arrow_back_ios

Main Menu

See All Software See All Instruments See All Transducers See All Vibration Testing Equipment See All Electroacoustics See All Acoustic End-of-Line Test Systems See All Academy See All Resource Center See All Applications See All Industries See All Services See All Support See All Our Business See All Our History See All Global Presence
arrow_back_ios

Main Menu

See All Analysis & Simulation Software See All DAQ Software See All Drivers & API See All Utility See All Vibration Control See All High Precision and Calibration Systems See All DAQ Systems See All S&V Hand-held Devices See All Industrial Electronics See All Power Analyzer See All S&V Signal Conditioner See All Acoustic Transducers See All Current and Voltage Sensors See All Displacement Sensors See All Force Sensors See All Load Cells See All Multi Component Sensors See All Pressure Sensors See All Strain Sensors See All Strain Gauges See All Temperature Sensors See All Tilt Sensors See All Torque Sensors See All Vibration See All Accessories for Vibration Testing Equipment See All Vibration Controllers See All Measurement Exciters See All Modal Exciters See All Power Amplifiers See All LDS Shaker Systems See All Test Solutions See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All Training Courses See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance
arrow_back_ios

Main Menu

See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All API See All Experimental Testing See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Dynamic Weighing See All Vehicle Electrification See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

Vibration Testing − ‘Dos and Don’ts’ of Site design

This is the first in a series of articles providing guidance on how to avoid pitfalls and difficulties commonly encountered during the design, installation, and operation of vibration test systems.

The article is based on the many years of experience had by Brüel & Kjær VTS in the world of vibration, and the plethora of problems that can be encountered during the vibration testing of components and assemblies. This time we look at site design including:

  • Layout
  • Environmental
  • Service and cabling
  • Electromagnetic

Layout of control room

Position of control room

Position of control room
The control room should, if possible, be positioned within sight of the vibration system. If this is not possible then a CCTV system should be installed to provide a view of the vibrator.

Room access
There should be adequate access both for installation and maintenance of the vibration system, and to allow the easy and safe mounting of payloads and fixtures.

Vibration
Consideration should be given to the vibration, especially at low frequencies, that will be transmitted into the floor during testing. Various mounting options are available to reduce transient vibration, but all have a low-frequency limit. An unsuitable isolation mounting resonance can lead to excessive motion of the vibrator and even damage to the surrounding building.

Location of amplifier
The system amplifier should not be sited directly against a wall as this will restrict the air flow available to cool it; maintenance will also be easier if the amplifier is surrounded by free space. System user manuals contain detailed recommendations on this.

Airglide mounts
When equipment is fitted with ‘Airglide’ mounts, it is necessary to ensure that the floor has a suitable finish and level as specified in the user manual.

Fan hoses
Extended fan hoses should not be fitted without consulting the engineering team at Brüel & Kjær VTS; any hose extensions could result in the vibrator overheating. For the same reason, sharp bends in hoses should be avoided, and hose arrangements shown in outline drawings should not be modified without consulting Brüel & Kjær VTS.

Floor loading
The floor must be able to bear the load of the vibration system – vibrators and their associated equipment are heavy items.

Position of main isolators
Main electrical isolators and switches should be fitted in an accessible position close to the amplifier. Positioning should comply with relevant safety regulations.

Acoustic noise
Be aware that due to the nature of vibration systems, audible noise is produced by the armature. For larger systems this can often lead to high levels of noise. Careful consideration should be given to the use of sound attenuating structures and soundproof rooms, etc. Vibrator noise levels are specified in the user manuals.

Other equipment
Siting vibration systems next to other heavy equipment can cause problems due to the transmission of vibration or electrical noise.


Environmental vibration testing

Environmental vibration testing

Temperature and humidity
It is advised not to operate Brüel & Kjær VTS equipment outside of the temperature and humidity limits; these are specified in the relevant user manuals.

High altitudes
At higher altitudes, the cooling of the vibrator will be affected by the reduced air density. If this is likely to be a problem, it is recommended to consult the engineering team at Brüel & Kjær VTS for further advice.

Cleanliness
The vibration test system and other associated equipment should not be operated in damp, oily, dirty or dusty environments. Dirt and dust may cause the centre positioning system (where fitted) not to function correctly. Water collection due to damp conditions will cause corrosion of the vibrator and may also lead to electrical short circuits. Oil on or around the vibrator makes the surfaces slippery, creating a hazard for operators, ensuring the surrounding areas are clean and tidy are an essential part of the day-to-day maintenance activities.

Condensation
If the operational temperature and humidity (for instance when operating with a thermal chamber) are such that the temperature of the vibrator armature falls below the dew point, moisture will condense on the armature. This can cause corrosion to the frame and lead to electrical shorts. These problems can be avoided by:

  • The use of a thermal barrier
  • Fitting heating elements around the armature/chamber interface
  • Directing the warm air expelled by the fan towards the underside of the chamber

Vacuum
When the vibrator is used with an altitude chamber, the chamber will apply suction to the armature. In solutions where an air-cooled vibrator is used, it’s worth noting that the load compensation is based on positive pressure, so special control will be required. In water-cooled vibration test systems, a small vacuum pump is fitted to provide negative pressure on the armature. This, however, works against the vacuum pump for the chamber, which is usually larger.

Thermal expansion
When using a thermal chamber, it is necessary to be aware of thermal expansion and the resulting stresses it can cause; this is particularly important when the chamber is attached to a multi-bearing slip table.

Corrosion of magnesium components
The magnesium alloy used in slip tables, head expanders and other components is susceptible to corrosion, as such the advice on the care and maintenance of a vibration test system in the user manuals should be followed carefully.


Service and cabling of vibration testing equipment

Service and Calibrating

Availability of services
It is recommended to ensure that all services required for the equipment are available and as specified in the relevant user manuals.

Cabling
The following points should be borne in mind when running cabling:

  • All cable lengths should be kept to a minimum, as cables longer than those specified in the user manuals may restrict the performance of a system. If in doubt, consult the engineering team at Brüel & Kjær VTS
  • Care should be taken not to apply undue loads and tension to cable terminations
  • Ducting for the armature drive and field cables should be ventilated to avoid the possibility of heat build-up, which could restrict performance and cause damage
  • Cables should be routed neatly and safely to avoid possible trip hazards
  • Power and signal cables should be routed separately to avoid interference problems
  • All signal cables should be screened; triaxial cables should be used for analogue signals over long lengths

Further guidance on cabling is given in the relevant user manuals.

 

Electromagnetic site design

Safety and RFI earths
It is recommended that safety earths are fitted and used where possible. RFI earths should be used and be of the correct type as specified. Further guidance on earthing is given in the relevant user manuals.

Mounting the vibrator
The body of the vibrator is constructed from steel to allow for conduction of the magnetic fields. If the body is connected to large steel components other than supplied by Brüel & Kjær VTS, these fields will flow in the connecting parts. This can cause problems with magnetised plates, loss of flux within the vibrator and/or large stray magnetic fields.

Siting of control equipment
If control equipment is sited close to the vibrator, the stray magnetic field may distort the monitor.

Low frequency field
Brüel & Kjær VTS recommends that personnel, particularly those with medical implants, do not enter the danger zone whilst the vibration test system is running.

Further guidance on safe practices and hazards is given in the relevant user manuals.


Related articles

Related Information