arrow_back_ios

Main Menu

See All Software See All Instruments See All Transducers See All Vibration Testing Equipment See All Electroacoustics See All Acoustic End-of-Line Test Systems See All Academy See All Resource Center See All Applications See All Industries See All Services See All Support See All Our Business See All Our History See All Global Presence
arrow_back_ios

Main Menu

See All Analysis & Simulation Software See All DAQ Software See All Drivers & API See All Utility See All Vibration Control See All High Precision and Calibration Systems See All DAQ Systems See All S&V Hand-held Devices See All Industrial Electronics See All Power Analyzer See All S&V Signal Conditioner See All Acoustic Transducers See All Current and Voltage Sensors See All Displacement Sensors See All Force Sensors See All Load Cells See All Multi Component Sensors See All Pressure Sensors See All Strain Sensors See All Strain Gauges See All Temperature Sensors See All Tilt Sensors See All Torque Sensors See All Vibration See All Accessories for Vibration Testing Equipment See All Vibration Controllers See All Measurement Exciters See All Modal Exciters See All Power Amplifiers See All LDS Shaker Systems See All Test Solutions See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All Training Courses See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance
arrow_back_ios

Main Menu

See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All API See All Experimental Testing See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Dynamic Weighing See All Vehicle Electrification See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

Historical Milestones of a Sound Level Meter


This article looks at the history and evolution of sound level meters, delving into history, and the new trends that are shaping their future. Many of the technological developments that have changed society, are now finding their way into the world of sound measurement.

With the relentless advance of technology, the sound level meters of today are very different creatures to those of the Sixties. Hovering over the year in this interactive timeline gives an overview of the history and key milestones of the sound level meter. 

To illustrate how far sound level meters have come let’s start in Times Square, New York, in the twenties.

A Fox Movietone News Story shows a technician from the Noise Abatement Commission making noise level measurements in different parts of the city in response to a rise in traffic. Armed with a receiver, a microphone, a phonograph, and a wobbling test tone to measure “deafness produced by noise”, he concluded, that:

The noise in Times Square deprives us of 42% of our hearing” [sic]. It would be 30 odd years until the first sound level meter standard is introduced, shortly followed by standards and regulations describing its usage.

Defining a new type of measuring instrument

With the emergence of the first sound level meter standard, IEC 123, sound level meters had to be designed according to certain criteria to be approved and accredited. The standard was published in 1961 and with it began the era of commercially available sound level meters. But sound level meters back then looked very different from those of today.

The age of level recorders and transistors

Turn the clock back 50 years and we start to see what we would recognize today as a sound level meter. Before this time, noise measurements were performed with heavy equipment based on valve technology. The engineer would have to transport his heavy equipment to the site, set up input and output attenuators before beginning the measurement. Once the measurement was in progress, with no internal memory, levels would be recorded on a level recorder, the engineer marking events on the paper roll. Post-processing software was non-existent and there were no alternative ways of displaying results.

Brüel & Kjær’s Precision Sound Level Meter Type 2203 launched in 1962 was, thanks to transistors, much smaller than its predecessors. Weighing in at just 5 kg with an octave filter set attached, Type 2203 was arguably the first portable sound measurement device (although the level recorder was another 25 kg).

Transistor technology back then was not a precise science and not without its issues. Transistor batches had to be sorted at the factory according to their quality before using them in production, so great was the variation in resistance.

Viewed today, where everyday life is filled with smart miniature technology, Type 2203 doesn’t seem particularly small or light, but considering the technology available, it was impressive at the time.

The age of microprocessors and internal memory

Fast-forward to the Eighties and the end of the era of big sound level meters. Driving this process was the emergence of microprocessors. Microprocessors offered increased processing power due to integrated circuits that combined multiple transistors onto one chip, making a parallel measurement of up to five independent parameters possible.

Sound level meter type 2231

The first Brüel & Kjær sound level meter to integrate a microprocessor was Modular Precision Sound Level Meter Type 2231. The choice of the microprocessor was the cost-effective RCA 1802 – undoubtedly a good choice as it was also used in NASA’s space programs at the time.

In parallel to the development of microprocessors came internal memory (or built-in data storage) that allowed users to save their data on the sound level meter itself. This was around the time of the first electronic spreadsheets from VisiCalc, later Lotus Notes, and Microsoft® Excel® – the usage of personal computers to make calculations were becoming more widespread.

By the late Eighties and early Nineties, the digital revolution was accelerating at a remarkable pace and would have a huge impact on the future of sound level meters.

Digital signal processing

The Nineties saw the growth of digital signal processing, which, combined with greater computing power made it possible to process more data in real-time. For example, measuring a 1/3-octave spectrum on sound level meters with analog filter sets involved measuring each frequency band individually, one after the other – a time-consuming process!

With digital signal processing, real-time 1/3-octave band frequency analysis became a possibility, measuring all frequency bands simultaneously. As digital signal processing became widespread among sound level meter providers, more detailed analyses like FFT would become possible in a handheld platform.

The first Brüel & Kjær sound level meter to adopt this new technology was Type 2260, released in 1994.

Connectivity: The way to the future

Aside from large colour displays and advanced post-processing; connectivity is a central feature of 21st century sound level meters. First released in 2004, Brüel & Kjær’s Hand-held Analyzer Type 2250 shared many features with its technological cousin, the personal digital assistant (PDA). A colour and touch-sensitive display was a leap forward in usability, while USB and Ethernet interfaces offered flexible and convenient methods for connecting to a PC – be it in the same room, or on the other side of the world.

Today, sound level meters Type 2250 and Type 2270 can even connect wirelessly to Wi-Fi networks, making remote control from a smartphone possible, along with cloud-based services for data storage and sharing.

Wind turbines farm

Smartphones and sound level meters?

Today, smartphones are a constant presence in most of our lives. These pocket-sized devices are much more than just phones – they are wireless communication devices combining microphones, cameras, speakers, accelerometers, gyroscopes and high-resolution touchscreens, with processing power rivaling the desktop computers of just a few years ago. They connect with an ever-growing range of devices and sensors, from heart rate monitors and pedometers, to seismographs and even sound level meters like B&K 2245.

It is unlikely that sound level meters will ever match the computing power and flexibility of contemporaneous smartphones, but if history has taught us anything, we can expect smart devices to influence sound level meter design in the future. The display, computing and wireless technologies developed for smartphones will increasingly be integrated into sound level meters, and the use of smartphones connected to sound level meters will also increase.

We’ve come quite a long way since the dapper measurement technician of Times Square in 1929, jotting down numbers in a notebook and working out hearing deprivation percentages, but environmental noise measurements are more important than ever.