Schallpegelmessgerät - Schallpegelmesser

Schallpegelmessgeräte und -analysatoren von Brüel & Kjær sind konzipiert für eine Messgenauigkeit der Klasse 1, Benutzerfreundlichkeit und beispiellose Flexibilität. Unsere neuesten Schallpegelmesser können direkt über Smartphones verwaltet werden, und dank unserer funktionserweiternden Apps können Sie Ihr Schallpegelmessgerät an jede Messaufgabe anpassen.

Vor über 60 Jahren hat Brüel & Kjær das weltweit erste tragbare Schallpegelmessgerät erfunden. Und wir sind auch heute noch führend in der Branche.

B&K 2245 SCHALLPEGELMESSER / MIT NOISE PARTNER

Die Schallpegelmesser B&K 2245 sind benutzerfreundliche Lösungen für spezielle Aufgaben der Geräuschmessung. Das Gerät wird mit einer Reihe von Apps geliefert, die jeweils auf die Funktionalität Ihrer spezifischen Aufgabe zugeschnitten sind.

B&K 2250 Schallpegelmesser

B&K Typ 2250 und Typ 2270 Schallpegelmesser / Analysatoren

Typ 2250 und Typ 2270 schallpegelmesser von B&K bieten ein preisgekröntes Design, das auf umfassenden Untersuchungen von Technikern, Ingenieuren und Beratern basiert, sodass beide für anspruchsvollste Messaufgaben geeignet sind.

Während der Typ 2250 ein Einkanal-Instrument ist, verfügt der Typ 2270 über zwei Kanäle für die gleichzeitige Messung von Schall und Schwingung.

Was ist ein Schallpegelmesser?

Ein Schallpegelmessgerät ist ein Instrument, das auf Schall in etwa der gleichen Weise reagiert wie das menschliche Ohr. Ziel ist es, objektive, reproduzierbare Messungen des Schalldruckpegels durchzuführen.

Die Begriffe Schallpegelmesser und Geräuschpegelmesser werden häufig verwendet, um dasselbe Instrument zu beschreiben. Schallpegelmesser unterscheiden sich hauptsächlich hinsichtlich der Klassifizierung der Genauigkeit, wie sie von internationalen Normen definiert wird. Selbstverständlich erfüllen alle Schallpegelmessgeräte von Brüel & Kjær höchste nationale und internationale Standards.

Allgemeine Definitionen von Begriffen aus dem Bereich Schall finden Sie in unserem Glossar zu Schall und Schwingungen

So setzen Sie einen Schallpegelmesser ein

Schallpegelmessgeräte werden in verschiedenen Branchen und Anwendungen eingesetzt wie beispielsweise:

Im Laufe der Jahre hat Brüel & Kjær eine Vielzahl von Grundlagensammlungen und ausführlichen Leitfäden erstellt, die fast alle Themen rund um die Schall- und Schwingungsmessung abdecken. Als Unternehmen glauben wir an den Austausch von Wissen und haben deshalb alles zusammengestellt und für Sie zum Download verfügbar gemacht - völlig kostenfrei. 

Um Zugang zur Bibliothek zu erhalten, besuchen Sie bitte unser Wissenszentrum und melden Sie sich an.

Time weighting specifies how the SLM reacts to changes in sound pressure. It is an exponential averaging of the fluctuating signal, providing an easy-to-read value.

The analyzer applies Fast, Slow and Impulse (or ‘F’, ‘S’ and ‘I’) time weightings, which are the required weightings according to most international and national standards and guidelines. Environmental assessment standards usually specify which time weighting to use.


Time Weighting
The signal is processed through the weighting filters, and the resulting sound pressure level is displayed in decibels (dB) referenced to 20 μPa on the analyzer’s screen. The sound pressure level values are updated at least once per second.

Assessing a fluctuating noise level means getting a value for a level that is, in simple terms, the average level. The ‘equivalent continuous sound level’, Leq, is known around the world as the essential averaged parameter.

Leq is the level that, had it been a steady level during the measurement period, would represent the amount of energy present in the measured, fluctuating sound pressure level. It is a measure of the averaged energy in a varying sound level. It is not a direct measure of annoyance, though extensive research has shown that Leq correlates well with annoyance.

Leq can be measured directly with most professional sound level meters, and is sometimes called an integrating sound level meter. If an A-weighting filter is used, it is expressed as LAeq, the measurement of the equivalent continuous sound level using the A-weighted filter network
Frequency weighting adjusts how the sound level meter responds to different sound frequencies. This is necessary because the human ear’s sensitivity to sound varies according to the sound’s frequency.

IEC 61672-1 (international standard) defines frequency weightings A, C and Z, but other frequency weightings are occasionally used in specialized applications.
Frequency Rating
 
A-weighting – dBA/dB(A)
A-weighting adjusts a signal in a way that resembles the human ear’s response at medium-range levels. It is based on the 40 dB equal loudness curve. The symbols for the noise parameters often include the letter ‘A’ (for example, LAeq) to indicate that frequency weighting has been included in the measurement.
 
A-weighting is required for nearly all environmental and workplace noise measurements and is specified in international and national standards and guidelines. A-weighting filters cover the full audio range, 10 Hz to 20 kHz.
 
C-weighting – dBC/dB(C)
The response of the human ear varies with the sound level. C frequency weighting corresponds to the 100 dB equal loudness curve, that is to say, the human ear’s response at fairly high sound levels.

C-weighting is mainly used when assessing peak values of high sound pressure levels. It can also be used, for example, for entertainment noise measurements, where the transmission of bass noise can be a problem.
 
Z-weighting – dBZ/dB(Z)
‘Zero’ frequency weighting is a flat frequency response between 10 Hz and 20 kHz ±1.5 dB excluding microphone response.
 
Today, the A-weighting network is the most widely used frequency weighting. C-weighting does not correlate well with subjective tests because the equal loudness contours were based on experiments which used pure tones — and most common sounds are not pure tones, but very complex signals made up of many different tones.
When more detailed information about a complex sound is required, the frequency range from can be divided up into sections or bands. This is done with electronic or digital filters, which reject all sound with frequencies outside the selected band. These bands usually have a bandwidth of either one octave or a third of an octave.

An octave is a frequency band where the highest frequency is twice the lowest frequency. For example, an octave filter with a centre frequency of 1 kHz admits frequencies between 707 and 1414 Hz but rejects all others. (The name octave stems from the fact that an octave covers eight notes of the diatonic musical scale). A third octave covers a range where the highest frequency is 1.26 times the lowest frequency.
Frequency analysis
The process of thus dividing a complex sound is termed frequency analysis and the results are presented on a chart called a spectrogram.

After the signal has been weighted and/or divided into frequency bands, the resultant signal is amplified, and the Root Mean Square (RMS) value determined in an RMS detector. The RMS is a special kind of mathematical average value. It is of importance in sound measurements because the RMS value is directly related to the amount of energy in the sound being measured.
International standards are important either because they are used directly or because they provide inspiration or reference for national standards. There are two main international bodies concerned with standardization.
 
The International Organization for Standardization (ISO) primarily deals with a methodology to ensure that procedures are defined to enable comparison of results. The International Electrotechnical Commission (IEC) ensures that instruments are compatible and can be interchanged without major loss of accuracy or data.

IEC 61672 - INTERNATIONAL STANDARD
“IEC 61672 – Electroacoustics – Sound level meters” is the current international standard that sound level meters should meet to satisfy most modern regulations. It specifies “three kinds of sound measuring instruments” - the “conventional” sound level meter, the integrating-averaging sound level meter, and the integrating sound level meter.

The standard is published in three parts:
  • Part 1: Specifications: Requirements for sound level meter performance and functionality for class 1 and class 2 sound level meters
  • Part 2: Pattern evaluation tests: Details of the tests necessary to verify conformance to all mandatory specifications given in IEC 61672-1. Used by test laboratories to ensure that instruments meet manufacturers claims.
  • Part 3: Periodic tests: Procedures for periodic testing of sound level meters conforming to the class 1 or class 2 requirements of IEC 61672-1:2002
It defines the basic terminology including the central Rating Level parameter and describes best practices for assessing environmental noise.

ISO 1996: ASSESSMENT OF ENVIRONMENTAL NOISE

ISO 1996 is a central standard within environmental noise assessment, acting as a reference work on the subject and commonly referred to by regional standards and regulations.

The standard is in two parts:
  • Part 1 (2016): Basic quantities and assessment procedures
  • Part 2 (2017): Determination of sound pressure levels
Calibration is an adjustment of your sound measuring instrument to measure and display correct values. The sensitivity of the transducer, as well as the response of the electronic circuitry, can vary slightly over time or could be affected by environmental conditions such as temperature and humidity. 

While you are unlikely to ever experience a large drift or change in sensitivity, it is nevertheless, good practice to regularly check the calibration of your measuring instrument before and after each set of measurements. This is best done by placing a portable acoustic calibrator directly over the microphone, providing a precisely defined sound pressure level to which the sound level meter can be adjusted.

In addition to checking calibration before and after measurements, many regulations and standards governing sound level measurements often also require that your sound level meter is calibrated in a laboratory once every 12 or 24 months.