arrow_back_ios

Main Menu

See All Software See All Instruments See All Transducers See All Vibration Testing Equipment See All Electroacoustics See All Acoustic End-of-Line Test Systems See All Academy See All Resource Center See All Applications See All Industries See All Services See All Support See All Our Business See All Our History See All Global Presence
arrow_back_ios

Main Menu

See All Analysis & Simulation Software See All DAQ Software See All Drivers & API See All Utility See All Vibration Control See All High Precision and Calibration Systems See All DAQ Systems See All S&V Hand-held Devices See All Industrial Electronics See All Power Analyzer See All S&V Signal Conditioner See All Acoustic Transducers See All Current and Voltage Sensors See All Displacement Sensors See All Force Sensors See All Load Cells See All Multi Component Sensors See All Pressure Sensors See All Strain Sensors See All Strain Gauges See All Temperature Sensors See All Tilt Sensors See All Torque Sensors See All Vibration See All Accessories for Vibration Testing Equipment See All Vibration Controllers See All Measurement Exciters See All Modal Exciters See All Power Amplifiers See All LDS Shaker Systems See All Test Solutions See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All Training Courses See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance
arrow_back_ios

Main Menu

See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All API See All Experimental Testing See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Dynamic Weighing See All Vehicle Electrification See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

The Technical Challenges of The Omnidirectional Sound Source


The omnidirectional sound source is the most described and used source in building and room acoustic measurements. Usually, little thought is given to it, yet this seemingly simple device has several interesting aspects of which many may not be aware. Here, we focus on some of the technical challenges we encountered when designing and constructing an omnidirectional sound source.

Loudspeaker Directivity

The core requirement regarding sound sources for building acoustics and room acoustics is the sound directivity. The maximum deviation from the mean sound pressure in any direction as a function of frequency is specified in ISO 140 (building acoustics) and ISO 3382-1 (room acoustics).

Each standard has different limits, with ISO 3382-1 being somewhat stricter than ISO 140.

Directivity for OmniPower Sound Source Type 4292-L
Directivity for OmniPower Sound Source Type 4292-L according to ISO 3382: Maximum deviation from mean for gliding 30° arc. Upper and lower curves are the ISO 3382 tolerances.

The directivity of a sound source is mainly determined by the shape of its enclosure, and to a lesser degree by its loudspeakers. The most uniformly built shapes are the regular polyhedral, or Platonic solids: tetrahedron, cube, octahedron, dodecahedron and icosahedron.

Dodecahedron Speaker Configuration

Dodecahedron Speaker Configuration

The dodecahedron, with its 12 faces, provides a good fit for the directivity requirements in the ISO standards. A relative of the dodecahedron is the icosidodecahedron, which has 12 pentagon-shaped faces and 20 triangular faces. These small triangular faces reduce the overall outer diameter and provide space for connectors, grips, threaded holes and rubber feet, resulting in a more ergonomic and aesthetically pleasing device. Although more difficult to construct than the dodecahedron, these advantages justify the choice of the icosidodecahedron for Type 4292-L.

Grip - OmniPower Sound Source
Grip
Rubber feet - OmniPower Sound Source
Rubber feet
Mounting hole - OmniPower Sound Source
Mounting hole

Speaker Frequency Range

The minimum required frequency range in 1/3-octave bands for ISO 140 is from 100 Hz up to 3150 Hz, optionally expanded at either end to the 50 Hz and 5000 Hz bands. The minimum range for ISO 3382-1 is the full octave bands from 125 Hz to 4 kHz, and for speech transmission index (STI) measurements, the 8 kHz full octave band is also required. The resulting range to cover all these standards and applications is 50 Hz to 10 kHz in 1/3-octave bands. To accomplish this, the source needs wideband loudspeakers. Adding a woofer for low frequencies can sometimes be useful, but this complicates the source and makes it non-concentric. Covering the full range with the 12 wideband loudspeakers is the preferred option.

Speaker Frequency Range
W 130 SN: a specifically developed loudspeaker in close cooperation with Visaton GmbH

In addition to the range of the spectrum, ISO 140 also specifies that, in a given source room, adjacent 1/3-octave bands should not differ in level by more than 6 dB. This requirement cannot be guaranteed by the source alone, as it also depends on the acoustic properties of the room itself. Equalization of the source signal may therefore be required.

Acoustic
Related product
POWER AMPLIFIER TYPE 2734

The ‘eq’ noise signal in Brüel & Kjær’s Power Amplifier Type 2734 has been ‘pre-equalized’ for Type 4292-L, minimizing the chance that the level difference between adjacent bands exceeds 6 dB in real-world measurements.

Enhanced Stability

Although not specified in any of the standards, the stability of the output level and spectrum over time is a very important property and often overlooked. OmniPower Sound Source Type 4292-L is capable of handling high power for many hours with minimal changes to the spectrum and output level.

The cooling is determined by both the design of the individual loudspeakers as well as the construction of the sound source enclosure. OmniPower is equipped with loudspeakers that were developed specifically for this application. The lightweight neodymium magnets used in this loudspeaker are much smaller than the traditional ferromagnet which also means they have a much smaller surface area from which to radiate heat. A heatsink was added to remedy this problem while keeping the loudspeaker weight well below that of a traditional design. Additional self-cooling capacity was added by using a phase plug, which enables improved airflow around the voice-coil.

Eventually the heat radiated by the loudspeaker must reach the environment, and a metal enclosure is essential to transport heat energy from the inside of the enclosure to the outside. Type 4292-L uses aluminum to optimize weight and thermal conduction.

The first designs of the OmniPower Sound Source uncovered an interesting phenomenon that surprised even the loudspeaker manufacturer. The workmanship was such that some enclosures were completely airtight. As the air inside the enclosure heated up, the internal air pressure also went up. This in turn restricted the movement of the diaphragm, reducing the natural cooling of the voice-coil. At high power, this would quickly lead to a runaway temperature, stopped only by the voice coils burning out! This prompted the addition of a small vent to equalize the pressure inside and outside the source.

Mounting piece with vent hole above the connector
Mounting piece with vent hole above the connector

Sound Insulation Measurements

In general, for sound insulation measurements, very high output levels are desirable to ensure levels sufficiently above the background sound levels in the receiving room. This can place significant strain on the loudspeakers, which will heat up until thermal equilibrium is reached with the surroundings, or until the loudspeaker voice-coil melts.

Efficient cooling ensures that the loudspeakers reach thermal equilibrium as fast as possible after the initial voice-coil heating. The electrical resistance of the voice-coil rises with temperature, causing the acoustic output of the source to drop. This so-called compression happens very quickly, typically within 10 seconds after applying a high-power signal, at which point the output level may have dropped by approximately 0.1 dB. As the voice-coil continues to heat up until thermal equilibrium is reached, the drop in output power should be minimal, particularly during a measurement.

 



A Word On Maintenance

As with other measurement equipment, it is not only important that a sound source functions as specified when new, but also that it continues to do so after years of use. To this end, Brüel & Kjær offers a certification service for Type 4292-L. In the certification process, the source is first taken through a regular production test, where any repairs that may be needed are performed. It is then measured and checked for compliance to its specifications by an independent laboratory.

A Word On Maintenance