DC OUTPUT

+5 V ±0.5 V; max. 0.4 A (1 A fused) +12 V ±1.0 V; max. 0.4 A (1 A fused) **Connector:** LEMO FGG.00.302

DIMENSIONS

Type 3056-A-040:

- Height: 132.6 mm (5.22")
- Width: 27.5 mm (1.08")
- Depth: 248 mm (9.76")
 Weight: 750 g (1.65 lb)
- Weight: 750 g (1.65 lb)

Туре 2831-А:

- Height: 132.6 mm (5.22")
- Width: 27.5 mm (1.08")
- Depth: 248 mm (9.76")
- Weight: 1.0 kg (2.2 lb)

MICROPHONE

½" Prepolarized Free-field Microphone Type 4189 Nominal Open-circuit Sensitivity: 50 mV/Pa (corresponding to -26 dB re 1 V/Pa) ±1.5 dB Capacitance: 14 pF (at 250 Hz)

DC SIGNAL CONVERTER BOX

The converter box (customized product) is used to condition the signals from the turbine and weather station to the auxiliary channel. Switchable between voltage and current inputs of 0 to 10 V, or 4 to 20 mA^{\dagger}

+ The 4 to 20 mA range was chosen because many wind speed and wind direction sensors output 4 to 20 mA signals, and the turbine outputs the same power signal

A dedicated data acquisition network (LAN or WAN) is recommended. A network that only handles data from the front end improves the stability of the data

Type 7914-X^{*} Wind Turbine Sound Power Determination according to IEC 61400-11

SOFTWARE MAINTENANCE AND SUPPORT AGREEMENTS

M1-7914-X* Agreement for Type 7914

REQUIRED SOFTWARE

Type 8400-X	BK Connect Data Viewer
Type 8401-X	BK Connect Hardware Setup
Type 8402-X [*]	BK Connect Time Data Recorder
Type 8403-X [*]	BK Connect Data Processing

Typical System

SOFTWARE		
	-	

Type 7914-X [*]	Wind Turbine Sound Power Determination
	according to IEC 61400-11
M1-7914-X [*]	Software and Maintenance Support Agreement for
	Type 7914

Please note: Requires BK Connect Types 8400, 8401, 8402 and 8403

HARDWARE

WB-3635	Connection Box (Weather Station to WB-3181)
AO-0087-x-yyy [†]	Single screened, general purpose coaxial cable with
	BNC connectors (connects WB-3635 to WQ-3181)
WQ-3181	DC Signal Converter Box, excluding 12 V power
	supply
ZG-0432	Power Supply without Primary Plug UA-2037
UA-2037	Primary Plug, World-wide Kit
WL-3651	Cable, connects WQ-3181 to Type 3056-A-040
Type 3056-A-040	LAN-XI 4-ch. Input/HS-Tacho plus 8-ch. Aux.
	Module 51.2 kHz (Mic, CCLD, V), including LAN-XI
	Front Panel UA-2110-040
Туре 2831-А	LAN-XI Battery Module, including Mains Charger
	ZG-0469 and Adapter ZH-0686
Type 4189-C-001	½" Prepolarized Free-field Microphone including
	Preamplifier Type 2669-C and TEDS
UA-2133	Windscreen for Boundary Layer Microphone
AO-0414-x-yyy'	Special braided-shield microphone cable with 7-pin
	LEMO-1B connectors (connects Type 4189-C-001 to
	Туре 3056-А-040)
Type 4231	Sound Calibrator Class 1
Weather Station [‡]	
NANA 0256 NAL 002	Maathau Ctation

MM-0256-W-002 Weather Station WQ-3413 Serial Device Server WQ-3414 PoE Splitter and PoE Injector

* X is licence type, either X = N, where the licence is node-locked to PC host ID or dongle; or X = F, where the licence is floating, that is, shared via a licence server

t Please specify cable length when ordering: x = D (decimetres) or M (metres); yyy = length in decimetres or metres

ŧ Customised product

Brüel & Kjær and all other trademarks, service marks, trade names, logos and product names are the property of Brüel & Kjær or a third-party company.

Accredited Initial Calibration, LAN-XI Modules

CALI-S-CAI	Accredited Initial Calibration, sound level
	calibrators
MIC-TEDS-CAI	Accredited Initial Calibration, microphones with
	mounted preamplifier and TEDS programming
WO_1256_W_CAL	Accredited Initial Calibration of Weather Station

Type 8403)

BK Connect Data Viewer (advanced)

BK Connect Data Processing Specialist (instead of

Optional Software

Calibration Services

Type 8400-A-X*

Type 8404-X^{*}

ANA-LNXI-CAI

Brüel & Kjær Sound & Vibration Measurement A/S DK-2850 Nærum · Denmark · Telephone: +45 77 41 20 00 · Fax: +45 45 80 14 05 www.bksv.com · info@bksv.com Local representatives and service organizations worldwide

Although reasonable care has been taken to ensure the information in this document is accurate, nothing herein can be construed to imply representation or warranty as to its accuracy, currency or completeness, nor is it intended to form the basis of any contract. Content is subject to change without notice - contact Brüel & Kjær for the latest version of this document.