arrow_back_ios

Main Menu

See All Software See All Instruments See All Transducers See All Vibration Testing Equipment See All Electroacoustics See All Acoustic End-of-Line Test Systems See All Academy See All Resource Center See All Applications See All Industries See All Services See All Support See All Our Business See All Our History See All Global Presence
arrow_back_ios

Main Menu

See All Analysis & Simulation Software See All DAQ Software See All Drivers & API See All Utility See All Vibration Control See All High Precision and Calibration Systems See All DAQ Systems See All S&V Hand-held Devices See All Industrial Electronics See All Power Analyzer See All S&V Signal Conditioner See All Acoustic Transducers See All Current and Voltage Sensors See All Displacement Sensors See All Force Sensors See All Load Cells See All Multi Component Sensors See All Pressure Sensors See All Strain Sensors See All Strain Gauges See All Temperature Sensors See All Tilt Sensors See All Torque Sensors See All Vibration See All Accessories for Vibration Testing Equipment See All Vibration Controllers See All Measurement Exciters See All Modal Exciters See All Power Amplifiers See All LDS Shaker Systems See All Test Solutions See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All Training Courses See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance
arrow_back_ios

Main Menu

See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All API See All Experimental Testing See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Dynamic Weighing See All Vehicle Electrification See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

Virtual simulation has dramatically accelerated the overall aircraft development process. However, physical testing remains a critical contributor to both validation of the simulation models and the understanding of structural characteristics of new materials and manufacturing processes.

Ground Vibration Test (GVT) is used to determine the modal parameters of a complete aircraft and is typically performed very late in the development process. The outcome is used to update the aircraft’s analytical models to predict the flutter boundaries (combinations of altitude and speed) and establish a safe flight envelope before the first test flight. Following the test flights, the analytical models are updated, the final flutter calculations made, and the aircraft obtains its airworthiness certification.

Ground Vibration Test is mandatory for new aircraft and for existing aircraft that undergo modifications. It is also performed on other structures such as helicopters and spacecraft.

 

System Suggestion

Ground vibration testing system overview

A typical GVT system consists of modal exciter systems, modal accelerometers and LAN-XI data acquisition hardware. Measurements and post-processing are carried out with BK Connect® software. The test geometry is defined based on a Finite Element (FE) model of the test object. The FE model also provides the basis for a pre-test analysis to define excitation and response DOFs (Degree-Of-Freedoms), and for investigation of target modes.

This system is scalable, depending on the size of the test object, and especially for larger objects, the LAN-XI data acquisition hardware can be distributed, to minimize cabling.

Video: Watch NASA perform Ground Vibration Testing with BK Connect 

BK CONNECT TYPE 8411

Structural Measurements – Hammer and Shaker

Intuitive software for geometry-guided real-time hammer and shaker measurements used for classical modal analysis.

 

TYPE 8412 | BK CONNECT 

Advanced Sine Measurement Software

Advanced Sine Software for real-time measurements of frequency response functions (FRFs) using stepped sine excitation for linearity studies and classical modal analysis.

 

BK CONNECT TYPE 8420

Modal Analysis Software

Provides powerful tools for creating geometries and a comprehensive set of analysis and validation tools for single-reference modal analysis.

 

BK CONNECT TYPE 8420-A

Advanced Modal Analysis

Advanced Modal Analysis software for creating geometries and a comprehensive set of analysis and validation tools for polyreference modal analysis.

 

BK CONNECT TYPE 8421

Correlation Analysis Software

Correlation Analysis Software for correlating two modal models, typically consisting of a finite element model and a test model.

TYPE 4507-B

Piezoelectric CCLD Accelerometer, TEDS, 1 mV/g, Side Connector, 1 Slot, Excl. Cables

Designed for modal analysis measurement.

 

TYPE 4524-B

Triaxial CCLD Piezoelectric Accelerometer, TEDS

Designed for structural analysis measurements.