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Removal of Incoherent Noise from an 
Averaged Cross-spectral Matrix

Dr Jørgen Hald*

Abstract
Measured cross-spectral matrices (CSMs) from a microphone array will in some
cases be contaminated by severe incoherent noise signals in the individual
channels. A typical example is flow-noise generated in the individual microphones
when measuring in a wind tunnel. Assuming stationary signals and performing
long-time averaging, the contamination will be concentrated on the CSM
diagonal. When the CSM is used for traditional frequency-domain beamforming,
Diagonal Removal (DR) will avoid the use of the diagonal. DR is effective at
suppressing the contamination effects, but it also has some side effects. With other
beamforming algorithms and in connection with acoustic holography, however,
the diagonal of the CSM is needed. This paper describes a method for removal of
incoherent noise contamination from the CSM diagonal. The method formulates
the problem as a Semidefinite Program, which is a convex optimization problem
that can be solved very efficiently and with guaranteed convergence properties. A
first numerical study investigates the question, whether the Semidefinite Program
formulation will provide the desired output in all cases. A second numerical study
investigates the limitations introduced by off-diagonal noise contributions due to
finite averaging time. The findings of that study are backed up by results from a
practical measurement.

Résumé
Les matrices interspectrales (cross-spectral matrices = CSM) calculées au moyen
d'une antenne microphonique peuvent parfois être contaminées par des signaux de
bruit incohérents apparaissant dans telle ou telle voie de mesurage. Ce peut par
exemple être les bruits de flux générés dans les microphones lors de mesurages en
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soufflerie. Quand des signaux stationnaires sont moyennés sur une longue durée,
cette contamination se concentre sur la matrice diagonale. Lorsque les CSM sont
utilisées dans le cadre d'un mesurage beamforming traditionnel dans le domaine
fréquentiel, l'outil Diagonal Removal (DR) permet d'éviter l'utilisation de la
diagonale. Cet outil, efficace pour supprimer les effets de la contamination,
s'accompagne toutefois d'effets indésirables. Et si ce sont d'autres algorithmes
beamforming qui sont utilisés, et ce, conjointement avec une holographie
acoustique, la matrice diagonale devient nécessaire. La présente communication
décrit une méthode de suppression de la contamination de la matrice diagonale
due aux signaux de bruit incohérents. Cette méthode fait intervenir, sous forme
d'un Programme Semi-défini, une formulation telle du problème que celui-ci
devient un problème d'optimisation convexe se résolvant très efficacement et avec
des propriétés de convergence garanties. Une première approche chiffrée répond à
la question de savoir si la formulation en Programme Semi-défini peut fournir le
résultat souhaité dans tous les cas. Une seconde approche chiffrée étudie les
limites qu'engendrent les contributions de bruit hors-diagonale, et qui sont liées au
fait que le moyennage est de durée finie. Les conclusions de cette étude sont
illustrées et complétées par les résultats d'un mesurage réel.

Zusammenfassung
Gemessene Kreuzspektralmatrizen (Cross-Spectral Matrices, CSM) von einem
Mikrofonarray sind manchmal mit stark inkohärenten Rauschsignalen in den
einzelnen Kanälen kontaminiert. Ein typisches Beispiel ist Strömungsrauschen,
das bei Windkanalmessungen in den Mikrofonen erzeugt wird. Unter der
Voraussetzung, dass stationäre Signale vorliegen und eine Langzeitmittelung
erfolgt, konzentriert sich die Kontamination auf die Diagonale der CSM. Bei
herkömmlichem Beamforming im Frequenzbereich kann durch Diagonal Removal
(DR) die Verwendung der Diagonalen vermieden werden. DR unterdrückt effektiv
die Kontaminationseinflüsse, hat jedoch Nebenwirkungen. Mit anderen
Beamforming-Algorithmen und in Verbindung mit akustischer Holographie wird
die Diagonale der CSM jedoch benötigt. Dieser Artikel beschreibt ein Verfahren,
mit dem sich inkohärente Rauschkontamination aus der CSM-Diagonale entfernen
lässt. Das Verfahren formuliert das Problem als semidefinites Programm, das heißt,
ein konvexes Optimierungsproblem, das sehr effizient und mit garantierten
Konvergenzeigenschaften gelöst werden kann. Eine erste numerische Studie
untersucht die Frage, ob die Formel des semidefiniten Programms in allen Fällen
den gewünschten Output ergibt. Eine zweite numerische Studie untersucht die
2



Einschränkungen, die sich aufgrund der endlichen Mittelungszeit durch
Rauschbeiträge außerhalb der Diagonale ergeben. Die Ergebnisse dieser Studie
werden durch Ergebnisse einer praktischen Messung unterstützt.

1. Introduction
Microphone array measurements performed outdoors, or in wind tunnels, will
often suffer from self-induced flow-noise in the individual microphones [1]. Use
of windscreens can reduce the effect, but not remove it. For frequency-domain
beamforming applications, averaging of a Cross-Spectral Matrix (CSM) is
typically performed first. If the measured flow-noise signals are (to a good
approximation) independent stationary stochastic processes over the measured
time interval, and if the averaging time is sufficiently long, then the flow-noise
will contribute almost exclusively on the diagonal of the averaged CSM. Use of
windscreens will reduce the noise, but if the screens are not much smaller than the
microphone spacing, then the noise from one windscreen may be picked up by
nearby microphones, resulting in contributions outside the CSM diagonal.

Assuming the flow-noise contributions are concentrated on the CSM diagonal,
their effect on beamforming results can be almost completely removed by use of
so-called Diagonal Removal (DR), where use of the diagonal elements is avoided
[1]. This technique has a simple and robust implementation in connection with
traditional frequency-domain beamforming, typically Delay and Sum.
Unfortunately, it also has some side-effects, such as underestimation of source
levels and areas with negative power in produced contour maps. With other
beamforming algorithms, such as Functional Beamforming [2], and in connection
with acoustic holography, the diagonal of the CSM is needed.

Beamforming deconvolution techniques based on the use of the so-called Point
Spread Function (PSF), such as Non-Negative Least Squares [3], can be
implemented with DR, because the PSF can be calculated using DR. Clean-SC [4]
also includes a DR procedure, which is much more complicated, requiring an
iterative solution of a system of non-linear equations for each new identified point
source. In Reference [5] the iterative solution procedure was found to work well
for the strong sources but failed to converge for the weaker sources. To overcome
that limitation, the Diagonal Denoising (DD) algorithm of the present paper was
adopted. The method was first introduced in Reference [6]. Compared with
Reference [6], this paper includes simulated measurements of incoherent random
flow-noise time signals, which allows the effects of residual off-diagonal elements
3



of CSMs, after a finite number of averages, to be investigated. These simulated
measurements are used in support of the experimental results.

Dougherty [7] recently published a paper describing a method entitled Cross
Spectral Matrix Diagonal Optimization, which uses the same basic idea as the
method presented in this paper. The idea is to reduce as much as possible the auto-
power elements on the CSM diagonal, while maintaining the matrix positive
semidefinite (that is, with non-negative eigenvalues). All off-diagonal (cross-
power) elements remain unchanged. Dougherty did not, however, identify the
problem as being a Semidefinite Program problem that can be solved efficiently
and with guaranteed convergence properties using Convex Optimization, see for
example References [8] and [9]. The DD method in this paper employs Convex
Optimization. Compared to Reference [7], this paper also contains a numerical
investigation of the conditions under which the DD method removes all the
incoherent noise added on the CSM diagonal and nothing else. There seems to be
no mathematical theory to support this at the moment.

The DD method is outlined in Section 2. Section 3 presents a numerical
investigation of the mentioned conditions for precise removal of noise
contributions added only on the CSM diagonal. Based on simulated
measurements, Section 4 investigates the effects of residual off-diagonal flow-
noise contributions, due to the use of a finite averaging time. Results from
comparable actual measurements with flow-noise are presented in Section 5, and
Section 6 provides a summary.

2. Theory

2.1. Basic Properties of Cross-spectral Matrices
This section gives a short introduction on some important properties of CSM’s,
which will be useful in this paper. Cross-spectra are typically calculated from
recorded time series using the Welch method, where weighting (for example
Hanning) and Fast Fourier Transform (FFT) is applied to a sequence of data
‘records’ from overlapping time intervals, and an averaging is performed over the
intervals. Denoted by p, a vector of complex pressure values across all M array
microphones from FFT’s applied to a single time interval and with a single
frequency line picked out, the CSM G for that frequency line is calculated as:

(1)G pp
H

=
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Here, H represents Hermitian (conjugate) transpose, and the bar over the right
side represents averaging over time intervals. Clearly, the matrix is Hermitian, that
is, conjugate symmetric.

Considering the contributions in G from stationary stochastic signals that are
incoherent between the microphones, all off-diagonal contributions will approach
zero during the averaging process. After long-time averaging, the contributions
can be considered to be only on the diagonal, but as we shall see in Section 4, this
requires a lot of averages.

With G calculated according to Eq. 1, G will always have non-negative
eigenvalues, that is, be positive semidefinite. This can, for example, be seen by
arranging all the vectors p as columns in a matrix P, which allows G to be written
as G = PPH, where  equals one divided by the number of averages.
Introduction of the Singular Value Decomposition of P, P = USVH, where U and V
are unitary matrices and S a diagonal matrix, leads to: 

G = PPH = USVHVSHUH. 
Since V is unitary, VHV equals the unit diagonal matrix, and therefore the

expression can be written as:

(2)

with SSH. Eq. 2 is an eigenvalue/-vector decomposition of G. The
eigenvalues n, n = 1, 2, .....M, on the diagonal of  are equal to  times the
squared amplitudes of the singular values from the diagonal of S, showing that
they are always non-negative.

Representing by un, n = 1, 2, .....M, the columns of the matrix U, the vectors

(3)

are the so-called Principal Components related to the individual eigenvalues n.
These vectors are orthogonal, and together they represent the total measured sound
pressure across the array:

(4)

which can be verified through application of Eqs. 2 and 3. Clearly, the principal
components contribute independently (additively) to all elements of G, showing
that they are mutually incoherent. A single principal component is coherent
between all microphones, which can easily be verified from its partial CSM: pnpn

H.

G UU
H

=

pn nun

G pnpn
H

n 1=

M

=
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Considering a special case with only coherent sources, the snapshot vectors p in
Eq. 1 will all be parallel (they differ only through a complex scaling factor),
leading to a single non-zero eigenvalue . Considering another special case of a
single loudspeaker excited simultaneously by several independent signal
components, these signal components will contribute with parallel components to
the snapshot vectors p because the related steering vectors (transfer function
vectors) are parallel. Therefore, in this case, all the vectors p will also be parallel,
producing a single non-zero eigenvalue . In general, the number K of non-zero
egenvalues is equal to the number of incoherent sources that can be distinguished
by the array, based on the averaged CSM.

2.2. Description of the Denoising Algorithm
Let G be an MM element CSM contaminated by microphone self-noise
contributions only on its diagonal. We would like to add an MM element
diagonal matrix D with a priori unknown non-positive diagonal elements dm, 
m = 1, 2, .....M, to cancel the self-noise. Arranging the unknown diagonal elements
in an M-element vector d, we write D = diag(d). After the determination of D, we
will replace G by G+D in subsequent array processing. Cancelling the self-noise
on the diagonal implies a reduction of the sum of the elements dm. A lower limit is
set by the fact that the remaining denoised CSM, G+D, must still be positive
semidefinite. Therefore, in mathematical terms, the idea is to determine d as the
solution to:

(5)

where ‘ 0’ for a matrix means that it has non-negative eigenvalues (is positive
semidefinite). Eq. 5 has the form of a so-called Semidefinite Program, which can
be solved efficiently and with guaranteed convergence properties using Convex
Optimization methods, see for example, Reference [8].

Shown below are the five lines of Matlab code needed to solve Eq. 5 using the
publicly available Matlab library CVX:

cvx_begin;
variable d(M);
G + diag(d,0) == hermitian_semidefinite(M);
minimize( sum(d) );
cvx_end;

min
d

dm
m
 subject to G diag(d) 0+
6



The library can be downloaded from the website given in Reference [9].
An important question is whether the formulation above will always provide an

output with exactly the self-noise removed from the diagonal. The minimization in
Eq. 5 will proceed until one of the eigenvalues of G+D reaches zero, showing that
too much will be removed, if the desired matrix has only positive eigenvalues.To
see this, assume the smallest eigenvalue of the desired noise-free target matrix 
G0 = UU

 is a positive number, > 0. Then we can subtract  from all
eigenvalues and still be left with a positive semidefinite matrix. This subtraction
corresponds to a subtraction of I from the diagonal eigenvalue matrix Σ, I being
the unit diagonal matrix. For G0 the result of the subtraction is: 

U[Σ–I]UH= UΣU
H–UUH= G0–I, 

showing that  has just been subtracted from all diagonal elements. The DD
algorithm can therefore remove at least that amount from the diagonal of G0,
while still keeping it positive semidefinite. Repeated numerical checks have
shown that at least one eigenvalue equals zero after use of the DD algorithm. The
following section presents some numerical simulations to further investigate this
and related issues.

3. Investigation Based on Synthesized Cross-spectral 
Matrices

The algorithm was tested by synthesis of MM element CSM’s from K random
rank-1 matrices, K  M, representing K incoherent contributions:

(6)

Here, the real and imaginary parts of each element in the M1 vectors qk were
generated as random numbers with zero mean and standard deviation equal to 1.
Unlike a set of principal components, the vectors qk are not orthogonal. The
resulting matrix

~
G will in general have a set of K non-zero eigenvalues covering a

wide range. To shape the eigenvalue spectrum, an eigenvalue/vector
decomposition was made first:

(7)

G̃ qkqk
H

k 1=

K

=

G̃ U̃U
H

=

7



followed by a scaling of the K non-zero eigenvalues in
~
Σ to have a desired

distribution, resulting in the diagonal matrix Σ0. The target ‘noise-free’ CSM G0 is
then calculated as:

(8)

Ideally, the DD algorithm should be able to recover the matrix G0 from a matrix
G with noise added on its diagonal:

(9)

n being a vector of squared, suitably scaled, random numbers. The convex
optimization (Eq. 5) should have the solution d = –n.

Subsection 3.1 that follows investigates the error in the case where the matrix
G0 has a variable number of equal, non-zero eigenvalues (the rest being equal to
zero), while Subsection 3.2 investigates the probably more typical case of a
decaying eigenvalue spectrum with none of the eigenvalues equal to zero.

3.1. Varying Number of Equal, Non-zero Eigenvalues
In this case, the largest eigenvalue  in

~
Σ was first identified, and the

eigenvalues  in Σ0 were then set as:

(10)

Based on , the matrix G0 could be computed using Eq. 8. This synthesis of
G0 simulates a measurement with K incoherent sources contributing equally
across the array microphones. 

The elements of the noise vector n were initially generated as squared random
variables with mean zero and standard deviation one. Subsequently, the vector n
was scaled to have an average element size a chosen number of decibels, X, higher
than the average auto-power on the diagonal of G0. Finally, G could be generated
through application of Eq. 9.

After the solution of the DD (Eq. 5), the deviation from the ideal solution
d = –n was quantified by the following relative average error function:

G0 U0U
H

G G0 diag(n)+=

̃max
0 m

0 m ̃max=

0 m 0=

m 1,2,...,K=

m K+1,K+2,..., M=

0
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(11)

where dm are the elements of d, nm are the elements of n, and G0,m,m are the
diagonal elements of G0. Clearly, if Err equals zero, then the ideal solution has
been reached with all auto-power values precisely reconstructed. Fig. 1 shows this
relative average error in decibels as a function of the number K of equal, non-zero
eigenvalues for five different values of the matrix dimension M used as annotation
at the curves: M = 20, 40, 60, 80 and 100. 

In this case, the relative level X of the added noise was set to be 40 dB, but
several levels were tested with almost identical result: X = 0, 20, 40 dB. Therefore,
apparently, it is not the level of the added noise that determines the accuracy, but
rather the eigenvalue spectrum of the desired matrix G0. 

Fig. 1. For M = 20, 40, 60, 80 and 100 microphones, the relative average error in decibel 
10  log10(Err), of the reconstructed diagonal is shown as a function of the number of equal,
non-zero CSM eigenvalues. The arrows at the bottom indicate (for each value of M) the x-axis
value Kmax given by Eq. 12

Err

dm nm+

m 1=

M



G0 m m 
m 1=

M


-----------------------------------

170212
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Based on a series of simulations and results like those in Fig. 1, it was found
that an exact noise subtraction can be performed effectively when the number K of
equal non-zero eigenvalues does not exceed a value Kmax given approximately as:

(12)

Following the reasoning in the last paragraph of Section 2.1, this condition will
be met, if the number of independent sources does not exceed Kmax. Close to the
point where K exceeds Kmax, the relative error increases steeply to be in the range
between –20 and –10 dB, and after that point, it increases smoothly to 0 dB at 
K = M. As mentioned above, the method cannot accurately handle the situation
where all eigenvalues are positive. Intuitively, one might think that the method
should work perfectly as long as G0 had just one eigenvalue equal to zero. The
reason why a number of eigenvalues must equal zero is not known. A guess could
be finite precision in the number handling, but it remains as an interesting open
question.

3.2. Decaying Eigenvalue Distribution
In practical applications, the desired CSM G0 will often have a more or less
smoothly decaying spectrum of eigenvalues, generated by a set of independent
sources with amplitudes covering a wide range. Here, we will consider eigenvalue
spectra of the form shown in Fig. 2, which are synthesized from the formula:

(13)

with k set to produce a specific attenuation, A, in decibels at m = M. In the case
of Fig. 2, the attenuation is A = 40 dB. Since the largest (first) eigenvalue is very
close to 1.0, A is also the range covered by the eigenvalue spectrum.

After calculation of G0 by Eq. 8, the noise vector n was calculated using the
same procedure as described in Section 3.1. For this, the level X of the noise
relative to the average auto-power on the diagonal of G0 had to be chosen. Again,
it turned out that, to a good approximation, the errors were independent of the
noise level, depending almost entirely on the eigenvalue spectrum of the
underlying noise-free CSM. Fig. 3 shows the relative noise removal error,
calculated using Eq. 11, as a function of the eigenvalue range A for an array with
M = 60 microphones.

Kmax M  M 2.5 M–

0,m e
km

2
– M

= , m 1,2, ..., M=
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The relative noise level was again X = 40 dB, that is, the noise was 40 dB higher
than the average auto-power on the diagonal of G0.Very similar error curves were
found for other values of M. 

The results show that the reconstruction error vanishes if a sufficient number of
eigenvalues are sufficiently small, or in this case, if the eigenvalue range is
sufficiently large.

An interpretation of the results in this section and in Section 3.1, is that the
solution of Eq. 5 will very effectively remove noise added on the diagonal of the
CSM, but depending on the eigenvalue spectrum of the noise-free matrix it will
also remove/modify some of the diagonal of that matrix. 

Fig. 2. Simulated CSM eigenvalue distribution with 40 dB range for a 60-element array

Fig. 3. Relative average reconstruction error, Err, for a 60-element array with CSM
eigenvalue distribution of the type shown in Fig. 2. The eigenvalue range, A, is on the x-axis

170213

170214
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If a sufficient number of eigenvalues of the noise-free matrix are zero, or very
small, then the introduced error is negligible. This will be fulfilled, if the number
of significant incoherent sources is somewhat smaller than the number of array
microphones.

4. Investigation Based on Synthesized Flow-noise Time 
Data

The simulated measurements in Section 3 all dealt with the case where noise is
added only on the diagonal of the CSM. In connection with real measurements
there will be contributions also outside the diagonal. The level of these off-
diagonal contributions can be minimized through long-time averaging, provided
the noise is incoherent between the microphones. In this section we shall consider
the case where only incoherent noise time signals are measured by the individual
microphones, that is, no source signal components with coherence between
microphones. With an increasing number of averages applied with the Welch
method, the averaged CSM should eventually become diagonal, so all energy on
the diagonal could be removed by the DD method.

The coherence function between two microphones m and n is defined as
(see for example Eq. (3.43) in Reference [10]):

(14)

Here, Gm,n are the elements of the CSM. Combining that definition with 
Eq. (11.21) in Reference [10], we get the following expression for the variance of
the cross-power (m  n) amplitudes  after J averages:

(15)

Since the cross power will approach zero with an increasing number of
averages, the variance in Eq. 15 is equal to an expected value of the squared cross-
spectrum amplitude after J averages, , see for example
Reference [10]. 

m n
2

m n
2 Gm n

2

Gm m Gn n
------------------------------

Gm n

Var Gm n
Gm m Gn n

J
------------------------------=

Var Gm n Gm n
2
12



Eq. 15 therefore leads to the following expected value of the residual coherence
 between two microphones:

(16)

Since an averaged CSM involves many coherences (between all microphone
pairs), we will be using an average coherence defined as:

(17)

Use of Eq. 15 and the relation  in Eq. 17 leads to the
result that the expected average coherence is also approximately 1/J when all
microphone signals are incoherent:

(18)

A set of simulated measurements were performed, in which incoherent noise
signals were generated by a random-number generator, with a rectangular
distribution over the interval from –1 to 1. The random-number sequence for each
one of the microphones was then used as a time signal with sampling frequency
equal to 32.768 kHz. Thus, all microphones were exposed to the same noise level.
Cross-spectral averaging was performed with a 200-line FFT and with 50% record
overlap, providing approximately 128 averages per second of time signal. 

For the case of 30 microphones, Fig. 4 shows average coherence spectra
 obtained from Eq. 17 after 10, 20 and 30 s of averaging.

Also shown are the expected values from Eq. 18, with which the agreement is
seen to be very good. The agreement has been checked with different microphone
counts and found to be very good, the main difference being that the variance on
the average coherence spectrum increases with decreasing number of
microphones. The explanation is almost certainly the lower amount of random
time data involved in the estimation.

m n
2

m n
2 Gm n

2

Gm m Gn n
------------------------------

Var Gm n

Gm m Gn n
------------------------------ 1

J
---=

2

Gm n
2

m n


Gm m Gn n

m n

-------------------------------------

Var Gm n Gm n
2

2 1
J
---

10 log10  
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When applying the DD algorithm to the averaged CSM, power will be
subtracted from the diagonal elements until (at least) one eigenvalue is equal to
zero, see Section 2.2. Considering the case of only two microphones, this implies
only one non-zero eigenvalue, meaning that the remaining matrix represents two
perfectly coherent signals.

The reduced diagonal elements and of that matrix will therefore fulfil
the relation  (coherence equal to one), which leads to:

(19)

With signals of equal level applied to the two microphones, the diagonal
elements of the CSM should be approximately equal, and for reasons of symmetry,
the reduction factors achieved by DD for these elements should also be
approximately equal. The reduction factor α achieved by DD for the sum of the
diagonal elements can therefore be estimated by application of Eq. 19 with the
following result:

Fig. 4. Average coherence spectra  from the simulated measurements and
from Eq. 18 after 10, 20 and 30 second averaging for a 30-element array

10 log10( 

170215

G̃1,1 G̃2,2

G̃1,1 G̃2,2
 G1,2

2
=

G̃1,1 G̃2,2

G
1,1

G
2,2

---------------------
G1,2

2

G
1,1

G
2,2

--------------------- 
1,2

2 2 1
J
---= = =
14



(20)

Results from simulated measurements have confirmed that the relative
reduction α of the diagonal sum is almost identically equal to the average
coherence  in the case of two microphones. 

With a larger number of microphones, however, the relative reduction α was
found to be smaller than . The difference turned out to increase with increasing
microphone count, but to be almost independent of the number of averages. Fig. 5
shows the relative reduction α for the conditions represented in Fig. 4: 30
microphones with 10, 20 and 30 s of averaging. 

Clearly, the reduction is significantly smaller than predicted by . The loss in
reduction  is presented in Fig. 6 as a function of microphone count
together with the following simple empirical approximation:

(21)

The form of this approximation can be derived by assuming identical diagonal
elements G, by assuming equal reduction by DD of these to become αG, and by

Fig. 5. Relative reduction  of the diagonal sum in the CSM obtained with DD
for the case of 30 microphones and with 10, 20 and 30 s of averaging time
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assuming that some generalized power must be retained on the diagonal for all the
corresponding generalized power that exists off the diagonal. According to Eq. 16,
all off-diagonal elements will, in that case, have amplitudes approximately equal
to , so the generalized power assumption is formulated as:

(22)

since there are M diagonal elements and M(M –1) off-diagonal elements. 
With =1.0, both sides of the equation represent a simple power sum, while

with =2.0, they represent a sum of squared power. With =1.6, Eq. 22 leads
directly to Eq. 21. This is in no way a derivation. It just explains how the idea for
the empirical expression (21) came up.

From Eqs. 18 and 21 we get the following estimate for the relative reduction α
of noise on the CSM diagonal that can be achieved by DD:

(23)

In case only a subset of the array microphones is exposed to incoherent noise
signals and these noise signals are of equal level, only the number of exposed
microphones should be used in the above formulae. This can be verified by going
through the derivations. The practical measurement to be presented in the
following section has a rather small subset of microphones exposed to strong flow

Fig. 6. Diagonal reduction relative to the average coherence (entitled ‘loss of diagonal
reduction’) as a function of the number of microphones
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and therefore to high-level flow-noise.
Considering a wind tunnel measurement, with all microphones subject to equal

levels of self-induced flow-noise, we can use Eq. 23 to estimate the number of
averages J required to achieve a reduction by a given factor α of the flow-noise
contribution on the CSM diagonal:

(24)

Requiring for example a reduction by a factor α=0.1 (10 dB) for an array with
100 microphones, the required number of averages will be approximately 31228,
corresponding to an averaging time around 240 s, when using the Welsh method,
with the parameters described earlier in this section.

In Section 3, the case of noise added only on the diagonal was treated. The
presented data indicated that all such added noise will be removed by DD.
However, unless the number of significant independent target sources is smaller
than , some of the auto-power related to the target source signals
will also be removed. This section 4 has considered the case of no target source,
that is, only incoherent noise, but the effect of related residual off-diagonal
contributions in the CSM due to finite averaging has been investigated. In
practical applications both target source signals and flow-noise signals with
residual off-diagonal contributions will be present. The residual off-diagonal flow-
noise contributions will introduce signal components in the CSM, which will be
‘seen’ as target signals by DD and may bring the number of significant ‘target
signals’ above the  limit, causing DD to remove parts of these
signals. Therefore, part of the desired target-signal auto power may also be
removed. This has not been investigated further.

5. Measurements
A series of measurements were taken with a 30-element flush-mounted pseudo-
random array in front of a Brüel & Kjær Mouth Simulator Type 4227 (speaker),
excited by white random noise. Fig. 7 shows the setup with the 30 cm diameter
array at 40 cm distance from the sound source, and with the flow-outlet nozzle
visible at the bottom right corner of the picture. 

The nozzle emitted a flow-beam towards a bottom section of 5 to 7 microphones
of the array. That section was exposed to strong close-to-laminar flow, 
while the flow speed was much lower at the remaining microphones. Recordings
of 30 s length, with 32.768 kHz sampling frequency, were taken with and without

J –2
M 1– 

1.25


M 2.5 M–

M 2.5 M–
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the flow. Using a 200-line FFT for cross-spectral averaging, 3839 averages could
be achieved with 50% overlap between records.

Measurements were performed under two sets of conditions: ‘speaker plus
flow’; and ‘speaker only’. A third measurement should have been performed using
‘speaker off’ conditions (that is, where only the flow noise was present) as will be
apparent in the following. The third measurement, however, was not taken, and
subsequently the flow source has not been available. 

Since the speaker signal and the flow-induced noise in the microphones are
mutually incoherent, the measured CSM, G, will ideally be the sum of their
contributions: G= G0+Gflow,G0 being the contribution from the speaker.
However, due to finite averaging time, the equation will only hold approximately.
With the first two of the three matrices measured, the flow noise contribution
Gflow could be calculated. However, you have to be aware of the previously
mentioned approximate nature of the above equation, plus the fact that Gflow is
obtained as a difference between two non-simultaneously measured matrices.

Fig. 8 shows the 30 auto-power spectra (black curves) from the measurement
with no flow, while the corresponding spectra with flow are shown in Fig. 9. 

Clearly, the flow has generated some very strong broadband noise in the five
‘core’ microphones (indicated in red in Fig. 9), which are in the core beam and
close to the nozzle. 

Fig. 7. Picture of the setup with the array (right), sound source (left) and flow-beam hose
(bottom right)
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Six microphones have medium-level flow contributions (indicated by green
dashed curves). These ‘peripheral’ microphones were in the outskirts of the
flowbeam. The remaining microphones (indicated in black) exhibit insignificant
flow-noise contributions in the displayed frequency range. Figs. 10 and 11 display
auto-power spectra after application of the DD algorithm to the measurement with
flow.   

Fig. 8. Auto-power spectra from all 30 microphones measured without flow

Fig. 9. Auto-power spectra measured with flow. 
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Fig. 10. Auto-power spectra measured with flow and subsequently denoised by applying DD
to the entire averaged CSM. Red: Microphones in core flow with high flow-noise levels.
Dashed green: Microphones in outskirts of core flow. Black: Microphones with insignificant
flow noise

Fig. 11. Auto-power spectra measured with flow, and subsequently a sub-matrix excluding
the five microphones in core flow (red color) has been denoised using DD. Red: Microphones
in core flow with high flow noise levels. Dashed green: Microphones in outskirts of core flow.
Black: Microphones with insignificant flow noise
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In the case of Fig. 10, the algorithm has been applied to the full measured CSM.
The flow-induced auto-power has been significantly reduced for both the core and
the peripheral microphones, but not removed, and below 1000 Hz some auto-
power has even been added to the remaining microphones, which originally had
virtually no flow contributions. 

Such an increase of noise auto-power in some microphones could be prevented
by adding constraints in the optimization process of Eq. 5. However, that would
not overcome the underlying problem of the remaining off-diagonal flow-noise
contributions, and it would imply a somewhat reduced effect of DD on the
microphone signals with the highest flow-noise levels. To be able to compare the
achieved reduction of the noise auto-power with a prediction from the empirical
model of Eq. 23, we need to specify a number of microphones with equal noise
exposure, the remaining having no noise. With five core microphones and six
peripheral ones, a reasonable choice could be 5+6/2=8. Use of M=8 in Eq. 23
leads to a predicted reduction equal to 10 log10() = –12.6 dB, which agrees quite
well for example at 3 kHz.

The auto-power spectra in Fig. 11 are the result of applying the DD algorithm to
a sub-matrix of the measured CSM: The rows and columns related to the
microphones in core flow were removed before application of DD and added
again subsequently. Clearly, the DD algorithm has been more successful in
reducing the flow noise from all the non-core microphones because the large off-
diagonal flow-noise contributions from the core microphones no longer disturb.

Fig. 12 shows the average coherence  obtained by application of Eq. 17 to the
estimated flow-noise CSM, Gflow. 

The figure can be compared to the corresponding Fig. 4 for the simulated
measurement. Above 1.2 kHz the agreement is very good, but below that
frequency, a small increase is observed in the average coherence. The reason has
not been analyzed. Possible explanations are:

• Background noise with high coherence across the array, for example, from
the electric motor and the fan generating the flow

• The previously mentioned errors in the calculation of the flow-noise CSM
Fig. 13 shows the achieved reduction in decibels of the flow-noise-related auto-

power sum (the sum of the diagonal elements in Gflow= G–G0), when applying
the DD algorithm to the full matrix G. The reduction is shown in decibels for the
cases, where 10, 20 and 30 s averaging has been applied, and the results are
compared against the values obtained from Eq. 23, with the assumption that all
flow-noise is distributed equally across eight microphones, as explained above.


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Except at frequencies below 1.2 kHz, the agreement is very good. The fact that
DD was applied to G instead of Gflow apparently did not significantly degrade the
flow-noise auto-power removal. A main reason could be the fact that the flow-
noise in the microphones in core flow was much higher than the speaker signal. 

Fig. 12. Average coherence  for the measured flow-noise CSM calculated
using Eq. 17 after 10, 20 and 30 s of averaging. The dashed lines represent theoretical values
obtained from Eq. 18

Fig. 13. Reduction of flow-noise auto-power on the CSM diagonal, obtained using the DD
method of Section 2, to the full matrix, ref. Fig. 10. The theoretical values were obtained from
Eq. 23, assuming all flow-noise to be equally distributed across eight microphones
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Also, the total number of significant incoherent signals (speaker, flow-noise in
core microphones and flow noise in peripheral microphones) is in this case much
smaller than the number of microphones. Thus, the DD method will not remove
speaker-generated auto-power, despite the strong residual off-diagonal
contributions from the flow-noise.

Clearly, remaining flow-noise related off-diagonal contributions in G will limit
the reduction of the flow-noise auto-power that can be achieved by use of the DD
algorithm. The degree to which this will be visible in beam formed maps depends
on the level of the flow-noise relative to the level of the source signal of interest.
This was investigated in Reference [6] and will not be further explored in this paper.

6. Summary
The subject of this paper has been methods to reduce the impact on
array-processing results of incoherent noise in individual measurement channels,
typically flow-noise in connection with measurements in wind tunnels or
outdoors. Diagonal Removal (DR) is an established technique for noise reduction
with conventional frequency-domain beamforming, avoiding completely the use
of the CSM diagonal. However, DR also has some limitations and with some array
processing methods, it does not apply. 

This paper has described a method called Diagonal Denoising (DD) to remove
the incoherent noise contributions from the diagonal of the CSM. The idea is to
minimize the sum of the CSM diagonal elements, while leaving all off-diagonal
elements unchanged, and while keeping the CSM positive semidefinite. The
problem has the form of a so-called Semidefinite Program, which can be solved
very efficiently and with guaranteed convergence properties using Convex
Optimization methods.

The properties and limitations of the method were first investigated by applying
it to computer synthesized CSM’s with noise added only on the diagonal. It turned
out that with up to approximately  incoherent target sources, M
being the number of microphones, DD is accurate within the numerical accuracy
almost independent of the level of the noise added on the diagonal. In connection
with real measurements, however, there will be off-diagonal residual contributions
from the incoherent noise signals because of finite averaging time. These
off-diagonal contributions will limit the auto-power noise reduction achievable by
DD. Based on simulated measurements with equal noise levels added in all
channels, an approximate empirical model of the impact was developed.

M 2.5 M–
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According to the model, the number of averages required to reduce the noise auto-
power by a factor  is approximately .

Measurements have been performed on a small loudspeaker with a section of
the array exposed to airflow. The measurement results agree well with the
predictions from the empirical model.
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Active Vibration-based SHM System for 
Wind Turbine Blades: Demonstration on an 
Operating Vestas V27 Wind Turbine

Dmitri Tcherniak*; Lasse L. Mølgaard†

Abstract
This study presents a structural health monitoring (SHM) system that is able to
detect structural defects on wind turbine blades, such as cracks, leading/trailing
edge openings, or delaminations. It is shown that defects as small as 15 cm in size
can be detected remotely, without stopping the wind turbine. The SHM system
presented is vibration-based: mechanical energy is artificially introduced by
means of an electromechanical actuator, whose plunger periodically hits the blade.
The induced vibrations propagate along the blade and are picked up by
accelerometers mounted along the blade. The vibrations in mid-range frequencies
are utilized: this range is above the frequencies excited by blade-wind interaction,
ensuring a good signal-to-noise ratio. At the same time, the corresponding
wavelength is short enough to deliver required damage detection resolution and
long enough to be able to propagate the entire blade length.

This paper demonstrates the system on a Vestas V27 wind turbine. One blade of
the wind turbine was equipped with the system, and a 3.5 month monitoring
campaign was conducted while the turbine was operating normally. During the
campaign, a defect – a trailing edge opening – was artificially introduced into the
blade and its size was gradually increased from the original 15 cm to 45 cm. 

Using a semi-supervised learning algorithm, the system was able to detect even the
smallest amount of damage, while the wind turbine was operating under different
weather conditions. This paper provides detailed information about the instrumentation
and the measurement campaign, and explains the damage detection algorithm.

* Brüel & Kjær Sound & Vibration Measurement A/S, Skodsborgvej 307, Nærum 2850, Denmark,
Email: Dmitri.Tcherniak@bksv.com

† Department of Applied Mathematics and Computer Science, Technical University of Denmark,
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Résumé
Cette étude concerne un système SHM (système de suivi de la santé des
structures) capable de repérer les altérations sur la structure des pales d'éoliennes,
telles que fissures, ouvertures sur les bords d'attaque et de fuite, ou délaminages. Il
y est montré que ces altérations de la structure, même de taille très faible (de
l'ordre de 15 cm) peuvent être détectées à distance sans avoir à stopper l'éolienne.
Ce système SHM est un système vibratoire : la vibration est transmise au moyen
d'un actionneur électromécanique dont le poussoir frappe la pale de manière
périodique. Les vibrations induites, qui se propagent le long de la pale, sont
captées par des accéléromètres montés sur celle-ci. Ce sont les vibrations dans la
gamme des fréquences moyennes qui sont ici utiles: cette gamme, supérieure à
celle des fréquences générées par l'interaction pale-vent, garantit un bon rapport
signal/bruit. La longueur d'onde correspondante est à la fois suffisamment courte
pour que la détection bénéficie d'une bonne résolution, et suffisamment longue
pour assurer la propagation sur toute la longueur de la structure. Le système a été
installé sur une des pales d'une turbine éolienne Vestas V27 à l'occasion d'une
campagne de suivi de trois mois et demi, la turbine étant alors en cycle de
fonctionnement normal. Une dégradation - un interstice sur le bord de fuite - a
artificiellement été apportée à la structure et progressivement agrandie, de sa taille
initiale de 15 cm jusqu'à 45 cm. Grâce à un algorithme d'apprentissage semi-
supervisé, le système a pu détecter les altérations même les plus faibles subies par
la structure pendant que l'éolienne fonctionnait sous différentes conditions
météorologiques. La présente communication fournit des informations détaillées
sur l'instrumentation utilisée et sur le programme de mesures, ainsi qu'une
description de l'algorithme de détection des défauts.

Zusammenfassung
Diese Studie präsentiert ein Structural Health Monitoring System (SHM), das
Strukturdefekte an Windturbinenrotorblättern erkennen kann, wie Risse,
Öffnungen an der Blattvorderkante/-hinterkante oder Delaminationen. Es wird
gezeigt, dass selbst 15 cm große Defekte aus der Ferne erkennbar sind, ohne die
Windturbine zu stoppen. Das hier vorgestellte SHM-System ist
schwingungsbasiert: Mechanische Energie wird durch einen elektromechanischen
Aktuator künstlich eingeleitet, dessen Stößel in regelmäßigen Abständen auf das
Rotorblatt schlägt. Die induzierten Schwingungen breiten sich entlang des Blattes
aus und werden von Beschleunigungsaufnehmern erfasst, die am Blatt entlang
montiert sind. Genutzt werden die Schwingungen im mittleren Frequenzbereich:
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Dieser Bereich liegt über den Frequenzen, die beim Zusammenwirken von
Rotorblatt und Wind angeregt werden, was ein gutes Signal-Rausch-Verhältnis
ergibt. Gleichzeitig sind die entsprechenden Wellenlängen ausreichend kurz, um
die erforderliche Auflösung zur Erkennung des Defekts zu liefern, und
ausreichend lang, um sich über die gesamte Blattlänge auszubreiten. Dieser
Artikel demonstriert das System an einer Windturbine vom Typ Vestas V27. Ein
Rotorblatt der Windturbine wurde mit dem System ausgestattet und 3,5 Monate
lang überwacht, während die Turbine normal in Betrieb war. Im Rahmen der
Kampagne wurde das Rotorblatt künstlich mit einem Defekt - einer Öffnung an
der Blatthinterkante – versehen und dessen Größe schrittweise von ursprünglichen
15 cm bis auf 45 cm erweitert. Mithilfe eines semi-überwachten Lernalgorithmus
konnte das System selbst den kleinsten Defekt erkennen, während die Windturbine
unter verschiedenen Wetterbedingungen betrieben wurde. Dieser Artikel bietet
detaillierte Informationen zur Geräteausstattung und Messkampagne und erläutert
den Algorithmus für die Defekterkennung.

1. Introduction
Blades of modern wind turbines are designed for 20 to 25 years of service under
severe weather conditions, and during this period damage is unavoidable. With a
high probability, a small blade defect may develop into a bigger failure, and if no
countermeasures are taken, may become critical, causing catastrophic
consequences. Repair of a small defect is significantly cheaper than repair of a
bigger one, or replacement of an entire blade. Therefore, wind turbine operator
companies pay close attention to structural health monitoring of the blades. Today
this is done by periodical visual inspections conducted every one-to-two years, but
many in the industry realize that a better approach is needed. Many approaches
have been suggested, attacking the problem from different angles (see Reference
[1]). Besides using more robust blade design and special surface treatments to
protect the blades, the new approaches include, for example, facilitating visual
monitoring by means of transportable ground-based optical systems, by drones
equipped with high-resolution video cameras, using thermography and many
others techniques. 

One of the most promising ways is fitting wind turbines with vibration sensors
and monitoring the blades’ integrity via permanent monitoring of their vibration,
[7], [11]. This approach is already adopted for monitoring the mechanical
components of wind turbines, such as gearboxes and bearings. The main advantage
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of such a system is that the operator/owner is notified about the occurrence of
damage almost immediately after it has happened and not after one or two years
later, when it is detected by visual inspection.

Structural health monitoring via vibration monitoring may be based on different
physical phenomena. One of the popular vibration-based approaches is detecting
changes in modal parameters: loss of structural integrity leads to reduction of
stiffness, which can be detected by monitoring modal parameters. However, this
approach cannot achieve the required damage resolution since the modal
parameters are not very sensitive to damage [10]. Another modal-based technique
is FE model updating [19]. It can provide more detailed information about
detected damage, with respect to its location and identification [12], [8], [9], but
the method is prone to numerical instability due to the ill-conditioned system of
equations required to be solved when updating the parameters [5].

Another well-known vibration approach is based on guided-waves [13]: a
piezoelectric exciter generates stress waves, which propagate through the structure
and get picked by another piezoelectric sensor. Typically, a network of active
sensors (which can measure and generate vibrations) is used. Blade damage can be
detected and localized by monitoring how the vibration propagates from the
actuators to the sensors. The guided-waves approach has much better damage
resolution, but requires high sensor density, since the high-frequency oscillations
quickly decay with the propagation distance. Using a large number of sensors adds
complexity to the SHM system and negatively influences its cost, making it less
attractive for the end users. 

In a previous study [18] the authors introduced another technique (patent
pending), which is similar to the guided-waves technique, but has inherent
differences: the excitation is introduced by an electromechanical actuator, and the
utilized frequency range is much lower compared to the guided-waves approach.
The introduced vibrations are picked up by an array of accelerometers. The waves
at the lower frequency (around 1 kHz) can propagate longer distances, thus the
technique requires far fewer sensors. At the same time, the frequency is high
enough to ensure sufficient damage detection resolution (at least 15 cm size).
Structural damage changes the properties of the energy propagation between the
actuator and the accelerometers; this can be detected by comparing the vibration
pattern in a reference (healthy) state with the damaged state.

The important feature of the suggested approach is that it is possible not only to
detect damage, but also to follow its development, [18]. Additionally, in studies
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[6], [20] and [21] the possibility to use the technique for damage localization was
demonstrated.

In [18] the method was applied to an SSP34m blade (34 m long), mounted on a
test rig. This study reports the results when the same technique was used on an
operating wind turbine. 

2. System Implementation on Vestas V27 Wind Turbine
In [18], the authors described the experiment conducted on an SSP34m blade
mounted in a test rig. Test rig facilities greatly simplified the experiment: since the
blade did not move and was located indoors, it required much less effort to mount
accelerometers, actuators and cabling. The experiment proved that the proposed
approach performs well on a modern blade, with feasible actuator location and
using a reasonable number of sensors. The system managed to detect a realistic
blade fault (trailing edge opening) and follow up on its progression. However,
using the test rig, we could not evaluate the robustness of the method against
noise. Indeed, when operating, the wind turbine blade is subjected to wind
excitation and excitation from the hub and nacelle mechanisms, which mask the
signal from the actuator. In [18] some artificial noise (recorded on the blades of
another wind turbine in operation) was mixed with the measured signals from the
actuator: we had to admit that the selected signal-to-noise ratio was very much a
guess. In addition, to be able to demonstrate technical feasibility of the proposed
system, it was important to do it on a real operating wind turbine. 

A Vestas V27 wind turbine was selected for the experiment due to its
availability. The wind turbine stands in the grounds of Technical University of
Denmark (DTU), Department of Wind Energy (formerly known as Risø), in
Denmark, near the town of Roskilde. The Vestas V27 is a relatively old wind
turbine, with 27 m rotor diameter and 225 kW rated power. However, this wind
turbine can be considered representative of many modern wind turbines, it is an
upwind, pitch regulated, horizontal axis wind turbine. In contrast to modern wind
turbines, its blades are relatively stiff, and it has only two speed regimes: 32 and
43 rpm.

For blade excitation, the same actuator was used as for the SSP34m blade
experiment (see Fig. 1). 

The actuator is a simple electromechanical device: a coil is mounted on a steel
base; driven by an electrical pulse, the coil ‘shoots’ the plunger towards the
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structure; after the hit, the plunger retracts to the initial position by means of a
spring.

Due to the size of the blade, it was not possible to install the actuator inside the
blade (as was done on the SSP34m blade). Instead, the actuator was installed
outside the blade, on its upwind side about one metre from the root (see Fig. 2),
covered by a waterproof lid and secured with a strap (see Fig. 3). The vibrations
were measured by accelerometers. The blade was fitted with twelve monoaxial

Fig. 1. Actuator design

Fig. 2. Actuator location, circled on figure
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piezoelectric accelerometers (Brüel & Kjær Type 4507-B); their location on the
blade is shown in Fig. 4.

The nominal sensitivity of accelerometers #5 to #15 was 10 mV/ms–2 
(Type 4507-B-004) and accelerometer #16, located near the actuator, had nominal
sensitivity 1 mV/ms–2 (Type 4507-B-001). 

For mounting the accelerometers, we used plastic mounting clips, which were
glued directly to the blade (no special alignment was performed, the
accelerometer’s measurement direction was perpendicular to the blade surface).
To protect the accelerometers, they were covered by silicon, then ‘helicopter tape’
(polyurethane tape) was applied on top to give the silicon a smooth shape (see
Fig. 5). The accelerometers and cables were placed on the downwind side of the

Fig. 3. Installation on the blade

Fig. 4. Installation of accelerometers/actuator on the blade. Red circles on the blade contour
indicate the location of the accelerometers, the green circle indicates the actuator position
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blade. The accelerometer cables ran from the accelerometers towards the trailing
edge and then along the trailing edge towards the blade root (Fig. 6). 

The cables were glued to the blade with silicon and covered with helicopter
tape. 

From experience we knew that long-term measurement campaigns on the same
wind turbine could last several months [17], and that this set-up was sufficient for
the planned campaign. (While this set-up is sufficient for the planned campaign, it

Fig. 5. Accelerometer and cable fitted to the blade (helicopter tape visible)

Fig. 6. Accelerometer cables running along the trailing edge of the blade
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is obviously not good enough to survive on the blade for several years, so in that
case, other arrangements must be developed.) 

The accelerometers were connected to a data acquisition system (Brüel & Kjær
Type 3660-C, with two LAN-XI modules, a 12-channel input module 
Type 3053-B-120 and 4-channel input/output module Type 3160-A-042), see Fig. 7.

Two piezoresistive DC accelerometers Type 4574-D mounted in the spinner
were used to estimate the rotor azimuth, with a possibility to derive the rotational
speed of the rotor. In addition, the pitch angle was also measured.

The actuator was controlled by the signal from the signal generator built into
one of the data acquisition modules. The generated rectangular pulse triggered the
actuator’s electronics, making a 1000 F capacitor discharge through the coil.
Then the capacitor was charged again to 48 V using a DC/DC converter to be
ready for the next shot.

The data acquisition system and the electronics were placed in a waterproof box
(dimensions 604520 cm3 and weight 25 kg), which was mounted to the inner
surface of the spinner (Fig. 8). The equipment was powered by 24 V from the
nacelle via a slip ring.

The measured data (in total 16 signals sampled with 16.384 kHz frequency) was
wirelessly transmitted from the rotating part to the nacelle via two Cisco wireless
access points, one located inside the waterproof box and another installed in the
nacelle.  

Fig. 7. LAN-XI modules installed in waterproof box
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When the turbine is operating, the line of sight between the hub and nacelle
might be blocked by the steel parts of the hub. To keep an uninterrupted wireless
connection, two pairs of antennas were employed: two omnidirectional antennas
attached to the hub and two directional antennas mounted inside the nacelle.
The data acquisition system was controlled by Brüel & Kjær PULSE™ LabShop
software. The software was programmed to start data acquisition, record 10 s,
initiate an actuator hit and record for another 20 s. Then acquisition was stopped
and the system waited for four and a half minutes and initiated again. Thus, 12
actuator hits and corresponding datasets were produced every hour. Typical
signals are shown in Fig. 9.

Simultaneously with the vibration data, meteorological data was collected from
a weather mast located a few hundred metres away. The weather data included
temperature, wind speed and direction, wind turbulence at different altitudes,
atmospheric pressure, precipitation, etc. The data from the mast was delivered
averaged within one-minute intervals and the power production data and yaw
angle (the wind direction seen from the nacelle) was also available from the wind
turbine system.

3. Experiment
The measurement campaign lasted 104 days. With 12 actuator hits per hour, data
from 24,693 actuator hits were collected. During this time, the wind turbine was

Fig. 8. Waterproof box mounted inside the spinner – cables not connected
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subjected to different weather conditions. The monitoring period covered about a
third of the year, thus no season-related events were observed. During the
campaign, the turbine was in its normal power production regime, governed by its
controller. However, following the agreement with the wind turbine owner, in the
damaged state, we could only operate the turbine under visual surveillance, that is,

Fig. 9. Typical signals – Top: Accelerometer #16 (20 cm from the actuator); 
Centre: Accelerometer #15 (8.5 m from the actuator); Bottom: DC accelerometer
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during working hours. For nights, weekends and holidays, the wind turbine was
set to idling (no power production), though the SHM system was kept running.

4. Damage Implementation
For validating the capabilities of the proposed SHM system, an artificial defect
was introduced on the instrumented blade. The following considerations were
taken into account: 

• Input from wind turbine manufacturers and service companies regarding
blades’ typical defects and their location

• Reparability of the defect: it should be possible to repair the blade
inexpensively after the end of the experiment

• Risk of the artificial damage developing to critical should be minimal. 
In addition to this, we planned to test another property of the proposed SHM
system, the indication of damage progression. For this reason, we planned to
gradually increase the size of the defect. 
Taking the above mentioned into account, the ‘trailing edge opening’ type of
damage was selected. This is a typical defect for blades manufactured using this
technology. 
Commercial sources, for example [22], inspection reports and technical papers
such as [1] and [4], indicate that trailing edge failures are frequently observed in
blades. Besides this, such a failure is easy to introduce, extend and repair, and
according to experience, the probability that it can progress uncontrollably is very
low. 
The initial artificial damage was introduced at the start of the measurement
campaign by technicians from service company Total Wind Group, (see Fig. 10). 

The trailing edge was opened and extended to simulate a crack. The length of
the opening was 15 cm. The opening was covered by helicopter tape to prevent
atmospheric water from coming into contact with unprotected inner blade
material. 

After a period, the length of the opening was extended to 30 cm, and then
extended even further to 45 cm (Fig. 11). After the measurement campaign, the
defect was repaired. 

The exact position of the defect is shown on the overall view of the blade
(Fig. 4), and a close-up is shown in Fig. 12. 
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Fig. 10. Implementation of artificial blade damage - initial 15 cm trailing edge opening

Fig. 11. Implementation of artificial blade damage - extended to 30 cm (left); extended to
45 cm (right)
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5. Data Processing and Damage Detection

5.1. Classification
The damage detection approach discussed in this paper is a case of anomaly or
novelty detection, and the vast knowledge accumulated using this paradigm can be
utilized for solving SHM problems, see, for example, [16] and [3]. Using the
terminology in the anomaly detection field, semi-supervised anomaly detection
describes our approach. A supervised approach to damage detection would require
recordings of a normal (healthy) operating state, as well as recordings of the
blades in operation with the damage that should be detected by the system. A
supervised classifier could then be trained to distinguish between the different
observed operating states. 

In practice it would only be feasible to obtain operational data for a limited
number of damage types, constraining the usefulness and versatility of the SHM
system. Employing a semi-supervised view of the problem we assume that only
the normal (healthy) state is known, and significant deviations from this state are
associated with damage. 

The damage detection procedure therefore includes two phases: the training
phase and the detection phase. During the training phase, we assume that the
structure is undamaged, here, we collect a number of samples, characterizing the
normal state under different operating regimes and establish a statistical model (or
models, one for every wind turbine regime) of the normal state. In the detection
phase, every newly acquired sample is compared to the model of the normal state.
If a significant deviation is detected, we declare that the blade is damaged. 

Fig. 12. Damage location on the blade relative to the accelerometers and its development:
15 cm > 30 cm > 45 cm correspond to black > dark grey > grey
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To prepare the recordings from the accelerometers for statistical modelling, two
steps must be performed: pre-processing and calculation of a feature vector. The
steps are considered in the following sections.

5.2. Data Processing
In the presented SHM system prototype, the data was not processed in real time
(as one would expect from a commercial SHM system), but was post-processed
later, when the data from several hundred actuator hits became available. 

The data analysis started with processing the two DC accelerometers’ signals
(example shown in Fig. 9, bottom graph). Note that the mean of the signal is not at
zero due to the centrifugal acceleration, which is due to the rotation of the rotor.
By detecting and counting the peaks, it is possible to obtain the rpm and azimuth
profiles, and derive the rpm and azimuth values at the moment of the actuator hit.

For each actuator hit, the time history from the accelerometers, pitch angle,
derived rotor rpm and rotor azimuth information were combined with the weather
data and saved into a database to facilitate data access. 

The three main operating regimes were identified: idling, operating at 32 rpm
and operating at 43 rpm. It was recognized that the vibrational data from the
regimes cannot be compared directly, and further analysis was conducted
separately for each regime. 

Further preprocessing steps included:
1) Selecting the part of the signal around the actuator hit. This was done by

detecting the beginning of the peak in the actuator control signal. In this
step, the originally recorded 30 s of vibration data (about 500,000 time
samples) are reduced to 3,000 time samples per measured channel.

2) Fine alignment of the signals from different hits. This was done using the
signal from accelerometer #16, closest to the actuator, since it is least
affected by the noise.

3) Bandpass filtering. As mentioned in the introduction, a medium frequency
range (around 1 kHz) is used. The bandpass filter (BPF) was designed
around this frequency (700–1200 Hz). 

4) Finally, the short part of the filtered signal was extracted for the following
processing: only 201 time samples between time sample 300 and 500
(inside the dashed rectangle in Fig. 13, bottom graph) was retained and
used for damage feature calculation.

Fig. 13 illustrates the steps in the process. It must be noted that the BPF filter
parameters were found by trials, using data from the undamaged and damaged
states and trying to maximize the performance of the damage detection. 
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This approach is not feasible in the real life scenario, where the data from the
damaged blade is not available. 

However, based on the authors’ experience gained from processing Vestas V27
and SSP34m blade data, the performance of the algorithm is only slightly affected
by the fine tuning of the pre-processing parameters. 

Using general recommendations, one can design a quite sensitive and robust
SHM system. Such recommendations are: design a BPF with the centre frequency
around 1 kHz and width 500–600 Hz and retain 200–400 time samples, where all
the signals attain the highest magnitude. Apparently the original design can be
further improved by either testing the system mounted on a blade on a test rig, or
by creating ‘virtual test environments’ based on a detailed FE model of the blade,
which can simulate the acceleration responses to the actuator hits. Such ‘virtual

Fig. 13. Top: Typical accelerometer signal (32 rpm, accelerometer #5); 
Bottom: same signal after bandpass filtering. The dashed rectangle indicates the final trim
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environments’ can be a great tool for optimizing sensors and actuator location, to
tune the performance of the system towards the most realistic failures.

5.3. Feature Vector
The collection of preprocessed signals for each actuator hit must be represented

using a smaller number of quantities, termed features. This representation must
retain sufficient information to separate ‘normal’ and ‘anomalous’ operation for
the subsequent statistical modelling. 

Following [14], the feature vector is based on the cross-covariance between all
pairs of sensor time series. Such a covariance matrix characterizes the current state
of the blade. 

An acquired structural defect will change the energy propagation from the
actuator to the sensors, which will affect the vibration pattern (relative magnitude
and phase) of the measured acceleration signals. Since the cross-covariance
function is a measure of similarity between two signals, the changes in the
vibration pattern will be reflected as a change in the cross-covariance matrix. 

For a fixed time-lag (in this study, we used zero time lag), the covariance matrix
is an N×N symmetric matrix, where N is the number of sensors selected for the
analysis (either the full set, or a subset of the sensors in Fig. 4). The number of
distinct elements in the matrix is N(N+1)/2. If all 12 sensors are selected, the
dimensionality of the feature vector is 78. However, the values in this feature
vector will exhibit multicollinearity, which will impact the subsequent fitting of a
statistical model. To counter the multicollinearity, dimensionality reduction using
principal component analysis (PCA) is employed. The PCA technique is a
statistical method that determines a lower-dimensional orthogonal representation
from a set of vectors such that the extracted dimensions retain maximal variance
of the data. The PCA representation of the data is determined by using the
covariance vectors obtained during the training phase. In this work the number of
vectors available for training is around 200 (see Section 6). 

The feature vector used to represent the state of the blade for the i-th actuator hit
is obtained by:

• Calculating the cross-covariance matrix and reshaping it into an N(N+1)/2
length feature vector, which consists of the distinct elements of the
cross-covariance matrix

• Project the feature vector into the K-dimensional PCA-representation to
produce the final compressed feature vector xi of length K, where K is
smaller than N(N+1)/2
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Choosing a small number of PCA dimensions to use in the subsequent modelling
of the normal state can be crippling for the ability to detect damage. In this study K
was chosen such that 99% of the variance in the training data is retained.

5.4. Normal State and Damage Index
From each of M actuator hits obtained in the healthy state, a feature vector is
extracted. The collection of M feature vectors (which is often called training set)
are gathered to a matrix X=[x1,x2…xM], XRK,M. 

This matrix forms the basis for the statistical model of the healthy blade, or in
other words the normal, or reference state. The feature vectors xi are often called
samples, as they reflect the state of the system at the time of the i-th actuator hit.
When the actuator strikes the structure and a new sample y arrives, the difference
between the sample and the statistical model of the healthy state characterizes the
health of the structure. The Mahalanobis distance is a convenient metric to
quantify this difference. The Mahalanobis distance between a sample y and the
dataset X is given by:

(1)

where xRK is the mean of the samples in X, and xRK,K is the covariance
between the samples. This metric is selected as a damage index in this study. If the
damage index is relatively small and does not exceed some threshold D, we
declare that the system is in undamaged state. Conversely, if d(y,X)>D, we
declare state y as damaged. 

Following the semi-supervised strategy, we base the choice of the threshold D
exclusively on the observations from the training phase. A naïve choice of
threshold would include all points in the training set:

(2)

but this choice is sensitive to outliers that could be present in the training set.
Instead we shall estimate the probability of a sample being an outlier based on the
training data. The value of the threshold D, can then be obtained as the (100–R)th

percentile of the cumulative distribution function, which means that R percent of
the samples from the healthy state may exceed this value. In other words, it means
that we allow R percent of false alarms in the training set, which results in a more
conservative choice of the threshold. Further, in the study we use this approach to
control the threshold, and R is called allowed false alarm rate.

d y X  y x– T x  1–
y x– =

D maxi d xi X  =
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In practice, all values di=d(xi, X) are calculated for the selected training set X
and sorted such that dj < dj+1, j  =1..M  – 1. Then the threshold DR is selected from
the sorted sequence as:

(3)

where k is the nearest integer less than or equal to M(100 –R)/100. The important
feature of the damage index (1) is that (in most of the cases) its value increases
with the damage development. This allows one to identify if the damage appeared,
but then stabilized, or if it keeps progressing.

6. Results
As mentioned before, Vestas V27 wind turbine has a controller which operates the
wind turbine in one of the three regimes: 

1) Idle: the blades’ pitch is about 90°, so the wind turbine is not producing
power. The rotor revolves due to wind shear. This regime is active if the
wind is too weak (its speed is below the cut-on speed). This regime is
activated if the wind turbine is broken, or ‘switched off’.

2) Low speed production regime: the controller keeps the rotor speed at a
constant 32 rpm. The pitch angle for all three blades is about 0°.

3) High speed production regime: the controller keeps the rotor speed at
43 rpm, the pitch angle is about 0°, though slight variations may be present.

Apparently, for SHM purposes, the latter two regimes are of the most interest.
Most of the time wind turbines are operating, and it is unreasonable to stop them
for SHM purposes. The present study addresses only the regimes when the wind
turbine is operating.

6.1. Sensitivity to Weather Conditions
As it is well known from other literature, environmental conditions influence the
dynamic response of the structure and this may seriously affect the performance of
an SHM algorithm. Fig. 14 demonstrates this, using the data from leading- and
trailing-edge accelerometers, from the 43 rpm regime. Following the scheme
described in [23], the first third of the available 856 samples (for the healthy state
at 43 rpm regime) was used to train the algorithm. These samples are located to the
left of the blue vertical dotted line in Fig. 14 (top). Accepting 5% of false alarms in
the training set (R=5%), the model of the healthy state is generated, and the
threshold is found (solid horizontal line, the points below the line indicate the

DR dk=
43



healthy state). The samples below the threshold line are classified as healthy state,
while the samples above the threshold are declared as damaged state.

Fig. 14. Top: Damage index (43 rpm regime), training samples are picked from the beginning
of the training set, left of the blue dotted line; accepted false alarm rate 5%; test false alarm
rate 48.6%. Centre: Temperature when the samples were taken. Bottom: Damage index,
training samples are randomly picked; accepted false alarm rate 5%; test false alarm rate 8.1%
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All states corresponding to the smallest amount of damage (the 15 cm crack) are
identified correctly (denoted by ‘+’). However, validating the model against the
healthy samples not included in the training set, one finds that the algorithm
produces 48.6% of false alarms, which is much more than the allowed 5%. 

One can readily correlate the false alarms with the peaks and troughs of the
temperature, Fig. 14 (centre). Indeed, the model of the healthy state was generated
when the temperature was between 2°C and 4°C, and this model fails when the
temperature is outside this range. 

Instead of taking the first samples, the model can be based on an equal number
of samples randomly picked from the healthy state. This significantly improves
the performance of the model. Fig. 14 (bottom) illustrates this for some realization
of the random sequence. Now the test false alarm rate is 8.1%, which is much
closer to the allowed 5% rate.

Fig. 15 demonstrates the application of this approach to all available data from
the undamaged and damaged states, for both 32 and 43 rpm operating regimes
collected during the entire monitoring period. The considered datasets contain
1684 samples for the healthy case, 224 samples for the 15 cm crack case, 310
samples for the 30 cm crack, and 237 samples for the 45 cm crack. 
The difference in the sample count for the different damaged states is due to the
different duration of the periods, when the wind turbine was operating in these
damaged states. This was due to the availability of the technicians who climbed 

Fig. 15. Damage index for all undamaged and damage cases for 32 and 43 rpm cases.
Allowed false alarm rate is 5%, test false alarm rate is 7.3%
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the blade to extend the blade opening. It was also dependent on the weather, when
this operation was possible. The different number of samples in the damaged
states does not affect the classification results, as every sample from the damaged
states is considered independently. In the same way as described above, the model
of the healthy state was generated based on a third of the available samples from
the healthy state, which were randomly selected. The remaining two-thirds of the
samples were used to validate the correctness of the healthy state classification
and compute the false alarm rate.

As mentioned previously, two models were used, one for each regime, and to be
comparable, the damage indices d are normalized by the corresponding threshold
values D5%. For the given random sequence, the overall false alarm rate is 7.3%,
while the correct detection rate for all three crack sizes is 100%. Fig. 15 also
illustrates that the damage index value generally increases with the size of the
crack: for the undamaged blade the value is below 1 (for the false alarm cases it
reaches 2); for the 15 cm crack the value is between 1 and 8; for the 30 cm crack it
is between 2 and 15; and for the 45 cm crack it is between 4 and 80. It is not
possible to make a correlation between the damage index value and the crack size
(as it naturally depends on the location of damage) but one can conclude whether
the crack has stabilized, or continues to develop. 

As mentioned before, the choice of the allowed false alarm rate R defines the
detection threshold, thus affecting the resulting false alarm rate (False Positives)
and the correct detection rate (True Positives), which in classification studies is
typically illustrated by a Receiver Operating Characteristic (ROC) curve. Here we
use a slightly different approach plotting the false alarm rate and the correct
detection rate as functions of the allowed false alarm rate R (Fig. 16). 

Since the samples of the training set are randomly selected from the healthy
samples, the false alarm rate and correct detection rate depend on realization of the
random sequence. Fig. 16 shows that the allowed false alarm rate R was iterated
from 0 to 10%; for each case, 500 random realizations of the training set were
generated and the corresponding models were applied to the data. 

Fig. 16 (top) shows the development of the false alarm rate, where the dots
represent the value for each random sequence realization and the line is the mean
value. As expected, the mean false alarm rate is generally higher than the allowed
false alarm rate, however there exist random sequence realizations where the false
alarm rate is significantly higher or significantly lower than the mean value.

Fig. 16 (bottom) shows the averaged correct detection rate. The figure is based
on the data from the 43 rpm case.
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Fig. 16. Top: Test false alarm rate for different allowed false alarm values for 500 random
realizations of the training set and the averaged value. Bottom: Averaged correct detection
rate for 500 realizations of the training set
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6.2. Influence of Different Sensor Configurations
The measured datasets include the data from 12 accelerometers, as shown in
Fig. 4. Accelerometer #16 is located close to the actuator, and its signal is only
used to align time histories from the different actuator hits. Sensors #5 thru #15 are
distributed along the blade. In the implementation of a real SHM system, using the
least number of sensors is desirable from system cost considerations. 
Optimization of the number of sensors and their location is out of the scope of this
paper, however, in this section we provide some results of ‘what-if’ scenarios,
selecting different sensor configurations and providing the corresponding
detection results and the false alarm rate.

Fig. 17 thru Fig. 20 compare the results for different sensor configurations
computed for the 32 rpm regime. In Fig. 17 (a) the results when using all 11 blade
accelerometers are shown. Excluding the spar sensors (Fig. 17 (b)) improves the
results, indicating that the spar sensors’ signals do not contain any information
about the trailing edge opening. Indeed, using only spar sensor for detection
(Fig. 17 (c)) shows extremely bad detection results. It is interesting to note that
using the four leading edge sensors (Fig. 17 (d)), the bigger amount of damage
(namely, 30 and 45 cm cracks) is detectable but the algorithm fails to detect the
15 cm crack. Using the four trailing edge sensors (Fig. 17 (e)), the 15 cm crack
can be detected with a higher certainty; here we observe an interesting non-typical
phenomenon: the larger area of damage (30 cm crack) produces a smaller damage
index, thus the longer crack can be detected with lower certainty than the bigger
one.    

The energy of the mechanical impact provided by the actuator propagates along
the blade towards its tip, and numerous reflections from the elements of the
structure and blade’s tip define a complex unique vibration pattern sampled by the
few accelerometers. Since most of the energy propagates from the actuator
towards the tip, it could be expected that a structural fault will mainly affect the
readings of the accelerometers located behind the damage, and in much lesser
degree the readings of the accelerometers between the actuator and the fault.
Fig. 17 (f) thru (h) supports this suggestion: using four sensors (two on the leading
edge and two on the trailing edge) the detection rate is excellent when the sensors
are behind the fault (Fig. 17 (h)), only the 30 and 45 cm cracks are detectable
when the sensors surround the fault (Fig. 17 (g)), and the worst results are
obtained when the sensors are located between the fault and the actuator. Using
this observation, it is possible to roughly locate the fault by ‘scanning’ the blade
by employing different sensor combinations.
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Fig. 17. Test false alarm rate and correct detection rate as a function of allowed false alarm
rate for different sensor configurations. Each graph has a corresponding sensor configuration
shown above it with the number of accelerometers used shown as red dots

Allowed false alarm rate, %
0 2 4 6 8 10

D
et

ec
ti

o
n

 a
n

d
 f

al
se

 a
la

rm
 r

at
es

, %

100

80

60

40

20

0

a)

b)

0 2 4 6 8 10
Allowed false alarm rate, %

100

80

60

40

20

0

D
et

ec
ti

o
n

 a
n

d
 f

al
se

 a
la

rm
 r

at
es

, %

170245
49



Fig. 18. Test false alarm rate and correct detection rate as a function of allowed false alarm
rate for different sensor configurations (cont.)
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Fig. 19. Test false alarm rate and correct detection rate as a function of allowed false alarm
rate for different sensor configurations (cont.)
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Fig. 20. Test false alarm rate and correct detection rate as a function of allowed false alarm
rate for different sensor configurations (cont.)
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7. Discussion
At 32 and 43 rpm regimes, the damage detection algorithm demonstrates
comparable performance. However, in the idling case the performance drops. It was
found that this case required taking the rotor azimuth angle into account; apparently
the samples measured at different blade positions are not directly comparable. A
possible reason for this is that while idling, the blade pitch is about 90° and the
plunger hit direction lies in the rotor plane. Therefore, the strength of the hit is
affected by gravity and depends on the azimuth angle (Fig. 3). When operating, the
blade’s pitch is around zero, the actuator direction is always perpendicular to the
vector of gravity (Fig. 2), and the hit strength is not affected by the rotor position.

8. Technical Implementation
As mentioned earlier, the described system is a prototype, which was implemented
in order to prove the concept of an actuator-based, vibration-based SHM system.
This section discusses some technical aspects of a real-life implementation of such
a system.

Perhaps the most challenging part of such a system, if implemented in reality, is
the accelerometers. Due to possible lightning strikes, wind turbine manufactures
avoid placing any metal elements (except the components of the lightning
protection system) into the blade further than one-third of its length. Apparently,
the use of conventional piezoelectric accelerometers connected by copper wires is
not an option for monitoring the entire blade, and they have to be replaced, for
example, by metal-free optical accelerometers connected by optical fibre cables.
This solution requires optical data acquisition systems. As the specifications of the
currently available fibre optic accelerometers are considerably inferior to their
piezoelectric counterparts, their performance can significantly affect the
performance of the overall system, and this must be thoroughly investigated. Still,
conventional piezoelectric accelerometers can be an option if only the root section
of blades needs to be monitored.

Regarding the amount of data that the system has to handle, one can note it is
quite moderate despite the high sampling frequency (in the described
implementation, 16 kHz, but this can be reduced to 2 to 3 kHz without any effect
on accuracy). Indeed, the system is not measuring constantly but activated
periodically, for example once per hour (the five-minute interval used in the
presented study is due to the need to collect a lot of data in a short period of time).
The amount of data will depend on the practical implementation of the system,
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namely the split of the responsibilities between the embedded system and the
server. For example, if the bandpass filtering, signal alignment, calculation of the
covariance matrix and the dimensionality reduction are performed by the
embedded system, then each sample is expressed by a vector of 20 to 30 floating-
point numbers, which is up to 120 bytes. This amount of data has to be transferred
to the server for classification and decision making; if the embedded system is
capable of producing these steps (which involves Mahalanobis distance
calculation), then the embedded system needs to transfer only a few bytes to the
server when damage is detected. During the training phase it is desirable to collect
the raw data (time histories), which will provide more flexibility, for example, for
simple damage localization, as described in previous sections, or if a few sensors
are lost during system use.

Another crucial parameter characterizing the SHM system is its overall cost,
which includes the cost of the hardware, cost of installation (either retrofitting or
installation during blade manufacturing) and maintenance and operational costs.
The apparently high cost of such a system makes it economically feasible only for
multi-megawatt wind turbines, where the blade length reaches 80 to100 metres.
Monitoring of the full length of such a blade requires 20 to 30 accelerometers per
blade, though the data acquisition channels can be shared between the blades using
multiplexing. For long blades, a multi-actuator design (as described in [18]),
appears promising, thus the blade can be monitored by sections. This allows a
significant reduction of the data acquisition channels.

Concluding, we can note that the projected cost of such a system may be
considerably high, however, with a proper design it can be notably reduced. 

9. Conclusion and Future Research
This study presents an active vibration-based SHM system that utilizes an
electromechanical actuator (automatic hammer) and an array of accelerometers.
As a damage feature, a covariance matrix between the measured acceleration
signals was used. The paper describes a three-and-a-half-month measurement
campaign, when the system was installed on an operating Vestas V27 wind
turbine. The ability of the system to detect an artificially introduced failure
(blade’s trailing edge opening) was investigated. It was demonstrated that a 15 cm
long opening can be detected without stopping the wind turbine. It can be
concluded that the actuator-based approach, in combination with covariance-based
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damage feature can be used for successful detection of typical blade defects, while
using a feasible hardware setup and semi-supervised learning algorithm. 

The authors see the following directions of future development. The first
direction concerns creating virtual test environments, which will allow simulation
of the vibration response of the blade to an actuator hit. Such environments should
be based on a 3D model of the blade detailed enough to realistically reproduce the
time history of the acceleration responses with good resolution. The environments
are a convenient tool for designing and optimizing the SHM system, as it
facilitates selecting the number and location of the actuator and accelerometers,
and testing the design against different types and locations of blade faults. Such a
tool can also be useful to determine the minimum characteristics of the data
acquisition chain. For example, using such a tool, one can evaluate the suitability
of metal-free optical accelerometers in the blade SHM context.

The second direction is the improvement of the classification algorithm. First of
all, the algorithm should be able to take into account the weather conditions. There
are already a number of promising approaches minimizing the effect of weather
conditions on the damage detection results. Another approach to improve the
certainty of the classification is to utilize the sequence of observations. Indeed, the
SHM system produces a binary result (the blade is either healthy or damaged)
after every actuator hit. However, there is no need to make a conclusion solely
based on one observation, while many sequential observations are available.
Utilizing this sequence may considerably improve the certainty of the decision
making. For example, the Sequential Probability Test Ratio (SPRT) approach
looks like a promising tool to benefit from the observation sequence, see [15].
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