DS

DACTRON

NET-Integrator

User Guide
Rev. 1.7

Software Installation
Sample Programs
Object Definitions

LDS-Dactron

Phone. (408) 934-9160
Fax. (408) 934-9161
E-mail: technical.support@]Ids.spx.com
Web Site: www.lds-group.com



Table of Contents

Notice

Information in this document is subject to change without notice. No part of this
document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of LDS.

LDS makes no warranties on the software, whether express or implied, nor implied
warranties of merchantability or fitness for a particular purpose. LDS does not warrant
your data, that the software will meet your requirements, or that the operation will be
reliable or error free. The user of the software assumes the entire risk of use of the
software and the results obtained from use of the software. LDS shall not be liable for
any incidental or consequential damages, including loss of data, lost profits, cost of cover
or other special or indirect damages. Your rights under law may vary.

US Government Restricted Rights

The software and documentation are provided with Restricted Rights. Use, duplication,
or disclosure by the Government is subject to restrictions as set forth in subparagraph
c(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs c(1) and (2) of the Commercial Computer Software -
Restricted Rights at 48 CFR 52.227-19 as applicable. The Manufacturer is LDS Test and
Measurement LLC, 8551 Research Way, M/S 140, Middleton, W1 53562.

Copyright ©1997-2007 LDS Test and Measurement. LDS is a member of SPX
Corporation. All rights reserved

All trademarks and registered trademarks are the property of their respective holders.



Table of Contents

Table of Contents

Ty igoTo (1 o3 (o] o F OSSPSR 1
THRIS IMTBNUAL ...ttt bbb et b ettt e bttt e bt et e e b et et e ebe et e ebe st et e abeneete s 1
Introducing Network ENabIed TEST™ ... ..ottt sttt r et re b resaeere e enee s 1

N = I ) o L0 @AY= YT SRS 1
WAL IS NET-TNIEGIAION? ...ttt bbb bbb bbbttt b ettt 1
What’s the Difference Between NET-Integrator and ACIVEX API? ..o 3
OS Requirements for NET-INTEGIAtOr .........cciiiiieieiee ittt ettt 3
What iS an ACLIVEX CONIIOI? .....ouiiiiiiece et bttt b e b bt bbb e e 3

e 0] 01S] LTS OO U USRS 4
T3 {0 oo OSSOSO U USUSPPTN 4
AT OO P RSP P T OPPTUPPRTIT 4
Implementation of the ACtIVEX CONIOIS .........ccciii i et 4
NET-INtegrator INSTAHALION ...........coiiiiicic et te et e e e et esbe st e sbeeaeereeneenrees 5
(@8 1T 01 oo o S 5
(@103, Q00 11 o] TSSOSO 5
Enable NET-Integrator on the Server APPlICAtION ........cccov i 5
INSAll the OCX CONLIOL ...ttt ettt sttt e re et et e et sbenteaneese e e eneees 5
A QUICK EXaMPIe iN ViISUBL BASIC........cveiiiiiieiiiieiieiisie sttt ettt 11
Step 1. Open Microsoft Visual BaSiC V6.0 .......ccccuriiiiiiiiiiiiiiiesie e 12
SEEP 22 PrOJECT SELLINGS -..uveveiteetieieetie ittt sttt e b ettt sttt s e e bbbt et e et es e et et et e sbe et e e bt eneeneneas 12
Step 3. Design a Graphical USer INTEITaCE ........coviiiiiiiee e 13
Step 4. Edit the SOUICE COUB.......eiicieiiiie ettt et s b e te e e s e et e besbestesneeneeeenes 14

) ] ST S CTo L R g TR AN o] o] [T L o] S S 15
ACTIVEX CONIIOIS ...ttt bbbt bbb bbb e n et b s e be bt et st et eee 16
ACHIVEX CONIOL: NETEICMA ...ttt b et bbbt ene e nnas 16
ATy o 0810 I o] o] =TSSR 16
NETECMA IMELNOUS ...ttt b et b b e bt b et et e sbesbesbesbesbe e e aneeneens 18
NETECMA EVENTS ...ttt ettt st e st et e be st sbesbeebees e e e enteseesbesbesneerenneeneeneens 21
AcCtiveX Control: NETESTGNA .....c.oo e sr e re e e es 21
NETESTGNAT PrOPEITIES. .....oiviiiiiiteiee ettt bbb et b et sneneene s 21
NELISIGNAI IMEBINOUS. ...ttt ettt b e bbbt ne et 23

NIy o BT e [ = U I T o PSS 26
ACHIVEX CONrol: NETESTATUS ..ottt sb st ne e 26
NETTSTATUS PrOPEITIES. . ..o ittt ettt b ettt b e bbb et b et srenrene s 27
NETESTATUS MEINOUS ... .cviiiiici et b ettt sb et re st e e etesbeseereas 28
NETESTATUS EVENTS ..ottt b ettt s et st sbeenbeesbeeneesneesnes 38
NET-INtegrator SAMPIE PrOJECES ......ciuiiiiiiieie ettt et bttt b e bbbt ene e e e 39
Visual BASIC SaMPIE: VBSLAMTSTOP ....couveveiiertiiieriieieeieeie ettt ettt sttt ss bbb sbe e eneenennas 39
Visual BASIC Sample: VBSAMPIEL ......cvciiiiiiieie ettt st sr et st sne e s eneesnenns 41
Visual BASIC Sample: VBDEVEIOPET ......cc.ciiiiiieiieieiee st sttt st te s a et sn et e st sne e nseneenenes 42
Visual C SamPIE: VCSAMPIE .......oveiicieice ettt te b e te e s e e et e besbestesneeneenneneas 44
MatLab Samples: MatlabStartStOP ......ccvcveriereiirire et re e 45
General QUESTIONS AN ANSWEIS.......cuviiriereitieitieitee e eireeitesee st e ateeebeabeasbesteesteesbeesbeasbesasessseabeebeenbesssesssesteesres 48
Can ActiveX controls Access a Remote Application? HOW?.........cooevieviiin i 48
Can the Client Connect to a Local Server APPlCAtION?..........ccoviiiiiiiiiiece e 48
What if ActiveX Tries to Connect a Server that iS NOt RUNNING? ........coeviiiiiiiiiieneeese e 48
How Can | Create a New Project on the Server Application?..........ccoeiviiiiiiiiiiieec s 50
How Do | Open an Existing Project on the Server Application? ...........cocooeiiiiieniiinee e 51
How Do | Send a Command to the Server APPlICAtION?...........cooiiiiiiiiiie e 51
How Do | Read the Status from the Server AppliCatioN?...........ccooiiiiiiiiie e 51

How Can | Identify All of the Signals in the Server Application? ..o 52



Table of Contents

How Do | Read the Signal Attributes from the Server Application? ... 53
How Do | Read the Signal Array from the Server Application?...........cccocvviiiiniiiii s 54
HOW Can | SAVE the SIGNAIS? ........ooiiiii et bbbt 55
Limited WArranty STAEEMENT ........coe ittt bbbttt b e b e bt et et e e b e sbe s besbe et e e e ennennens 57

MaNUAL REVISION HISLOTY ...ttt bbbttt b st e bt et e et e s e e e sbe s besbe et e e neeneennens 59



Introduction

Introduction

This Manual

This manual provides instructions for installing and using LDS-Dactron’s NET™ software. It also
describes the technical background of the technology and its application. For the NET-Integrator™
software, detailed function descriptions, naming conventions, and samples are provided.

Introducing Network Enabled Test ™

NET is LDS-Dactron's network-enabled data acquisition and real-time test product. NET consists of new
hardware and software components that are designed for the Microsoft Windows 2000/XP environments.
In contrast to traditional stand-alone instruments or software applications, NET allows the user to
customize and integrate multiple devices together via Ethernet. The features of NET are:

e A highly scalable and customizable system

e The latest component software technology

e Enriched real time processing functions

LDS-Dactron data acquisition devices, dynamic signal analyzers, and vibration controllers are integrated
and connected to other applications using Microsoft’s ActiveX and COM technologies. The data is
acquired and processed in real-time locally on the device, and then viewed and processed, and stored
anywhere on the network. NET software is supported by LDS-Dactron’s Photon, Focus, LASER, and
COMET systems running either shaker control or dynamic signal analysis applications.

NET software consists of three components: NET-Remote™, NET-View™, and NET-Integrator™.

o NET-Remote enables the LDS-Dactron Windows application, either Shaker Control software or
RT Pro signal analysis software, to run remotely over an Ethernet network.

o NET-View allows the user to view testing results remotely without interrupting the processes on
the computer controlling the testing.

e NET-Integrator utilizes COM and ActiveX technology to provide an integrated test
environment in which multiple software applications can be operated and controlled
concurrently.

For details about the network and DCOM configuration, please refer to following document:

Network and DCOM Configuration.doc

NET-Integrator Overview

A basic knowledge of ActiveX controls and basic programming skills in Visual Basic or Visual C++ is
very helpful in reading the sections of this manual describing NET-Integrator.

What is NET-Integrator?

Based on ActiveX technology from Microsoft, NET-Integrator is a software tool that allows the user to
control the operation and access the testing results of LDS-Dactron software applications. The user can
create a customized user interface (The Client) in Visual Basic, Visual C++, LabView, MS-Excel, or MS-
Word to control the LDS-Dactron applications (The Server) either locally or remotely through an ActiveX
control provided by LDS-Dactron.



Introduction

The relationship between the Client, the Server, and the ActiveX control is described in the following
picture:

ActiveX Control
NetlICmd
- Server (RTPro
Client ActiveX Control hak
Program NetlSignal - ——p| or Shaker
ActiveX Control COI’]UOD
NetlStatus

LDS-Dactron provides three ActiveX controls: Net1Cmd, NetlSignal and NetlStatus. When in
use, these ActiveX controls are embedded in the Client application and communicate with the Server.
Microsoft’s ActiveX controls are similar in concept to the Dynamic Link Library (DLL) or the shared
library type of files. They provide additional benefits such as better version control and the ability to
operate as abstract objects. In addition, ActiveX controls can also be used with other Windows
applications such as Microsoft Word, Excel, or Internet Explorer. This provides access and control of the
system via the Web.

With NET-Integrator, multiple LDS-Dactron applications can be operated simultaneously. Typically, in a
complex measurement environment the measurement system is divided into small groups. Each group
takes 1 to 16 measurement channels with its own test setup. The ActiveX container broadcasts the
commands to each Windows applications and receives the status and measurement results from them.
For example, an ActiveX Client can execute the following functions in the RTPro or LDS-Dactron
Shaker Control applications:

Open and start a specific project file (execute Project Open/Project.prj command)

Receive messages posted from a server application

Send commands to the application such as Start or Stop

Retrieve and display the run status from the application

Retrieve and display the data arrays from the application

The NET-Integrator client talks directly to the RTPro or Shaker Control applications (The Server). The
client can be as simple as just two or three command buttons or as complicated as the RTPro application
with a full-function user interface.

I I—
Tie Commansy (e

Ok @ @ £|%je| o rlof sjej=
o

NET-Integrator|. |||,|I
Connectivity | ™

_1.II"I.f_ll.l.hl.l_II." “-II.I.I.‘ul.i_ll.l"ll.’_ll.|| 'E

] RTPro or Shaker Control
NET-Integrator Client Applications (Server)

The NET-Integrator Client and the applications it controls can run either on the same computer or on
different computers through a TCP/IP connection.

To execute the NET-Integrator functions, the RTPro or Shaker Control application must have NET-
Integrator connectivity enabled. NET-Integrator includes a file called “NetIntegrator .OCX”. This
OCX file includes three ActiveX controls that are registered on the NET-Integrator Client computer.

2



Introduction

The NET-Integrator product is also shipped with multiple samples built using Visual Basic and Visual
C++. See Section 4, “NET-Integrator Sample Projects”, for details.

What's the Difference Between NET-Integrator and ActiveX API?

In addition to NET-Integrator, LDS-Dactron offers another line of product that is based on ActiveX
technology, LDS-Dactron ActiveX API. API stands for Application Programming Interface. Both product
lines are targeting at increasing the connectivity and flexibility of LDS-Dactron products. The differences
are:

1. The client program of ActiveX API communicates to the library engine while that of NET-
Integrator communicates to the user-interface level of RTPro or shaker controller. In the other
words, the NET-Integrator simply replaces the operator to handle the project through LDS-
Dactron application. The following picture shows the structure:

, Dactron RTPro or Client program for
Client program for >
NET-Integrator
ActiveX AP shaker control g
applications

: :

Dactron library engine

2. In ActiveX API, only a limited number of data acquisition and spectral analysis functions are
available. On the other hand, NET-Integrator can utilize all the functions available in RTPro and
shaker control.

OS Requirements for NET-Integrator

NET-Integrator operates on any of the following operating systems.
e Windows 2000
e  Windows XP

What is an ActiveX control?

An ActiveX control is an object that supports a customizable, programmable interface. Using the
Methods, Events, and Properties of a control, Web authors can automate their HTML pages. Examples of
ActiveX controls include text boxes, command buttons, audio players, video players, stock tickers, and so
on.

You can develop ActiveX controls using Microsoft Visual Basic 5.0 and later, Microsoft Visual C++,
MatLab, VEE, LabView and Java etc..



Introduction

Properties

An ActiveX control fires events to communicate with its control container. The container, in return, uses
methods and properties to communicate with the control. Methods and properties are similar in use and
purpose, respectively, to member functions and member variables of a C++ class. Properties are data
members of the ActiveX control that are exposed to any container. Properties provide an interface for
applications that contain ActiveX controls, such as Automation clients and ActiveX control containers.

Methods

An ActiveX control fires events to communicate between itself and its control container. A container can
also communicate with a control by means of methods and properties. Methods and properties provide an
exported interface for use by other applications, such as Automation clients and ActiveX control
containers.

Events

ActiveX controls use events to notify a container that something has happened to the control. Common
examples of events include clicks on the control, data entered using the keyboard, and changes in the
control’s state. When these actions occur, the control fires an event to alert the container.

Implementation of the ActiveX controls

Three types of the ActiveX controls are implemented in NET-Integrator. They are Net1Cmd,
NetlSignal, and NetlStatus

e NetlCmd: Used for sending commands to a server application such as RTPro.

o NetlSignal: Used for reading signal attributes and signal data from the server application. It
also can fire the VPU_ALLOC_SIGNAL_READY and VPU_UPDATE_SIGNAL messages from
the server to the client.

e NetlStatus: Used for reading the test status from the server application. It can fire the
VPU_UPDATE_STATUS message from the server to the client.

A detailed description of the Properties, Methods and Events of these ActiveX controls is included in
Section 3, “ACTIVEX Controls.”



NET-Integrator Installation

NET-Integrator Installation

NET-Integrator consists of three fundamental components: A client program, a LDS-Dactron OCX
control, and the server application that has NET-Integrator connectivity enabled.

Client Program
The user creates his own client program in Visual Basic or Visual C++ or any ActiveX container.

OCX Control
Install and register the NetIntegrator .0CX component, following the instructions below.

Enable NET-Integrator on the Server Application

The application (RTPro or Shaker Control) that shipped with NET-Integrator from LDS-Dactron already
has this function enabled. The client program will be able to communicate with it through an ActiveX
control.

Install the OCX Control

1. Insert the LDS-Dactron Shaker Control installation CD into the PC’s CD-ROM drive. The
Shaker Control Software Installation screen will automatically start.

2. On the main page, click on the Enabling Applications link to continue to the Enabling
Applications installation page.
Shaker Control Software Installation

Software Installation

Release Notes and User Guide

Il% Control Applications

pAcTRON Enabling Applications
Beyond Expectation Drivers
Browse This CD
Exit

Click toinstall Adobe Acrobat Reader which iz required to view the documerts on this CD
Click to install Microzoft METFrameweork which iz reguired to run the applications on thiz CO

25 Dactron, 47300 Kato Road, Fremant, C

3. On the Enabling Applications page, click on the NET-Integrator link to install the NET-
Integrator software.



NET-Integrator Installation

Shaker Control Software Installation

L0

Waveform Editor 6.20 (library version 6.311)
Import and edit waveforms to use as output signals
NET-ntegrator 1.7
ActiveX interface to other applications
Signal Reader 1.2

ActiveX interface for reading Dactron 2D and 3D signals

[LET
Notes and Guide

Control App

Drivers
Browse CD
Exit

Signal Viewer 1.0
ActiveX interface for viewing Dactron 2D and 3D signals
Pocket PC Desktop Configuration Editor 1.5
Remote status and control using a Pocket PC device
Pocket PC Client 1.5

Remote status and control using a Pocket PC device

4.

NET-Integrator - InstallShield Wizard

WwWelcome to NET-Integrator 1.7 Installation

rd will install MET-Integrator 1.7

MING: Thiz ted by copyright law and intermational tres

InstallShield Cancel




NET-Integrator Installation

5. Select the | accept the terms of the license agreement button to accept the License
Agreement then click the Next button.

MET-Integrator - InstallShield Wizard

Licenze Agreement

LICENSE AGREEMENT

If you keep the Software, you are agreeing to the terms of this Agreement. Use of the
Software iz subject to thiz agreement. IF you do not agree ta the terms of this Adreement,
return thiz package ta LDS-Daction for a refund.

LDS D action grants you a non-exclusive right to uze thiz copy of the Software and
accompanying material: according to the following:

o may:
a) use and install the Software on only one computer at a time:;
b] make ane (1] copy of the Software for backup purposes; and

] transfer the Saftware from one computer to anather so long as the Software is neither
uzed on nor copied onto more than one computer at a time.

| done

IstallShield ’ < Back ” Mest » ] Cancel

6. Type in your NET-Integrator License Key then click on the Next button.

MET-Integrator - InstallShield Wizard

License Key

IstallShield ’ < Back ” Mest » Cancel

7



NET-Integrator Installation

Assign the Destination Folder then click on the Next button.,

MET-Integrator - InstallShield Wizard

Select Features
+

Setup will JET-Integrator 1.7 in the wing folder.

InstallShi=ld ’ < Back ” et > ] Cancel

Select the Program Folder then click on the Next button.

MET-Integrator - InstallShield Wizard

Select Program Folder

Ple t & pragram folder.

may type a new folder name,

Existing Folders:

Admirizstrative Tools
ATIHYDRAVISION
BUFFALO

DL&

Dioth etB ar

Games

HF PrecisionScan LTx
IBM JavaWeb Start +1.2
IBM Recordiow

|IBEM Reqistration

| iden \WinDWD

InstallShizld < Back ” Mest > Cancel




NET-Integrator Installation

9. Select the shortcut preference for the NET-Integrator User Guide then click on Next.

MET-Integrator - InstallShield Wizard

Create Shortcut

touk option:

IstallShield ’ < Back ” Mest » ] Cancel

10. Verify your NET-Integrator installation settings, if everything is OK click on Next.

MET-Integrator - InstallShield Wizard

Check Setup Information

Drestination Folder:
CALDS DactronSMET -Integrator 1.7

Start Meru Short Cut:
C:ADocuments and Settingshall UsershStart Menu\ProgramsiLDS Dactronhszer Guide for
METIntearator

Desktop Shart Cut:
CADocuments and Settingzial U sers\DesktopiLDS DactroniUzer Guide for MET-
Integrator

Cancel

InstallShield ’ ¢ Back ”




NET-Integrator Installation

11. Complete the NET-Integrator installation by clicking on Finish.

MET-Integrator 1.7 Installation Complete

MET-Integrator Installation Complete

rd ha: ¥ ins Firish ko complete

1hi

ption of appropriate

Il and run the RTPro or

U comnpuk

Cancel

InstallShield

10



NET-Integrator Samples

A Quick Example in Visual Basic

Here is the general function sequence when the NET-Integrator ActiveX
controls are used:

Step 1.

Step 2:
Step 3:
Step 4:
Step 5:
Step 6:

Step 7:

Assign the value to property ApplicationType of Net1Cmd,
NetlStatus, and NetlSignal. The remote server can be RTPro or
Shaker Control.

Assign the value to property AppComputer 1P of Net1Cmd,
NetlStatus, and NetlSignal.

Call method ConnectToServerApp to connect the server application
such as RTPro or Shaker Control for each of these ActiveX controls.
Assign the value to property ProjectType for Net1Cmd control.

With Net1Cmd control, send the command CMD_NEWPRJ to a new project
based on the ProjectType, or send the command CMD_OPENPRJ to
open an existing project.

With Net1Cmd control, send the command CMD_STARTMEAS to start the
test.

Retrieve the testing status or signals by using the events of Net1Status or
NetlSignals.

The following section shows how to make a very simple program in Microsoft Visual Basic 6.0.

11



NET-Integrator Samples

Step 1. Open Microsoft Visual Basic V6.0
Create a Standard.EXE Project.

-

K

Caricel

Pl

Help

Hew Project B3
% &
ik H
e Actives EXE Actives DLL Ackiver
Control
@ %
) |
AN B e
VB Application  WEB WWizard  DataProject  IIS Application
‘Wizard Manager
o Bt M ¢
Addin Ackivel Ackivex DHTML
Docurnent Ol Docurient Exe  Application
i

Step 2: Project Settings

On the VB Menu Bar, Click Project.
Near the bottom of the menu, click Components...

Since you have already registered Netlntegrator.OCX, the specific library is automatically inserted into
Visual Basic Project’s Component. On the Control tab, scroll down the list to find the Net-Integrator

1.0.0 check box and check it.

Components

Cantrals l Designers] Inzertable Dbiects]

X]

Met-Inkegratar 1.0.0

Location:  Ciiwindowshsystem32\NetInkeqrator, oo

MSIOFF10 Ackivel Control module ”
MsoLang 1.0 Type Library
msrtedit 1.0 Type Libratry
M3webDVD 1.0 Tvpe Library — | opo
Ll et-Inteqrakar 1.0.0 - = | 28
Modelagr 1.0 Type Library =
aleprn 1.0 Type Library -
CpksHold 1.0 Type Library it [
Package and Deployment Wizard
PageMavbar DTC 1.0 Tvpe Library
pkmazxctl 1.0 Tvpe Library
Preview 1.0 Type Library
CuickPlace 1.0 Type Library bl EICREE |
< * [ Selected Items Cnly

o]

Cancel

Apply

12



NET-Integrator Samples

Click OK to close the Components dialog box.

.
s,
_i?ﬁﬁ 56
CHO 5,
Once the box is checked, three new icons will come up on the Control Bar. They are the

LDS-Dactron NET-Integrator ActiveX controls.

Step 3. Design a Graphical User Interface

This example contains a Start button, a Stop button, a combo box allowing the user to select whether the
RTPro or Shaker Control application is to be controlled, a text field to display the Frame Number of
RTPro or the Elapse Time of Shaker Controller, and some text descriptions.

On the Visual Basic Form, insert all the controls as shown in the following dialog:

. Net-Integrator H=]

— Server Properties Settng————— 1~ Send Start/Stop Commands -
Server Application Type:
Start
Stop

— MetlStatus

Framez(for BT Pro) or ElapzeTime(for ¥C5)

Change the combo box’s Name to “cmbAppType”, Style to “2-Dropdown List” and add the two
list strings to List :”SVR_RTPro”,”"SVR_VCS”.

Add two command buttons and change Name to “cmdStart” and “cmdStop”.

Change the Text2 Name to “txtFrmNum”.

Drag and drop the NetlICmd and NetIStatus components into the form.

. Net-Integrator _ |O]

. —Server Properties Setting————— — Send Start/Stop Commands -

Server dpplication Tepe:

Icmhﬂl‘-.ppType 'I

| 2] 2 [

-~ MetiStatus

Start

Framesz(for BT Pra] or ElapzeTime(for WCS5]

Once the components are dragged to the form, this Visual Basic application becomes a container for these
two ActiveX controls.

Displaying these ActiveX controls on the form is optional. You can either show or hide them by
assigning the Visible property with a True or False value.

13



NET-Integrator Samples

Step 4. Edit the Source Code

Add the following line into the cmdStart_Click() sub-routine
NetlStatusl.ConnectToServerApp

Add the following line into the cmdStop_Click() sub-routine
NetlStatusl.Disconnect

The following is the source code generated after you have completed the implementations above:

“* Setup Server Application Type

Private Sub cmbAppType Click()
NetICmdl.ApplicationType = cmbAppType.Listlndex
NetlStatusl._ApplicationType = cmbAppType.Listlndex

End Sub

“* Start Command
Private Sub cmdStart Click()

“Calling the SendCommand method will connect the server
first and send start command.

NetlCmdl.SendCommand CMD_STARTMEAS
"Connect the NetlStatusl to Server
NetlStatusl.ConnectToServerApp

End Sub

“* Stop Command
Private Sub cmdStop_Click()
NetlCmdl.SendCommand CMD_STOPMEAS
"Disconnect the NetlStatusl from Server
NetlStatusl.Disconnect
End Sub

“* Handle the NetlStatus’s OnUpdateStatus Event
Private Sub NetlStatusl OnUpdateStatus(ByVal nRunStatus As Long)
NetlStatusl.ReadStatus
Dim vdata As Variant, nPrjType As Long
IT NetlStatusl._ApplicationType = SVR_RTPRO Then
NnPrjType = NetlStatusl.GetlntStatusArray(vdata)
txtFrmNum.Text = vdata(4) "Index 4 i1s the Frames
Number of RTPro
Else
NnPrjType = NetlStatusl.GetFloatStatusArray(vdata)
txtFrmNum.Text = vdata(0) "Index 0 is the ElapseTime

of VCS
End If
End Sub

14



NET-Integrator Samples

Step 5. Execute the Application

Run LDS-Dactron Shaker Control or RTPro Software on the same computer that the VB sample is to be
running. Manually open an existing project or create a new project.

On the same computer, start the Visual Basic application you have just created.

Choose the correct value for ApplicationType property:

. Net-Integrator M=l
— Server Properties Setting—————— [~ Send Start/Stop Commands
Semver Application Tupe:
Start
Stop
SWR_WCS

~ MetlStatus

Frames(for BT Pro) or ElapzeTimelfor WC5]

Click the Start Command Button to start the measurement. The LDS-Dactron software will execute and
the measurement will start. For RTPro, the frames number will be displayed; for Shaker Control, the
elapse time will be displayed.

To stop the measurement, click the Stop Command Button.

Note: If the LDS-Dactron software and the Net-Integrator container application are running on
different computers, make sure you assign the correct IP address to the AppComputer I P property of
the Net1Cmd and Nett1Status controls before clicking the Start Command Button.

15



ActiveX Controls

ActiveX Controls

ActiveX Control: NetlCmd

Netl1Cmd control is used to send the commands from the client to the server application. Some of the
commands need parameters but most of them do not. The commands received by the server application
will be processed logically. Commands may have no effect or may even damage the test if they are sent
in an inappropriate situation. For example, before the command CMD_STARTMEAS is sent, any other
operating command such as CMD_RESETAVG will have no effect.

The client can track the testing status by retrieving the status structure from the server using the
NetlStatus control.

NetlCmd Properties

ApplicationType (ENUM_SVRMODE)

The ActiveX controls in Net-Integrator can connect to two mode applications: RTPro and Shaker Control.
ApplicationType determines the mode, and the value can be SVR_RTPRO(equal to 0) or
SVR_VCS(equal to 1). The default value is SVR_RTPRO which means the control will assume RTPro is
the server application unless otherwise specified.

Example in Visual Basic
“1f the control i1s to connect to RT PRO.exe

NetICmd.ApplicationType = SVR_RTPRO

“1f the control is to connect to Shaker Control
NetlCmd.ApplicationType = SVR_VCS

AppComputerlP (BSTR)

AppComputer 1P determines the target server application location. It can be an IP address or the host
name that the server application is running. The default value is “127.0.0.1”, an internationally
recognized IP value known as the “loopback” address, which refers to the host computer.

Call this function before others are called. If the AppComputer P isn’t called, the ActiveX controls in
this container will look for the server application running on the local computer.

Example in Visual Basic
NetlCmd.AppComputerlIP = “192.68.68.28"

ProjectType (Enum ENUM_PRJMODE)

This property decides which analysis software option is to be loaded in the RTPro or Shaker Control
server application. When a project in RTPro or Shaker Control is created, the user must sets a
ProjectType First. After this parameter is initialized, the New command will know what type of
project to create.

The values for ProjectType are listed in the table below. Status numbers for each value are also
included for reference.

16



ActiveX Controls

MPS_NONE= O, no option is loaded

MPS _FFT= 1, RTPro, Basic Signal Analysis and Waveform Source
MPS_SPEC= 2, RTPro, Shock Response Spectrum Analysis
MPS_ORDER= 3, RTPro, Machinery Analysis (Order Tracking)
MPS_SWEPTSINE= 4, RTPro, Not used

MPS_STEPSINE= 5, RTPro, Not used

MPS_OCTAVE= 6, RTPro, Basic Acoustic Analysis

MPS_LOGSPEC= 7, RTPro, Not used

MPS_LONGCAPT= 8, RTPro, Not used

MPS_DISKCAPT= 9, RTPro, Not used

MPS_WAVELET= 10, RTPro, Not used

MPS_MDA= 11, RTPro, Basic Modal Data Acquisition mode
MPS_DISK_THROUGHPUT = RTPro, LWR(Long Waveform Recorder) Mode

12,

MPS_MDS= 13, RTPro, Mechanical Drop Shock mode
MPS_FFT_ADV= 21, RTPro, Advanced Signal Analysis and Waveform Sourcex
MPS_SPEC_ADV= 22, RTPro, Advanced Shock Response Spectrum Analysis*
MPS_OCTAVE_ADV= 26, RTPro, Advanced Acoustic Analysisx
MPS_MDA_ADV= 31, RTPro, Advanced Modal Data Acquisition modex
SHOCK_SYSTEM = 50 Shaker Control, Classical Shock control
RANDOM_SYSTEM= 51 Shaker Control, Random control

SINE_SYSTEM= 52 Shaker Control, Sine control

SPS_SYSTEM= 53 Not used

NONE_SYSTEM= 54 Not used

ROR_SYSTEM= 55 Shaker Control, Random on random control
SOR_SYSTEM= 56 Shaker Control, Sine on random control
SROR_SYSTEM= 57 Shaker Control, Sine and Random on random
RSS_SYSTEM= 58 Shaker Control, SRS Synthesis control
TTH_SYSTEM= 59 Shaker Control, Transient control
RSTD_SYSTEM= 60 Shaker Control, RSTD control

MPS_SYSTEM= 61 Shaker Control, not used

LTH_SYSTEM= 62 Shaker Control, LTH control

The default value is MPS_NONE.

17



ActiveX Controls

Example in Visual Basic

MPS_FFT

NetICmd.ProjectType

RANDOM_SYSTEM

NetICmd.ProjectType

NetlCmd Methods

VARIANT ConnectToServerApp()

This method connects the Net 1Cmd control to a remote RTPro or Shaker Control server. Before this
method is called, the property AppComputer I P must be assigned with the correct value. The type of
return vale is a VT_BOOL. If it succeeds, it will return true, otherwise false. If a connection has been
established between the control and the server, then a call to this method will disconnect the current
connection and reconnect to the remote server.

void Disconnect()

This method disconnects the current connection. Use it before the client
program exits. If there is no current connection, this method will have no
effect.

void SetCmdParams(long nintegerl, long nilnteger2,
float fFloatl, float fFloat2)

This method sends parameter values for the LDS-Dactron Shaker Control commands that require them.
Call this method to set the correct parameters before sending the commands.

VARIANT SendCommand(ENUM_RTSVRCMD eCmdlID)

This method sends a command to the application server. Unless specified, no other parameters are needed
for the command. The command is defined by a type Enum ENUM_RTSVRCMD, and applies to both
RTPro and LDS-Dactron Shaker Control as follows:

CMD_NEWPRJ = 1 create a new project

CMD_OPENPRJ = 2 open an existing project. Parameter = path and filename
for project

CMD_CLOSEPRJ = 3 close the current project

CMD_SAVEPRJ = 4 Save the project. Parameter = path and filename for
project

CMD_SAVEPRJAS = 5 Save the project. Parameter = path and filename for
project

CMD_SAVEASDEF = 6 Save the project as Default

CMD_STARTMEAS = 7 Start the test

CMD_STOPMEAS = 8 Stop the test

CMD_QUICKREPORT = 18 Have the application server generate the quick report

The following commands apply only to the RTPro application:

CMD_ENDTEST = 9 Not used

CMD_ABORTTEST = 10 Abort the test

18



ActiveX Controls

CMD_PAUSEMEAS = 11 Pause the test

CMD_CONTINUEMEAS = 12 Continue the test from where it is paused

CMD_STARTSOURCE = 13 Start the signal source

CMD_STOPSOURCE = 14 Stop the signal source

CMD_NEXTFRAME = 15 Request the server to send another frame of display signals
or status

CMD_RESETAVG = 16 Reset the averaging

The following commands apply only to the Shaker Control server application:

CMD_HOLD = 19, Hold sweep

CMD_RELEASE = 20, Release sweep

CMD_STARTPREVIEW = 21, Start the preview mode

CMD_STOPPREVIEW = 22, End the preview mode

CMD_CONTROLS_ CONTINUESCHEDULE = 23, Continue the schedule

CMD_CONTROLS PAUSESCHEDULE = 24, Pause the schedule

CMD_CONTROLS DISABLEABORT = 25, Disable the abort checking

CMD_CONTROLS_ENABLEABORT = 26, Enable the abort checking

CMD_CONTROLS_OPENLOOP = 27, Not update the system transfer function (open
the control loop)

CMD_CONTROLS_CLOSEDLOOP = 28, Close the control loop

CMD_CONTROLS_SETLEVEL = 29, Set the level. The floating parameter is from

//need a param: fFloatl 0.0 to 1.0, representing the level to set

CMD_CONTROLS_DECREASELEVEL = 30, Decrease the level by the amount defined in the
application server

CMD_CONTROLS_INCREASELEVEL = 31, Increase the level by the amount defined in the
application server

CMD_CONTROLS NEXTEVENT = 32, Jump to next event in the schedule

CMD_CONTROLS NEXTPROFILE = 33, Jump to the next schedule/profile

CMD_CONTROLS SAVEHINVERSE = 34, Save the system transfer function

CMD_CONTROLS_RESETAVERAGING = 37, Reset the average number to 1

CMD_CONTROLS_TOGGLESIGN = 38, Reverse the pulse direction

CMD_CONTROLS_SWEEPDOWN = 39, Frequency sweeps down

CMD_CONTROLS_SWEEPUP = 40, Frequency sweeps up

CMD_CONTROLS_SETFREQUENCY = 41, Jump to the frequency as specified as float

//need a param: fFloatl and fFloat2 parameter

=0

CMD_CONTROLS_DECREASEFREQUENCY = 42, | Decrease the frequency by amount that is defined
in the server application

CMD_CONTROLS_ INCREASEFREQUENCY = 43, | Increase the frequency by amount that is defined
in the server application

CMD_CONTROLS_SINGLEPULSE = 44, Output single pulse or single waveform

CMD_CONTROLS POLARITYPOSITIVE = 45, Change the pulse polarity to positive

CMD_CONTROLS POLARITYNAGATIVE = 46, Change the pulse polarity to negative

CMD_CONTROLS_SOR_TURNONOFF = 47, Turn on or off the tones of sines in SOR

//need a param: nlntegerl, nlnteger?2

CMD_CONTROLS_ROR_TURNONOFF = 48, Turn on or off the random bands in ROR

//need a param: nlntegerl, nlnteger?2

CMD_CONTROLS_PRETESTTONOMALTEST = Not used

49,

CMD_CONTROLS_RESTORELEVEL = 50, Restore the testing level to that is defined by
the level schedule

CMD_CONTROLS_SETH_RATIO = 51 For LTH, defined the update rate of system

//need a param: fFloatl transfer function, 0.0 to 1.0 for float
parameter

The type of return value is a VT_BOOL. If the call succeeds, it will return true, otherwise false. If
the connection has not been established when the method is called, the method will call
ConnectToServerApp to establish a connection and then send the command to remote server.

19



ActiveX Controls

The following commands require second or third parameters

Command

Parameter

Properties or Methods called

before
CMD_NEWPRJ Project mode ProjectType
CMD_OPENPRJ Project file
CMD_SAVEPRJ pathname in ProjectName

CMD_SAVEPRJAS

server host

CMD_CONTROLS_SETLEVEL fFloatl SetCmdParams 0&,08&,fFloatl,0!
fFloatl,

CMD_CONTROLS_SETREQUENCY ffloat2=0 SetCmdParams 0&,0&,fFloatl,0!
(must)

CMD_CONTROLS_SOR_TURNONOFF nintegerl, SetCmdParams nintegerl,

CMD_CONTROLS_ROR_TURNONOFF ninteger2 ninteger2, 0!, 0!

CMD_CONTROLS_SETH_RATIO fFloatl setCmdParams 0&, 0&, frloatl,

0!

Example in Visual Basic

“To make a new FFT project in RTPro.exe

“The remote RTPro server has been connected..
NetICmd.ProjectType = MPS_FFT
IT ( NetCmd.SendCommand( CMD_NEWPRJ) = False) Then

End If

. error

“To open a Random project in LDS-Dactron Shaker Control.exe

“The remote Shaker Control

server has been connected..

NetlCmd.ProjectName = “D:\Prjl(Random)\Prjl.prj”
IT ( NetCmd.SendCommand( CMD_OPENPRJ) = False) Then

“..open error

End If

20



ActiveX Controls

Example in Visual Basic
“Start and Stop the remote server testing

NetlCmd.SendCommand CMD_STARTMEAS
..>do sth
NetlICmd.SendCommand CMD_STOPMEAS

Example in Visual Basic
“Send a few commands with parameters to LDS-Dactron Shaker
Control .exe

“1 Set Level (need fFloatl)

Dim fFloatl As Single

fFloatl = 1.2345!

NetlCmd.SetCmdParams 0&,0&,fFloatl,0!
NetlCmd.SendCommand CMD_CONTROLS SETLEVEL

“2 Set Frequency (need fFloatl and fFloat2=0)
NetlCmd.SetCmdParams 0&,0&,fFloatl,0!
NetlICmd.SendCommand CMD_CONTROLS_SETFREQUENCY

“3 ROR turn onoff

Dim nintegerl As Long, nlnteger2 As Long
nintegerl = 5&

ninteger2 = 6&

NetlCmd.SetCmdParams nilntegerl,nlnteger2,0.01,0.0!
NetlCmd.SendCommand CMD_CONTROLS ROR_TURNONOFF

NetlCmd Events
There is no Event for the Net1Cmd control.

ActiveX Control: NetlSignal

The Netl1Signal control is used for the client to retrieve the signals from the server application. A
signal contains a collection of attributes and an array of data. By the time the OnAl locSignalReady
event is received, the ReadAl ISignalName and ReadSigAttrByName (or
ReadSigMainAttrByName) events should be called to retrieve the attributes.

After the control receives the event OnUpdateSignal, it can read the content of the signal by going
through the whole signal list.

NetlSignal Properties

ApplicationType (ENUM_SVRMODE)

The ActiveX controls in Net-Integrator can be connected to two types of LDS-Dactron
applications:RTPro and Shaker Control. Appl icationType determines the mode. The value can be
either SVR_RTPRO (equal to 0) or SVR_VCS(equal to 1). The default value is SVR_RTPRO which
means the control will assume RTPro is the server application unless otherwise specified.

21



ActiveX Controls

Example in Visual Basic

“If this control connects to RT PRO.exe
NetICmd.ApplicationType = SVR_RTPRO

“1f this control connects to LDS-Dactron Shaker Control.exe
NetICmd.ApplicationType = SVR_VCS

AppComputerlP (BSTR)

AppComputer 1P determines the target server application location. It can be an IP address or the host
name that the server application is running. The default value is “127.0.0.1”, an internationally
recognized IP value known as the “loopback” address, which refers to the host computer.

Call this function before others are called. If the AppComputerIP isn’t called, the ActiveX controls in
this container will look for the server application running on the local computer.

Example in Visual Basic
NetlSignal .AppComputerlIP = “192.68.68.28"

SignalCount (long, read only)

Returns the current number of signals on the RTPro server. The initial value is 0. After the method
ReadAl ISignalName has been called and succeeds, the value will be updated.

Example in Visual Basic
Dim nCount As Long

NCount = NetlSignal .SignalCount

Signals (return Signal object, param long Index, Read
only)

Returns a signal object with the index value, which is based on 0. A signal object includes signal
attributes like name, size, etc.

Example in Visual Basic

Dim txt as String
txt = NetlSiganl.Signals(l).name
This call will retrieve the name of the second signal in the list and assign it to the variable txt.

Signal Object Properties

When the ReadAl 1SigName () method is called, a signal object collection will be established, then a
user can access any signal name in the collection through Signals(n) . name. After calling the
ReadAl1SigAttrByName () method, the signal attributes will assigned to the object. The object
includes the following read-only properties according to the signal attributes:

22



ActiveX Controls

Property Name

Description

Size (long)

size of one dimension array
Size * Step = AllocSize

Step (long)

1 or 2; 1 for one dimension signal; 2 for two dimension
signal (such as a complex signal)

AllocSize (long)

total allocated size of array

Name (BSTR)

Name of the signal

OriginalName(BSTR)

Internal or Original used name of the signal

EULabel (BSTR)

Engineering Unit

XLabel (BSTR)

Horizontal Unit

YLabel (BSTR)

Vertical unit

MeasID (BSTR)

Measurement point identification

MeasDate (BSTR)

Measurement date

MeasTime (BSTR)

Measurement time

Analyzer (BSTR)

The name of the instrument that takes the measurement

Hbegin (double)

The beginning value of x axis

XIncrease (BOOL)

0: Linear step; 1: Log step

HIncreaseStep (double)

the delta resolution of each step in horizontal. If
Xincrease=0, the X value equals N* HincreaseStep; If
Xincrease=1; the X value equals to Hbegin *

(Xincrease)”(N)
ValidLowlndex (long) Not used
ValidHighlndex (long) Not used
Aliasing (double) Not used
SampFreq (double) The sampling frequency of data array
Scale (float) Not used
Max (float) Not used
Min (float) Not used
Peak (float) Not used
RMS (Float) Not used

PSDRMS (float)

EnableOnLineSave (BOOL)

To save the signal on the server side, set this value to
1 and then call OnLineSaveSignal() method

If EnableOnLineSave value is assigned to 1, then calling the OnLineSaveSignal () method will
save this signal on the server side.

NetlSignal Methods

VARIANT ConnectToServerApp()

This method connects the Net1Signal control to a remote RT Pro or Shaker Control server. Before
this method is called, the property AppComputer 1P must be assigned with the correct value. The type
of return value is a VT_BOOL. If it succeeds, it will return true, otherwise false. If a connection has
been established between the client and server, then a call to this method will disconnect the current
connection and reconnect to the remote server.

void Disconnect()

Call this method to disconnect the current connection when the client program is about to exit. If there is
no current connection, this method will have no effect.

ReadAllSignalName()

Reads all current signal names from a remote server. This method will update the SignalCount
property value, create the signal list in the ActiveX control and update the name field for each signal
object in the list.

23



ActiveX Controls

Example in Visual Basic
NetlSignal .ReadAllSignalName

BOOL ReadSigAttrByName(BSTR SigName)

This method reads a signal’s attributes by the signal name SigName. It returns 1 if it reads successfully,
otherwise 0. The signal attributes are defined in the table in the section on “Signal Object Properties.”

BOOL ReadSigMainAttrByName(BSTR SigName)

This method reads a signal’s major attributes by the signal name SigName. It will return 1 if it reads
successfully, otherwise 0. The signal major attributes are defined as following:

Size (long) Size*Step <= m_nAllocSize;

Step (long) 1 or 2; 1 for one dimension signal; 2 for two dimension signal
(such as a complex signal)

AllocSize (long) Size may change, but the AllocSize is fixed

HBegin (double) the starting value of x-axis

XIncrease (BOOL) 0: Linear step; 1: Log step

HIncreaseStep the delta resolution of each step in horizontal. If

(double) Xincrease=0, the X value equals N* HincreaseStep; If

Xincrease=1; the X value equals to Hbegin * (Xincrease)”(N)

ValidLowlndex (long) Not used

ValidHighlndex (long) | Not used

Aliasing (double) Not used
SampFreq (double) The sampling frequency of data array ,in Hz
Scale (float) Not used
Max (float) Not used
Min (Float) Not used
Peak (float); Not used
RMS (Float); Not used
PSDRMS (float); Not used

long FindSignal IndexByName(BSTR SigName)

Returns the signal index number in the signal object list by the signal name. When the user gets a signal’s
name and wants to access its attributes, the signal’s index number is unknown in the signal object
collection. Using the method returns the index number. An incorrectly entered or unknown signal name
will return an error value of -1.

24



ActiveX Controls

Example in Visual Basic
Dim n As Long

n = NetlSignal .FindSignal IndexByName(SignalName)

With NetlSignal.Signals(n)
frmSigMainAttr._ txtSize = _.Size
frmSigMainAttr.txtStep = .Step
frmSigMainAttr.txtAllocSize = _AllocSize
frmSigMainAttr.txtHBegin = _HBegin
frmSigMainAttr.txtXInc = .XIncrease
frmSigMainAttr._txtH = _HIncreaseStep
frmSigMainAttr.txtLowlndex = .ValidLowlndex
frmSigMainAttr . txtHighlndex = _ValidHighlndex
frmSigMainAttr.txtAlias = _Alilasing
frmSigMainAttr . txtSampFreq = .SampFreq
frmSigMainAttr.txtScale = .Scale
frmSigMainAttr.txtMax = .RealMax
frmSigMainAttr.txtMin = _RealMin
frmSigMainAttr.txtPeak = _Peak
frmSigMainAttr.txtRMS = _RMS

End With

VARIANT ReadSignalData(BSTR SigName)

Returns a signal’s data array by the signal name. The type of the return value is
VariantArray:VT_ARRAY|VT_R4.

Example in Visual Basic
Dim vData As Variant, i As Long, fdata As Single

vData = NetlSignal .ReadSignalData(“inputl(t)™)
For 1=0 to UBound(vData)

fdata = vData(i)

..do something
Next i

OnLineSaveSignal ()

Set the value of EnableOnLineSave property of signal objects to 1, then call this method to save the
signal online.

25



ActiveX Controls

Example in Visual Basic
NetlSignal.Signal (0) .EnableOnLineSave

1
=

NetlSignal.Signal(n) .EnableOnLineSave = 1
NetlSignal .OnLineSaveSignal

NetlSignal Events

OnAllocSignalReady(long num)

The parameter num is reserved in this version.
This event will be fired from the server to the Net1Signal control when all the signals are allocated

before the test. Calling the ReadAl 1SignalName method to respond to the event can update the signal
list in ActiveX client.

Example in Visual Basic
Private Sub NetlSignall OnAllocSignalReady(ByVal nSigNum As
Long)

NetlSignall_ReadAllSignalName()
For 1 = 0 To NetlSignall.SignalCount - 1
txtList(l).Text = NetlSignall._Signals(i).-Name
Next i

End Sub

OnUpdateSignal (long num)

The parameter num is reserved in this version.

This event will be fired from the server application when its signals are updated. Calling the
ReadSignalData(BSTR SigName) method to respond to the event returns the real time signal
data.

Example in Visual Basic
Private Sub NetlSignall OnUpdateSignal(ByVal nSigNum As Long)

Dim vData As Variant, i As Long
vData = NetlSignall.ReadSignalData(*“inputl(t)”)
For 1 =0 To UBound(vData)

data = vData(i)

Next 1
End Sub

ActiveX Control: NetlStatus

NetlStatus is an ActiveX control used for extracting testing status from the server to the client. The
testing status is a collection of variables indicating the run-time situation of that application. For example
the user can retrieve a variable called “RunStatus” (always the first element in the array) in all the
integer status properties in order to retrieve the current run mode. Or the user can retrieve the 12" element
in the IMPSSTATUS array to retrieve the trigger status.

26



ActiveX Controls

For purposes of internal implementation, LDS-Dactron separates the status data structure into two types,
an integer type and a floating-point data type. The integer type of structure contains an array of 32-bit
long integers. The floating point type of structure contains an array of 32-bit floating point numbers.
Because there are a number of projects that can be loaded and run, their status definitions are all different.
After the array is read, the user can interpret it according to this documentation.

The status data structure will be updated periodically. Any new status elements that are developed will be

added to the end of the array (before the debug elements if there are any) to ensure compatibility.
Therefore any existing programs the user has written will always be valid.

NetlStatus Properties

ApplicationType (ENUM_SVRMODE)

The ActiveX controls in Net-Integrator can connect to two mode applications: RTPro and Shaker Control.
ApplicationType determines the mode. The ApplicationType’s value can be either
SVR_RTPRO(value 0) or SVR_VCS(value 1). The default value is SYR_RTPRO which means the
control will assume RTPro is the server application unless otherwise specified.

Example in Visual Basic

“1f the control is connected to RT PRO.exe
NetlStatus.ApplicationType = SVR_RTPRO

“IF¥ the control is connected to Shaker Control application
NetlStatus.ApplicationType = SVR_VCS

AppComputerlIP (BSTR)

AppComputer P determines the target server application location. It can be an IP address or the host
name that the server application is running. The default value is “127.0.0.1”, an internationally
recognized IP value known as the “loopback” address, which refers to the host computer.

Call this function before others are called. If the AppComputer P isn’t called, the ActiveX controls in
this container will look for the server application running on the local computer.

Example in Visual Basic
NetlStatus.AppComputerlP = “192.68.68.28"

ProjectType (Enum ENUM_PRJMODE,read only)

See section ActiveX control: Net1Cmd Properties

27



ActiveX Controls

NetlStatus Methods

VARIANT ConnectToServerApp()

This method connects the NetIStatus control to a remote RTPro or Shaker Control server. Before this
method is called, the property AppComputer IP must be assigned with the correct value. The type of
return vale is a VT_BOOL. If it succeeds, it will return true, otherwise false. If a connection has been
established between the control and server, then a call to this method will disconnect the current
connection and reconnect to the remote server.

void Disconnect()

This method disconnects the current connection. Call it before the client program exits. If there is no
current connection, this method will have no effect.

BOOL ReadStatus()

Call this method to read real-time status from the server application and retrieve the status values to the
control. To access the status value, you must call the GetIntStatusArray() or
GetFloatStatusArray() methods.

In RTPro there are two status types: MPSstatus and OCTStatus. In Shaker Control there are four
types: ShockStatus, RandomStatus, SineStatus, and LTHStatus. The status type can be
retrieved from ProjectType property. The following table shows the relationships among
ApplicationType, ProjectType, and status type.

status type
ApplicationType ProjectType Integer Status Float Point Status
Array Array
SVR_RTPRO MPS _OCTAVE iOCTSTATUS fOCTSTATUS
Other value iMPSSTATUS fMPSSTATUS
SHOCK_SYSTEM
RSS_SYSTEM iSHOCKSTATUS fSHOCKSTATUS
TTH_SYSTEM
RANDOM_SYSTEM
SVR VCS ROR_SYSTEM .
- SOR SYSTEM iRANDOMSTATUS fRANDOMSTATUS
SROR_SYSTEM
SINE_SYSTEM )
RSTD. SYSTEM iSINESTATUS fSINESTATUS
LTH_SYSTEM iLTHSTATUS fLTHSTATUS

“IXXXSTATUS” and “FXXXSTATUS” are variant arrays defined in the following sections.

Long GetlntStatusArray(VARIANT)

Calling this method will retrieve all integer status values as a variant array (VT_ARRAY|VT _14), with

the return value as the application server’s ProjectType.

After NET I Status receives the OnUpdateStatus event, NET 1 Status will call the
ReadStatus() method. After this is called, Get IntStatusArray()retrieves the integer array.
The interpretation of the integer array depends on the ProjectType. The following sections describe
how the integer array is interpreted.




ActiveX Controls

IMPSSTATUS Array

This array is used for retrieving the integer status of general options in RTPro. The following table
describes the index used for the integer status.

Index Content

0 version

1 RunStatus; /* input status */

2 DACStatus; /* =1 if DAC is open, O=not */

3 RunType;

4 AvgNbr;

5 CurFrmNbr; /* Current frame number in this schedule, 1 based */
6 CurDelayFrm;

7 TotalFrmNbr; /* Total Frm nbr in this schedule */

8 TimeSize; /* whole frame Size */

9 ValidDataSize; /* <= BlockSize, for scrolling display */
10 RealOverlapSize; /* Overlap size in real implementation */
11 IsSingleFrame; /* =1 if single frame sampling */

12 TRGArmed; /* =1 if Trigger Armed */

13 TriggerPoint; /* sample point at which trigger happened */

14 WaveformType; /* Current output Waveform */

The variable RunStatus exists for all integer status values. The following table lists the definitions for

possible values.

RunStatus Description

Value

0 System is in idle mode, ready for new job

1 to 6 Used internally

7 The system is Ready for a normal (scheduled) test
8 The system is running a normal scheduled test

9 The system is paused in a scheduled test

10 End of all normal scheduled tests

11 System abnormally aborted

12 STOP command received, output ramp-down

13, 14 Used internally

15, 16 The system is in the process of being initialized
17 and up Used internally

The Client program must track the RunStatus value in order to send the next command. Otherwise the
server application will not respond correctly.

IOCTSTATUS Array for RT Pro Octave Analysis

>
o
[¢]
X

Content

version

RunStatus; /* see previous definition */

DACStatus; /* =1 if DAC is open, O=not */

RunType;

AvgNbr;

CurFrmNbr; /* Current frame number in this schedule, 1 based */

TimeSize; /* whole frame Size */

OctSize; /* Octave(f) Size */

nMulSpecCur; /* current spectrum position */

TRGArmed; /* =1 if Trigger Armed */

PlO[0[N|O|0|A|WIN|FL|O

TriggerPoint; /* sample point at which trigger happened */

29




ActiveX Controls

ISHOCKSTATUS Array
This array is used for retrieving the integer status of the classical shock option in Shaker Control.
Index Content
0 version
1 RunStatus; /* see previous definition */
2 ScheMode; /* SCHE_AUTO: Auto, SCHE_MANUAL: Manaul */
3 LevelMode; /* 0: Auto, 1: Manaul */
4 LoopMode; /* EQUALIZED: Closed, NOT _EQUALIZED:Open */
5 AbortMode; /* ABORT_ENABLED: Enabled, BORT DISABLED:Disabled */
6 AvgNbr;
7 ScheElapseFrmNbr /* Current frame number in this schedule, 1 based */
8 TotalFrmNbr; /* Total Frm nbr in this schedule */
9 CurScheNbr; /* Current schedule number in this test, 1 based */
10 TotalScheNbr; /* Total Frm nbr in this test */
11 BlockSize;
12 AlarmReason; /*bit 0 set: RMS high bit 1 set: RMS low bit 2 set: line
high bit 3 set: line low*/
13 AbortReason; /* bit O set: RMS high bit 1 set: RMS low bit 2 set: line
high bit 3 set: line low bit 4 set: Timeout in pre-test bit 5 set:
Drive reached max. limit*/
14 abScheManualMode;
15 abLevelManualMode;
16 abLoopMode; /* EQUALIZED: Closed, NOT_EQUALIZED:Open */
17 abCurFrmNbr ;
18 abCurScheNbr;
19 abAvgNbr;
20 abHiLinesAbort;
21 abLoLinesAbort;
22 ElapsedFrmNbrFullLevel; /* total elapsed frm nbr at full level*/
23 iStopReason; /* Possibilities are: User, Abort, or Schedule */
24 TotalElapseNbr; /* the total elapsed frm-nbr since START */
25 AllScheduleFrmNbr; /*the total frame number of all schedules*/
26 DriveMultiplier; /* e.g., Toggles between 1 and -1.0 */

30




ActiveX Controls

iRANDOMSTATUS array:
This array is used for retrieving the integer status of the random option in Shaker Control.

Index Content

0 version

1 RunStatus; /* see previous definition */

2 ScheMode; /* SCHE_AUTO: no pause, SCHE_MANUAL: pause schedule */

3 LoopMode; /* EQUALIZED: Closed, NOT_EQUALIZED:Open */

4 AbortMode; /* ABORT_ENABLED: Enabled, ABORT_DISABLED:Disabled */

5 AvgNbr;

6 ScheElapseFrmNbr; /* Current frame number in this schedule, 1 based */

7 TotalFrmNbr; /* Total Frm nbr in this schedule */

8 CurScheNbr; /* Current schedule number in this test, 1 based */

9 TotalScheNbr; /* Total Frm nbr in this test */

10 BlockSize;

11 AlarmReason; /* index=11, bit O set: RMS high bit 1 set: RMS low bit 2
set: line high bit 3 set: line low*/

12 RampStatus;

13 CurDelayFrm; /* until this value goes to 0, we will not avg the inputs*/

14 AbortReason; /* index=14 bit 0 set: RMS high bit 1 set: RMS low bit 2
set: line high bit 3 set: line low bit 4 set: Timeout in pre-test bit 5
set: Drive reached max. limit*/

15 abScheManualMode;

16 abLevelManualMode;

17 abLoopMode; /* EQUALIZED: Closed, NOT_EQUALIZED:Open */

18 abCurFrmNbr;

19 abCurScheNbr;

20 abAvgNbr;

21 abHiLinesAbort;

22 abLoLinesAbort;

23 abHiLinesAlarm;

24 abLoLinesAlarm;

25 TargetLevelReached; /* 1: yes, 0: not yet */

26 preSuccess; /* 0: not, 1: yes */

27 MixMode; /* current mode */

28 SOREnabled; /* bitwise flag */

29 ROREnabled; /* bitwise flag */

30 BroadBandOff; /* 1: yes, 0: not(default BroadBand ON) */

31 FrmNbrFullLevel ;

31




ActiveX Controls

ISINESTATUS Array

This array is used for retrieving the integer status of the Sine control option in Shaker Control.

Index Content

0 Version

1 RunStatus; /* See previous definition */

2 EssDweIIStatus; /* 0: not resonant dwelling, else: need look at document

3 ScheMode; /* SCHE_AUTO: Auto, SCHE_MANUAL: Manaul */

4 FreqTransMode; /* 0: freq not in transition mode 1: in trans. mode */

5 AmplTransMode; /* 0: ampl. not in transition mode 1: in trans. mode */

6 LevelMode; /* 0: Auto, 1: Manual */

7 LoopMode; /* EQUALIZED: Closed, NOT_EQUALIZED:Open */

8 AbortMode; /* ABORT_ENABLED: Enabled, ABORT_DISABLED:Disabled */

9 ScheElapseFrmNbr; /* Current frame number in this schedule, 1 based */

10 TotalFrmNbr; /* Total Frm nbr in this schedule */

11 CurScheNbr; /* Current schedule number in this test, 1 based */

12 TotalScheNbr; /* Total Frm nbr in this test */

13 LastFreqlndex;

14 Freqlndex;

15 IsSweepUp; /* 0: Up, 1:Down */

16 AlarmReason; /* bit O set: RMS high bit 1 set: RMS low bit 2 set: line
high bit 3 set: line low*/

17 AbortReason; /* bit 0 set: RMS high bit 1 set: RMS low bit 2 set: line
high bit 3 set: line low bit 4 set: Timeout in pre-test bit 5 set: Drive
reached max. limit*/

18 abLoopMode; /* EQUALIZED: Closed, NOT_EQUALIZED:Open */

19 abCurFrmNbr;

20 abCurScheNbr;

21 IslnitRampUpMode; /* when H is not available use this mode*/

22 rstdStatus; /* not used in swept sine control */

23 CurFrmNbrFullLevel;

24 iSweepFast; /* 0: slow sweep mode, 1: fast sweep mode */

25 iElapsedSweeps; /* this parameter counts the sweeps of current sweep
event*/

26 FrmNbrThisEntry; /* Frm number at this entry*/

iLTHSTATUS Array
This array is used for retrieving the integer status of the Long Time History option in Shaker Control.

0 version

1 RunStatus; /* See previous definition */

2 ScheMode; /* SCHE_AUTO: no pause, SCHE_MANUAL: Pause schedule */

32




ActiveX Controls

3 LoopMode; /* EQUALIZED: Closed, NOT_EQUALIZED: Open */

4 AbortMode; /*ABORT_ENABLED: Enabled, ABORT_DISABLED: Disabled */

5 AvgNbr ;

6 ScheElapseFrmNbr; /* Current frame number in this schedule, 1 based */

7 TotalFrmNbr; /* Total Frm nbr in this schedule */

8 CurScheNbr; /* Current schedule number in this test, 1 based */

9 TotalScheNbr; /* Total Frm nbr in this test */

10 BlockSize;

11 AlarmReason; /* index=11, bit 0 set: RMS high bit 1 set: RMS low bit 2
set: line high bit 3 set: line low */

12 RampStatus;

13 CurDelayFrm; /* until this value goes to 0, do not avg the inputs */

14 AbortReason; /* index=14 bit 0 set: RMS high bit 1 set: RMS low bit 2
set: line high bit 3 set: line low bit 4 set: Timeout in pre-test bit 5
set: Drive reached max limit */

15 abLoopMode; /* EQUALIZED: Closed, NOT_EQUALIZED: Open */

16 abCurFrmNbr;

17 abCurScheNbr;

18 abAvgNbr;

19 abHiLinesAbort;

20 abLoLinesAbort;

21 abHiLinesAlarm;

22 abLoLinesAlarm;

23 TargetLevelReached; /* 1: yes, 0: not yet */

24 preSuccess; /* 0: not, 1: yes */

25 MixMode; /* current mode */

26 SOREnabled; /* bitwise flag */

27 ROREnabled; /* bitwise flag */

28 BroadBandOff; /* 1: yes, 0: not(default BroadBand ON) */

29 FrmNbrFullLevel ;

30 TotalElapseNbr; /* the total elapsed frm-nbr since START */

Long GetFloatStatusArray(VARIANT)

Calling this method will retrieve all floating status values as a safe array(VT_ARRAY|VT_R4), with
return value as the application server’s ProjectType.

After NET I Status receives the OnUpdateStatus event, NET 1 Status will call the
ReadStatus() method. After this is called, call GetFloatStatusArray()to retrieve the floating
point array. The interpretation of the floating point array depends on the ProjectType. The following
sections describe how the floating array is interpreted.

33




ActiveX Controls

fMPSSTATUS Array

This array is used for retrieving the floating-point status of RTPro.

0

version

1

ElapseTime; /* in seconds */

2

DriveMultiplier; /* e.g., Toggle sign may toggle it between 1 and -1.0
*/

DrivePk; /* in Volts */

WaveAmpl; /* Amplitude of the waveform */

WaveFreq; /* Frequency of the waveform */

WaveQuiet; /* Quiet duration*/

WaveActive; /* Active duration */

WaveLowFreq; /* Chirp: Low Frequency */

O|o|N[o|g| AW

WaveHighFreq; /* Chirp: High Frequency */

fOCTSTATUS Array
This array is used for retrieving the float point status of octave analysis software option in RTPro.
0 version
1 float ElapseTime; /* in seconds */
2 TraceFreq; /* Hz */
3, 4,5 debug0; debugl; debug2; /* STATUS used as debugging tools */

fSHOCKSTATUS Array

This array is used for retrieving the floating point status of the classical Shock control analysis software
option in Shaker Control.

0 version

1 ElapseTime; /* in seconds */

2 TotalTime; /* Total scheduled test time in this schedule. in seconds */

3 Level; /* current level, in amplitude ratio */

4 RefPk; /* in EU */

5 RefRms; /* in EU */

6 DrivePk; /* in Volts */

7 DriveRms; /* in Volts */

8 CtlPk; /* in EU */

9 CtlRms; /* in EU */

10 NoisePk; /* in EU */

11 NoiseRms; /* in EU */

12 RampupRate; /* ratio */

13 preDrivePk; /* Drive Peak at Pretest target level */

14 preTargetlLevel; /* pre-test target level */

15~22 preNoisel~preNoise8; /* volt. Noise Peak. */

23~30 prePeakl~prePeak8; /* volt. peak value of each channel at final-pretest
level .*/

31 RefDispPkPk; /* generated in Level 2 */

32 RefVelPk; /* generated in Level 2 */

33 FracFrmNbr; /* fractional frame number, (i-1, i] */

34




ActiveX Controls

fRANDOMSTATUS Array
This array is used for retrieving the floating point status of the Random control option in Shaker Control.

0 version

1 ScheElapseTime; /* in seconds, the elapse time of either PRE-TEST or one
of the Schedule */

2 ScheTotalTime; /* Total scheduled test time in seconds */

3 Level; /* current level, in amplitude ratio */

4 DriveMultiplier; /* e.g., Toggles between 1 and -1.0 */

5 SNR; /* ratio of (RMSSyy-RMSNoise)/RMSNoise */

6 RefRms; /* in EU */

7 DrivePk; /* in Volts */

8 DriveRms; /* in Volts */

9 CtIRms; /* in EU */

10 NoiseRms; /* in EU */

11 RampupRate; /* ratio */

12 SyyRms; /* Instantaneous RMS of Syy, in EU */

13 abElapseTime; /* in seconds */

14 abTotalTime; /* Total scheduled test time in this schedule. iIn seconds
*/

15 abLevel; /* current level, in amplitude ratio */

16 abRefRms; /* in EU */

17 abDrivePk; /* in Volts */

18 abDriveRms; /* in Volts */

19 abCtlRms; /* in EU */

20 abNoiseRms; /* in EU */

21 preDrivePk; /* Drive Peak at Pretest target level */

22 preTargetlLevel; /* pre-test target level */

23~30 preNoisel~preNoise8; /* volt. Noise Peak. */

31~38 prePeakl~prePeak8; /* volt. peak value of each channel at final-pretest
level . */

39 RefDispPkPk; /* generated in Level 2 */

40 RefVelPk; /* generated in Level 2 */

41 ElapseTimeFullLevel; /* in seconds */

42 TotalElapseTime; /* the elapse time since START */

43 AllScheduleTime; /*the total time of all schedules*/

35




ActiveX Controls

fSINESTATUS Array

This array is used for retrieving the floating point status of the Sine control option in Shaker Control.

0 version

1 ScheElapseTime; /* in seconds */

2 ScheTotalTime; /* Total scheduled test time in seconds */

3 Level; /* current level, in amplitude ratio */

4 DriveMultiplier; /* e.g., Toggles between 1 and -1.0 */

5 RefPk; /* in EU */

6 DrivePk; /* in Volts */

7 CtlPk; /* in EU */

8 NoisePk; /* in EU */

9 RampupRate; /* ratio */

10 TargetFreq;

11 MeasFreq; /* the frequency attached to the current Meas. */

12 NextFreq; /*the "next" frequency that will be used by FEP */

13 NextDrive; /*the "next" sine amplitude that will be used by FEP */

14 Speed; /* current sweeping speed, generally it is the same as
fParams.Speed */

15 dF; /* a parameter of Speed and timelnterval, it is the frequency
change between two outputs */

16 CprRate; /* current CprRate, Compression Rate */

17 CprUpRate;

18 CprDownRate;

19 LoBound; /* the low frequency boundary for this profile */

20 HiBound; /* the high frequency boundary for this profile */

21 abElapseTime; /* in seconds */

22 abLeftTime; /* in seconds */

23 abLevel; /* in percentage */

24 abDrivePk; /* in Volts */

25 abCtlPk; /* in EU */

26 RefDispPkPk; /* generated in Level 2 */

27 RefVelPk; /* generated in Level 2 */

28 ElapseTimeFullLevel; /* in seconds */

29 TotalElapseTime; /* the elapse time since START */

30 ElapseCycles; /* sweep cycles */

31 ElapseCyclesFullLevel; /* sine cycles */

32 ElapseTimeAtLevelThisEntry; /* time at level at this entry in seconds */

fLTHSTATUS Array
This array is used for retrieving the floating point status of LTH control option in Shaker Control.

0 version

1 ScheElapseTime; /* in seconds, the elapse time of either PRE-TEST or of
the Schedule

2 ScheTotalTime; /* Total scheduled test time in seconds */

3 Level; /* current level, in amplitude ratio */

4 DriveMultiplier; /* e.g., Toggles between 1 and -1.0 */

5 SNR; /* ratio of (RMSSyy-RMSNoise)/RMSNoise */

6 RefRms; /* in EU */

7 DrivePk; /* in Volts */

8 DriveRms; /* in Volts */

9 CtIRms; /* in EU */

10 NoiseRms; /* in EU */

11 RampupRate; /* ratio */

12 SyyRms; /* Instantaneous RMS of Syy, in EU */

13 preDrivePk; /* Drive Peak at Pretest target level */

14 preTargetlLevel; /* pre-test target level */

15~22 preNoisel~preNoise8; /* volt. Noise Peak. */

23~30 prePeakl~prePeak8; /* volt. peak value of each channel at final-pretest
level. */

31 RefDispPkPk; /* generated in Level 2 */

32 RefVelPk; /* generated in Level 2 */

36




ActiveX Controls

33 ElapseTimeFullLevel; /* in seconds */

34 TotalElapseTime; /* the elapsed time since START */

35 AllScheduleTime; /* the total time of all schedules */
36 TotalRefRMS; /* accumulated RMS */

37 TotalErrorRMS; /* accumulated RMS */

38 TotalEorRefRatio; /* accumulated Error/Ref RMS Ratio */
39 ErrorRMS; /* one frame RMS */

40 EorProfRatio; /* one frame Error/Ref RMS Ratio */

Note:  To get the long or floating status array, it’s important to call the ReadStatus() method to get
the current status from the remote server and then restore client control.

37



ActiveX Controls

NetlStatus Events

OnUpdateStatus()

The server will fire this event when the status changes. Call the ReadStatus() method to respond to
this event

Example in Visual Basic

Private Sub NetlStatus_ OnUpdateStatus()
NetlStatusl._ReadStatus()
Dim vStatus as Variant, nPrjType as Long
NnPrjType = GetlntStatusArray(vStatus)

NnPrjType = GetFloatStatusArray(vStatus)
End Sub

38



NET-Integrator Sample Projects

NET-Integrator Sample Projects

Note: All the samples must work together with LDS-Dactron software Shaker Control or RTPro
applications.

After the NET-Integrator software is installed, it will copy a few sample projects to the destination folder.

Folders X Marne Size  Twpe
=I |2y MET-Inkegrator 1.7 File Folder
| Document File Falder
+ |3 Samples I WBDeveloper File Falder
# [(3) RT Pro |[CCIWBRTProSweptsine File Folder
E3 0 L |2 vBSample1 File Folder
# ) LOTUS_MNOTES_DATA I ¥EShackDema File Folder
# [[3) LOTUS_MOTES_PROGRAM |2 wBStartStop File Falder
) LRF |C)vBStartStopWCSRTPro File Folder
# [ 5) MSOCache I vCSample File Folder

With the current releases of LDS-Dactron software, RTPro version 6.2 and Shaker Control version 6.2,
the following samples are available:

e MatlabStartStop
VBAccCalibration
VBDeveloper
VBRTProSweptSine
VBSamplel
VBShockDemo
VBStartStop
VBStartStopVCSRTPro
VCSample

Visual BASIC Sample: VBStartStop

Development Environment: Visual Basic 6.0
The following files are included in the VBStartStop folder:

Mame | size [ Tvpe | Modified
Eifrmbdain BKE “isual Basic Form File 321700 10:10 A

[#] frrbdain 1KE  Visual Basic Form Binary File 3F21,/0010:10 A
msscopr 1KB Microsoft SourceSafe Status 3/27700 416 P

B StartStop 24, Application 327000421 P
B2 StartStop 1KB  “isual Basic Project 3/27700 4:21 P
] StartStop 1KB  “isual Basic ProjectWorkspa...  3/27/004:21 Pk
vssver 1KB  Microsoft SourceSafe Status 3721700 4:25 Ak

VBStartStop is probably the simplest project that you can build for NET-Integrator. It contains
Start/Stop buttons, a Server Type selection, and a status display. To activate the executable, run the
StartStop.EXE application. This Net-Integrator dialog box will display:

39



NET-Integrator Sample Projects

. Net-Integrator O] %]
' —Server Properties Sefting————— — Send Star/ Stop Commands
Server Application Type:
PR ¥H S
Stop

— MetlStatus

Framesifor BT Pro) ar ElapseTime(for WCS)

This client application does not ask for the assigned IP address for the server application. Therefore, it
can only control the applications running on the same machine.

To load the source code, first open Visual Basic 6.0, then open the existing project StartStop as shown
below:

New Project

icrpsoft - i
W i
Mew  Existing | Recentl

Look jn: I@VBStar‘cStDp j gl I_

The source code is very simple. Following is the complete source listing for the file form1(frmmain.frm):

Private Sub cmbAppType Click()
NetICmdl.ApplicationType = cmbAppType.Listlndex
NetlStatusl._ApplicationType = cmbAppType.Listlndex

End Sub

Private Sub cmdStart Click()
NetlCmdl.SendCommand CMD_STARTMEAS
"Connect the NetlStatusl to Server
NetlStatusl.ConnectToServerApp

End Sub

Private Sub cmdStop Click()
NetlCmdl.SendCommand CMD_STOPMEAS
"Disconnect the NetlStatusl from Server
NetlStatusl.Disconnect

End Sub

Private Sub Form_Load()

40



NET-Integrator Sample Projects

cmbAppType.Listindex = 0
End Sub

Private Sub NetlStatusl OnUpdateStatus(ByVal nRunStatus As Long)
NetlStatusl._ReadStatus
Dim vdata As Variant, |1 As Long
IT NetlStatusl.ApplicationType = SVR_RTPRO Then
I = NetlStatusl.GetIntStatusArray(vdata)

txtFrmNum.Text = vdata(4) "Index 4 is the Frames
Number of Rt Pro

Else
I = NetlStatusl.GetFloatStatusArray(vdata)
txtFrmNum.Text = vdata(0) "Index O is the ElapseTime

of VCS
End If
End Sub

To execute the program within the Visual Basic environment, press the F5 key.

Visual BASIC Sample: VBSamplel

Development Environment: Visual Basic 6.0

This project is intended to serve as a Visual Basic project template. It can be modified to build other
applications.

The application file name is NetInt.EXE and is meant to run concurrently with RTPro or Shaker Control.
When run, this VB Net-Integrator window will display:

. VB Netintegrator M=l B3
File Commands Help

O =| =

=% Project |192.1EB.1D.23|

EEriE ke S e

— Project Management

W= e

Open SEWE S

Clooe Efavel
= [Iefault
| | ;IJ
| Status |4/7400 [1:12 PM Y

To make the connection from this client program to the server application, first assign the IP address of
the computer that the server application is running and click the Connect To Server button.



NET-Integrator Sample Projects

Note:  The IP address needs to be entered even if the server application is running on the same machine
of this client program.

Select the server type in the Select Application Type dialog box:

&, Select Application Type M[=] k3
FTProorvCs
’7 & RTPro " Shaker Control

(04 | Cancel

Then click OK to continue.

Click the New button to create a new project, or click the Open button to open an existing project. Once
the project is loaded, push the Start button to run the application.

Visual BASIC Sample: VBDeveloper

Development Environment: Visual Basic 6.0

This program is more complex than StartStop and is meant for Visual Basic developers. You can use this
program to send various commands and test the program. It is also possible to use this program as a
template to build your own program.

To run the program, click the developer.exe application in the VBDeveloper folder. The NetIClient
window will display.

42



NET-Integrator Sample Projects

= NetlClient P |
Selectthe Application Type IRTPrD j i
— MNetiChD
Select MFS MODE if vou use DpenPrj or Savexxx cmd
AppComputerlP .please set Project Mame:
127.001 IC:\Prﬂ.Prj

Select Command to
INewPrj

-

Connect To Server
Applicatian

send Command |

—MetlSignal Control Demo
RimtSwr MName or P

127.0.01

Select Signal Name far

-

INDne

Online Sawve Signal

Connect Rmt Swr Display Signal Main Aftr

The Developer application allows more operations than the StartStop project. The user can select a
software option to start, a command to send, a signal to display, etc. It also allows the client program to
address a remote server application. The user must be very careful about the sequence of the operation or

the Server application can run into illegal operation.

The files included with this project are:

Note:

Name Size | Type | Maditied
B3 Developer | E2KE  Application 3/27/004
B¢ Developer 1KB “isual Basic Project 3/27/004
] Developer 1KE “isual Basic Froject®Workspa...  3/27/004
B Formi Z1KB  Wisual Basic Form File Jf2e/on?
=] Farm?1 1KE  “isual Basic Form Binary File /22007
Farm1 1KB Text Document 2/24/005
B frmSaveSignals 4B Wisual Basic Form File 322006
[#] S aveSignals 1KE  “isual Basic Form Binary File 3/22/006
B frmSighdainitr 9KB  Wisual Basic Form File 322006
] mescopr 1KE  Microsoft SourceSafe Status /274004
Projectl PO BKE PDM File 3fez/nog

This project includes an ActiveX component from National

Instruments for displaying signals. A message will pop up
indicating that this is an evaluation version of the component.

43



NET-Integrator Sample Projects

Visual C Sample: VCSample
Development Environment: Visual C++ 6.0

This sample provides a basic skeleton program in Visual C++ showing how to program the NET-
Integrator client.

After the sample program is installed, manually create a folder called \res in the \VCSample folder. Then
drag the file NetiIDemoVc.ico and NetIDemoVec.rc2 into the \res folder. (For future releases, this step
will be omitted).

In Visual C++, select Open Workspace item, Change the Files of type to Projects (.dsp). Then load
NetIDemoVc.dsp.

OpenWorkspace ______________HH|
Look jn: I@VCSample j gl I_ £

File name: INetlDemDVC Open |
Files of type: IProjeds {.cdsp) j Cancel |

Dpen a project from source code contral source Control... |

Build the NetIDemoVc project.

Start either the RTPro or Shaker Control application, then run the NetiDemoVc client program - shown
below - which is very similar to the VBSamplel project.

44



NET-Integrator Sample Projects

NETIDEMOYC Main Form I

Application Server Type
’75' Rt Pro  WCS

Project Mode I ]'

Ilucalhust

Connect Server |

~Project Management

New Project | Close Project

Open Project| Save Project

Signals input1(t) ~| Refresh Name List |

e B Bl Bl B

Quit

Start Stop

MatLab Samples: MatlabStartStop
Development Environment: MatLab 5.3.1 or higher

In the sample folder \MatLabStartStop, two examples are given, one for RTPro, one for Shaker Control.
To run the Shaker Control sample, first initiate the LDS-Dactron Shaker Control application. Then in the
MatLab command line type in command “vcs”. This command will call the MatLab rountine vcs.m.

=

File Edit Wiew wWindow Help

D& sBER < BE | B2

N

To get started, type one of these: helpwin, helpdesk, or de
For product information, visit www_mathworks.com.

nx UCS
»l

.
a | »

Ready I_ W o

45



NET-Integrator Sample Projects

¢  Examples of Shaker Control Met-Integrator in MATLAB O] x|
File Edit Tools Window Help

E T T T T T

M ew project

Start

Stop

|ncrease Lewvel

Decreaze Level

Cloze

|:| 1
o 100 200 300 400 a00 BO0

|nformation YWindow

[f pou want to restart, pressz 'Start’ button again

4
% Meed MOT press 'Open’ again
% Prezs Cloge' button to cloge the window

After the screen shows the picture above, the user can click the “New Project” to initiate the new project
within the Shaker Control application. Then click Start or Stop button to execute the test. The signal
shown within the MatLab sample window is the control signal shown in Shaker Control. The user can
certainly extract any of the other signals from the test.

Similarly, the RTPro project can be executed. Below is the picture showing the RTPro sample after the
user enters the “rtpro” from the command line.

46



NET-Integrator Sample Projects

# | Examples of Met-Integrator in MATLAB O] x|
File Edit Tools Window Help

0.4
035 M ew project

03 Start

Stop

0.25

0.2
I:I. "I 5 1 1 1 1 1

] 200 400 GO0 aad 1000 1200

|nformation YWindow

wou want to restart, press 'Start’ button again

eed MOT press 'Open’ again
rezz ‘Cloge’ button to cloze the window

In the sample, the signal "input1(t)", is the time domain signal from channel 1 of RTPro, is displayed.

47



General Questions and Answers

General Questions and Answers

Can ActiveX controls Access a Remote Application? How?

Yes. The ActiveX controls provided with LDS-Dactron NET-Integrator allow the user to access the
server application remotely. To make the connection, each of the following controls have to be connected
to the server application by setting property ApplicationType and AppComputer 1P, and calling
the method ConnectToServerApp:

NetlCmd, NetlSignal, and NetlStatus

Example in Visual Basic:

NetICmd.ApplicationType = SVR_RTPRO
NetICmd.AppComputerlP = *“192.68.68.28"
NetlCmd.ConnectToServerApp

NetlSignal .ApplicationType = SVR_RTPRO
NetlSignal .AppComputerlIP = “192.68.68.28"
NetlSignal .ConnectToServerApp
NetlStatus.ApplicationType = SVR_RTPRO
NetlStatus.AppComputerlP = *“192.68.68.28"
NetlStatus.ConnectToServerApp

After these functions are called, all three ActiveX controls are connected to the RTPro application
running on the computer with IP address “192.68.68.28”.

Can the Client Connect to a Local Server Application?

Yes. In many cases, the client application, i.e., the ActiveX container, is running on the same machine as
the server application. In this case, simply do not call the ConnectToServerApp method. The
ActiveX controls will automatically connect to the applications running on the same computer that the
client is running.

What if ActiveX Tries to Connect a Server that is not Running?

The server application must be manually launched before ActiveX can connect, otherwise the following
dialog box will display on the client side.

Projecti

This action cannok be completed because the other

[} application is busy, Choose 'Switch To' to ackivate
. the busy application and correct the problem,

Rekry Cancel

48



General Questions and Answers

Some computers may wait for a few minutes to get this task resolved. To avoid the long waiting time, use
dcomcenfg.exe to edit the Launching Permission of RTPro Document and ShkCtrl
Document. Follow these steps:

Step 1: Run dcomenfg . exe from Start->Run... menu.

Run HE

[E==2)  Type the name of a program, folder, document, o Intemnet
v resource, and Windows will open it for pou.

&l

Open:

[¥# R in separate memary space

Ok | Cancel l Browse. . |

Step 2: At the Applications tab, choose the RTPro Document or ShkCtrl Document item and
click Properties.

Distributed COM Configuration Properties

Applications l Drefault Properties | Default Securityi Diefault Protocolsi

Applications:

MS5W5A Local Event Concentrator Class ;I
MetZPhone [1]

MNetZPhone (2]

Outlook Meszage Attachment

Outlook Office Finder

Paintbrush

Femote Automation CLSID_Stubbdarzhaler

Remote Debug Manager for Java

Fiose. 5 ubsysteriswCollection
f cument

rebdialogs. DeleteClazsestndltems
sl b vzl ntegrationkd anager
rvsProgressDialog. resProgressDialoghPl
ShkCtl Document

Sound Recorder

TC Docurnent

WB T-50L Debugger Object

WisD ata Databaze Utility

Woice Dictation kM anager

Properties... I

K

ok | cancel | s |

Step 3: At the Security tab, choose Use custom launch permissions and click Edit.

49



General Questions and Answers

RTPro Document Properties HE

Generall Location  Security I Identit_l,ll Endpointsl

i {Jse defaull acces: permizsions

-7 se custom access permizsions

‘Y'ou may edit who can access thiz application.

™ ge default launch permissions

- % |lze custom launch permissions

You may edit who can launch this application.

Edit... |

T |se default configuration permizsions

~ % |lge custom configuration permiszsions
Y'ou may-edit who can change the configuration information for this

application.
Edit... |
0K I Cancel I Apply |

Step 4: Remove all the items under Name: except for the Administrator, and select Allow Launch
in the Type of Access field.

Registry ¥alue Permissions

R eqistry Walue: LaunchPermizzion
Dwrer: Account Unknown
MHame:

e Administiatars Allow Launch

Type of Access: |Allow Launch _:I

Cancel I Add.. | Eemovel Help |

After this operation, the error code will be returned immediately if the server application is not running.

How Can | Create a New Project on the Server Application?
To create a new project on the Server Application, follow these steps:

Step 1: Assign the appropriate value to the Appl icationType property of the Net1Cmd ActiveX
control. If you want to create the new project within the RTPro application, assign the value
SVR_RTPRO; otherwise SVR_VCS for the Shaker Control application. This operation will connect the
ActiveX control to the appropriate type of application. For example:

NetlCmd.ApplicationType = SVR_RTPRO

Step 2: Assign the appropriate value to the ProjectType property of the Net1Cmd ActiveX control.

50



General Questions and Answers

NetlCmd.ProjectType = MPS_FFT
Step 3: Send the command: CMD_NEWPRJ (its value is 1)

NetlCmd.SendCommand CMD_NEWPRJ

This implementation will create a new project on a server application that has been launched.
How Do | Open an Existing Project on the Server Application?

To open an existing project on the Server Application, follow these steps:

Step 1: Assign the appropriate value to the Appl icationType property of the Net1Cmd ActiveX
control. If you want to specify a project within the RTPro application, assign the value SVR_RTPRO;
otherwise SVR_VCS for the Shaker Control application. This operation will connect the ActiveX control
to the appropriate type of application. For example:

NetlCmd.ApplicationType = SVR_RTPRO

Step 2: Assign the appropriate value to the Pro jectName property of Net1Cmd ActiveX control

NetlCmd.ProjectName = “C:\LDS-Dactron\RTPro\FFT
Test.prj”

Step 3: Send the command CMD_OPENPRJ
NetlCmd.SendCommand CMD_OPENPRJ

This implementation will tell the server application to open an existing project called “FFT Test.prj”
that is located in the “C:\LDS-Dactron\RTPro” folder.

How Do | Send a Command to the Server Application?

Sending commands from the Client ActiveX control to the server is easy. First, connect the Net1Cmd
control to the server. Then call the SendCommand method to send the command to the server
application. If the command needs to go with parameters, assign the appropriate value(s) to the Net 1Cmd
property before the SendCommand is called. Here is a VB example:

NetlCmdl.SendCommand CMD_STARTMEAS
How Do | Read the Status from the Server Application?

The server application returns the testing status to the ActiveX client. The testing status is categorized
into two groups: an integer group and a floating point data group. All of them have a data type in 32-bit
wide. The user can interpret the array on the client side after the status array is received. For example, the
following list shows the first five elements of the integer array that is used in the RTPro.

Index Content

RunStatus;

DACStatus; /* =1 if DAC is open, O=not */
RunType;

AvgNbr ;

CurFrmNbr ;

AlWIN|R|O

51



General Questions and Answers

Here is an example in Visual Basic:

Private Sub NetlStatusl_ OnUpdateStatus(ByVal nRunStatus As Long)
NetlStatusl.ReadStatus
Dim vdata As Variant, I As Long
IT NetlStatusl._ApplicationType = SVR_RTPRO Then
1 = NetlStatusl.GetIntStatusArray(vdata)
txtFrmNum.Text = vdata(4) “Index 4 is the Frames Number of Rt Pro

Else
1 = NetlStatusl.GetFloatStatusArray(vdata)
txtFrmNum.Text = vdata(0) “Index O is the ElapseTime of VCS
End If
End Sub

This example shows that the edit box content txtFrmNum. Text is assigned based on the server type. If
the server is running RTPro, the frame number is retrieved. If it is a LDS-Dactron Shaker Control system,
the Elapsed Time is retrieved.

The status can be retrieved at any time, but it is retrieved more frequently when the NetlStatus ActiveX
control receives the OnUpdateStatus event, as shown in this example.

How Can | Identify All of the Signals in the Server Application?

A signal is an array of data with a number of attributes. The array and attributes can be read by using
signal names. That is, in order to read the signal, the client ActiveX control must know the name of the
signal first.

Call Method ReadAl 1SignalName for the Net1Signal ActiveX control to obtain all the signal
names. After this method is called, the property SignalCount indicates the total number of signals.
Following is a Visual Basic sample describing how to read all the signal names from the server
application and assign all the names to a combo box represented by cmbSignalNames.

Private Sub AddSignal()
"Get all signals
Dim 1 As Long

"The follow call will read all the signal names into client
NetlSignall.ReadAllSignalName

"Assign all the names to the combo box
With cmbSignalNames
While _ListCount > 1
-Removeltem _ListCount - 1
Wend
End With
With NetlSignall
For 1 = 0 To .SignalCount - 1
cmbSignalNames._Addltem .Signals(i)-Name, i1 + 1
Next i
IT .SignalCount > 0 Then
cmbSignalNames.Listlndex = 1
End If
End With

52



General Questions and Answers

End Sub

How Do | Read the Signal Attributes from the Server Application?

Call the method ReadSigAttrByName or ReadSigMainAttrByName to read the attributes for all
the signals. Then go through the signal list by index to retrieve the signal attributes of an individual
signal. Here is a Visual Basic sample:

NetlSignall_ReadSigMainAttrByName cmbSignalNames.Text
Dim n As Long

Dim nAllocSize As Long

Dim nDH As Single

"Find the index
n = NetlSignall.FindSignal lndexByName(cmbSignalNames.Text)
With NetlSignall._Signals(n)

nAllocSize = _AllocSize
nDH = _HIncreaseStep
End With

53



General Questions and Answers

How Do | Read the Signal Array from the Server Application?

Usually the user wants to read the signal when the Net1Signal ActiveX receives the
OnUpdateSignal Event.

Simply call the ReadSignalData method to read the content of a data array. Then use the index to
retrieve each element of the array. Here is an VB sample showing how to read the signal with name
“inputl(t).sig”

Private Sub NetlSignall OnUpdateSignal(ByVal nSigNum As Long)
Dim v As Variant
Dim FirstPoint as Single
v = NetlSignall.ReadSignalData(*“inputl(t).sig”)
“ obtain the first element of the array v
FfirstPoint = v(0)
End Sub

54



General Questions and Answers

How Can | Save the Signals?

The client ActiveX can instruct the server application to save the signals, but the server application needs
to know which signal to save. Before the server application saves the signals, the user must assign a
destination folder and instruct how to name the signal files. Here are the dialog boxes in the Shaker
Control application for setting up these parameters:

€ pactroni: Signal Manager

Save lRecaII ] Cache]

Signal Candidates

DataFalder  [RunDefadt | Folder Apperd Mode i stamp ~ |
Daka Formak |Dactr0n binary format ﬂ Signal Save Settings
v Auto Save Time Domain Data v Auto Save Frequency Domain Data

aroup Signal Mame Auto Save 7 Criginal Mame  #

ELlngroupEd Signals
input1{F) 3 input1if)
inpuUEL(t) i inpUELEY
Hirvw(F} v Hirw ()
drivelt) v drive(t)

Saved Signals:  CiLDS DactromvCSiShaker Control CometUSE 6,200 TempData BE

File Mame | Size | Format | Date Created

Signal Save Settings

Auto-Save Resulks  File Management | Prompk Data Folder

Signal Data Format and File Maming Convention

{* #ppend date and time to the signal name as file name;
(" append increment number to the signal name as file name

Starting increment number:

=

" Use signal name as file name (signals may be over-writken)

‘iaterfall Data Layout Type

e Lavout data

Layout data
- as asheet

as a guery

Complex: Signal Export Format in A5CII File
 Real and Imag " Mag and Phase

oK | Cancel |

In the above setup, the signal names will be appended with date and time stamps and the signals will be
saved in LDS-Dactron binary format to the current Data Folder folder. .

On the ActiveX client side, the user needs to set an EnableOnL ineSave property then call the method

OnLineSaveSignal to invoke the actions of saving signals on the server side. Here is a Visual Basic
sample:

55



General Questions and Answers

Private Sub cmdOK Click()
Dim n As Long, 1 As Integer
With frmNIClient.NetlSignall
For 1 = 0 To IstSaveSig.ListCount - 1
IstSaveSig.ListIndex = i
n = .FindSignal IndexByName(lIstSaveSig.Text)
-Signals(n).EnableOnLineSave = 1
Next i
-OnLineSaveSignal
End With
End Sub

56



Limited Warranty Statement

Limited Warranty Statement

LDS warrants to you, the Buyer, that LDS hardware, accessories and supplies will be free from
defects in material and workmanship, for a period of one year from date of shipment. 1f LDS
receives notice of such defects during the warranty period, LDS will, at its option, either repair
or replace products which prove to be defective. Replacement products may be either new or
equivalent in performance to new.

LDS warrants to you that LDS software will not fail to execute its programming instructions, for
a period of one year from date of shipment, due to defects in material and workmanship when
properly installed. If LDS receives notice of such defects during the warranty period, LDS will,
at its option, either repair or replace software media which does not execute its programming
instructions due to such defects

LDS does not warrant that the operation of LDS products will be uninterrupted or error free.

LDS products may contain remanufactured parts equivalent to new in performance or may have
been subject to incidental use.

Warranty does not apply to defects resulting from (a) improper or inadequate maintenance or
calibration, (b) software, interfacing, parts or supplies not supplied by LDS, (c) unauthorized
modification or misuse, (d) operation outside of the published environmental specifications for
the product, or (e) improper site preparation or maintenance.

NO OTHER WARRANTY OR CONDITION, WHETHER WRITTEN OR ORAL, IS
EXPRESSED OR IMPLIED AND LDS SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY,
AND FITNESS FOR A PARTICULAR PURPOSE.

THE REMEDIES IN THIS WARRANTY STATEMENT ARE BUYER’S SOLE AND
EXCLUSIVE REMEDIES. EXCEPT AS INDICATED ABOVE, IN NO EVENT WILL LDS
OR ITS SUPPLIERS BE LIABLE FOR LOSS OF DATA OR FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDING LOST PROFIT OR DATA),
OR OTHER DAMAGE, WHETHER BASED IN CONTRACT, TORT, OR OTHER LEGAL
THEORY.

57



Limited Warranty Statement

ASSISTANCE

If you are unable to solve a problem with your LDS-Dactron product, contact your LDS
Representative. To locate the LDS Representative in your area refer to LDS web site
www.lds-group.com. You can also contact LDS-Dactron directly at using the contact
information on the cover page.

TO RECEIVE WARRANTY REPAIR SERVICE

To obtain warranty service or repair, LDS-Dactron products must be
returned to a service facility designated by LDS. Buyer shall prepay
shipping charges to LDS and LDS shall pay shipping charges to return
the product to Buyer. However, Buyer shall pay all shipping charges,
duties, and taxes for products returned to LDS from countries and
locations outside of the United States.

58


http://www.lds-group.com/

Manual Revision History

Manual Revision History

Date Manual Version Software Version Contents added into the Manual in
this version

Apr. 1.0 RT Pro 2.1 Initial product Release for NET-

2000 Shaker Control 3.6 Remote, NET-View; 109 pages.

June 11 RTPro 3.2 Second release, separate the NET-

2002 Shaker control 4.7 Integrator and network/DCOM
configuration into two manuals

March | 1.3 RT Pro 4.0 Revise index table for NetlStatus

2003 Shaker Control 5.0

June 1.7 RT Pro 6.2 Updated Manual Version and

2007 Shaker Control 6.2 Technical Support email address.

NET-Integrator 1.7 Removed references to SpectraBook

and Win95/98/NT Operating Systems.
Revised NET-Integrator installation
instructions, list of available NET-
Integrator Sample Projects, and “How
Can | Save the Signals” section,

59



	Introduction
	This Manual
	Introducing Network Enabled Test(

	NET-Integrator Overview
	What is NET-Integrator?
	What’s the Difference Between NET-Integrator and ActiveX API
	OS Requirements for NET-Integrator
	What is an ActiveX control?
	Properties
	Methods
	Events

	Implementation of the ActiveX controls

	NET-Integrator Installation
	Client Program
	OCX Control
	Enable NET-Integrator on the Server Application

	Install the OCX Control
	A Quick Example in Visual Basic
	Step 1. Open Microsoft Visual Basic V6.0
	Step 2: Project Settings
	Step 3. Design a Graphical User Interface
	Step 4. Edit the Source Code
	Step 5. Execute the Application


	ActiveX Controls
	ActiveX Control: NetICmd
	NetICmd Properties
	ApplicationType (ENUM_SVRMODE)
	AppComputerIP (BSTR)
	ProjectType (Enum ENUM_PRJMODE)
	Example in Visual Basic

	NetICmd Methods
	VARIANT ConnectToServerApp()
	void Disconnect()
	void SetCmdParams(long nInteger1, long nInteger2, float fFlo
	VARIANT SendCommand(ENUM_RTSVRCMD eCmdID)

	NetICmd Events

	ActiveX Control: NetISignal
	NetISignal Properties
	ApplicationType (ENUM_SVRMODE)
	Example in Visual Basic
	AppComputerIP (BSTR)
	SignalCount (long, read only)
	Signals (return Signal object, param long Index, Read only)
	Example in Visual Basic
	Signal Object Properties

	NetISignal Methods
	VARIANT ConnectToServerApp()
	void Disconnect()
	ReadAllSignalName()
	BOOL ReadSigAttrByName(BSTR SigName)
	BOOL ReadSigMainAttrByName(BSTR SigName)
	long FindSignalIndexByName(BSTR SigName)
	VARIANT ReadSignalData(BSTR SigName)
	Example in Visual Basic

	NetISignal Events
	OnAllocSignalReady(long num)
	OnUpdateSignal(long num)


	ActiveX Control: NetIStatus
	NetIStatus Properties
	ApplicationType (ENUM_SVRMODE)
	AppComputerIP (BSTR)
	ProjectType (Enum ENUM_PRJMODE,read only)

	NetIStatus Methods
	VARIANT ConnectToServerApp()
	void Disconnect()
	BOOL ReadStatus()
	Long GetIntStatusArray(VARIANT)
	iMPSSTATUS Array
	iOCTSTATUS Array for RT Pro Octave Analysis
	iSHOCKSTATUS Array
	iSINESTATUS Array
	Long GetFloatStatusArray(VARIANT)
	fMPSSTATUS Array
	fOCTSTATUS Array
	fSHOCKSTATUS Array
	fRANDOMSTATUS Array
	fSINESTATUS Array
	fLTHSTATUS Array

	NetIStatus Events
	OnUpdateStatus()
	Example in Visual Basic



	NET-Integrator Sample Projects
	Visual BASIC Sample: VBStartStop
	Visual BASIC Sample: VBSample1
	Visual BASIC Sample: VBDeveloper
	Visual C Sample: VCSample
	MatLab Samples: MatlabStartStop

	General Questions and Answers
	Can ActiveX controls Access a Remote Application? How?
	Example in Visual Basic:

	Can the Client Connect to a Local Server Application?
	What if ActiveX Tries to Connect a Server that is not Runnin
	How Can I Create a New Project on the Server Application?
	How Do I Open an Existing Project on the Server Application?
	How Do I Send a Command to the Server Application?
	How Do I Read the Status from the Server Application?
	How Can I Identify All of the Signals in the Server Applicat
	How Do I Read the Signal Attributes from the Server Applicat
	How Do I Read the Signal Array from the Server Application?
	How Can I Save the Signals?

	Limited Warranty Statement
	Manual Revision History

