Análisis y diagnóstico de máquinas

Machine analysis and diagnostics

Noise and vibration aren’t just annoying; they represent energy emissions that indicate inefficiency in machinery

Noise and vibration indicate issues that can affect a machine’s reliability, such as imbalanced parts, and can even cause machines to fail through their own damaging effects.

Machine vibration analysis

Rotating or reciprocating equipment such as compressors, power trains, engines, pumps and turbines, are constructed of many parts that each contributes to the sound and vibration pattern of the whole assembly. In these types of machinery, varying load conditions and imbalances caused by imperfections or uneven mass can result in vibration and associated noise. Achieving efficiency and minimizing vibration requires the detection of these faults and imbalances; however, they can never be entirely eliminated. Thus, when incorporating a machine into another structure – like an aircraft engine – it’s important to understand the machine’s vibration output to avoid consequences such as exciting structural resonances.

Understanding the vibration output of a machine requires analyses that can correlate vibration measurements with the machine’s processes. Order analysis relates vibration measurements to the revolutions of a rotating part, improving knowledge about machinery such as powertrains, pumps, compressors and electric motors. It’s important to be able to incorporate the machine’s own parameters, such as oil pressure and RPM, into the analysis via CAN Bus or auxiliary inputs.

Condition-based maintenance and condition monitoring

Changes in a machine’s vibration patterns can be indicative of machinery health. By diagnosing and addressing vibration problems in rotating and reciprocating machinery, performance can be optimized. Monitoring machine health ensures deterioration and fatigue failures can be prevented, maximizing productive uptime and allowing better scheduling of maintenance, repair, and overhaul (MRO) procedures, with more confidence between scheduled stops.

In rotating and reciprocating machines, varying load conditions and imperfections in the moving parts cause vibrations and associated sounds. The vibrations are shaped by the structural properties of the moving and stationary parts of the machine. Order analysis relates measurements to revolutions of a rotating part, improving knowledge about machinery such as aircraft and automotive engines, powertrains, pumps, compressors and electric motors.

Typical applications include rotating machinery analysis and processing vehicle or engine speed sweeps (run‐up/down) with respect to RPM or other time‐varying quantities. Fixed-bandwidth FFT order analysis is best suited for situations where sweep rates are relatively small or, for faster speed sweeps where the lower order numbers are of interest. Tracked order analysis is recommended for high-accuracy analyses of higher orders and fast-speed sweeps.

System suggestion

Order analysis system overview

Bk Connect Order Analysis provides tachometers, autotrackers, order analyzers and related post-processing functions, a wide range of display facilities and three additional trigger types – tacho, speed and speed interval – providing a complete diagnostic toolbox for everything from basic real-time order analysis with and without tracking to advanced order analysis with BK Connect.

Moving parts in any rotating machine will eventually cause annoying vibrations that ultimately lead to breakdowns due to production and assembly tolerances, wear, and load variation.

By using various diagnostic techniques that use vibration measurement as an indicator, the root cause of the deteriorating machine condition can be established and corrective measures planned. Diagnostic techniques are extremely effective because they directly use the information contained in the machine vibration signature. The signature is obtained by frequency and time analysis of the machine vibration signal from a sensor fixed on the surface of or inside the machine. It enables troubleshooting of rotor dynamic problems, rotating component deterioration and structural problems.

System suggestion

Machine diagnostics system overview

PULSE machine diagnostics used in run-up/down sessions can diagnose multiple faults. All analyses can be performed simultaneously and the raw signals recorded for subsequent analysis using PULSE Time Data Recorder. Diagnostics on transients is then performed with PULSE Time Capture. Results are shown in relation to data tagged with auxiliary parameters like temperature, oil pressure, position and wind speed. The system comprises Order Analysis Type 7702-N with multi-tachometer, FFT order analysis, order tracking, signal enhancement, envelope analysis on bearings, cepstrum analysis on gearboxes and process data/auxiliary parameter logging. Any LAN-XI data acquisition module is suitable, giving up to 12 input channels. Auxiliary parameter logging requires LAN-XI module Type 3056.

Health and usage monitoring systems (HUMS) are being used more frequently in monitoring critical helicopter gearboxes and also, increasingly, for gas-turbines – both in helicopters and in certain fixed-wing aircraft.

Vibration monitoring is a well-proven method for preventing catastrophic failures of rotating components, with the piezoelectric accelerometer proving to be the best sensor for these applications

HUMS accelerometers typically have very specialized performance and reliability requirements. Strict development and production standards such as AS/EN 9100 and environmental standards, such as DO-160 ‘Environmental Conditions and Test Procedures for Airborne Equipment’ must be adhered to, together with aircraft specific requirements.

Suggested system

Health and usage monitoring systems (HUMS) system overview

Brüel & Kjær supplies a range of HUMS and engine-monitoring accelerometers, whose design is focused on guaranteeing a highly robust and highly reliable sensor. Sensors must operate continuously in demanding environmental conditions yet be sensitive enough to be able to detect incipient bearing and gear failures. Size and ease of mounting are equally important considerations for these applications.

Airframers face stringent requirements to reduce fuel burn, environmental emissions and engine noise, drawing engine performance into central focus. Gas turbines are highly complex machines that need comprehensive testing and analysis during development in order to understand and optimize their dynamic behaviour. Engine testing takes considerable resources. With huge engine test facilities, data acquisition requirements and many involved staff, each test is a large operation with tight schedules and test commitments.

Brüel & Kjær’s gas-turbine test systems provide high-performance, scalable platforms for dynamic data recording, real-time monitoring, and post-analysis.

System suggestion

Gas turbine testing system overview

This LAN-XI-based system provides data recording for hundreds of dynamic channels, highly detailed real-time monitoring of test data, and the capability to share data for post-test analysis. Real-time analysis and alarm information from monitoring stations ensure data validity.

Highly scalable and easily transportable, this system can be combined for high-capacity centralized data-acquisition or split into smaller mobile systems for easy transport.

BK Connect data processing provides post-analysis functions supporting a wide range of formats for import from, and export to, native and third-party systems. 

Fill in the form and we will get back to you as soon as possible.

If you need technical support, please use the support request form.

I would like to
I would like to (elaborated)
My name is
I am from
My Company is
My phone no. is
My email is

For information about how we handle personal information, please see our privacy policy.