
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Introduction 
The technique of Operational Modal Analysis, or often 
called Ambient Modal Analysis is applied here. This 
technique allows a determination of the inherent 
properties of the mechanical structure (Resonance 
frequencies, Damping Ratios, Mode Patterns), by only 
measuring the response of the structure, without using 
artificial excitations. This technique has been widely and 
successfully used in civil engineering structures 
(buildings, bridges, platforms, towers) where the natural 
excitation of the wind is typically used to extract modal 
parameters; but it is now more applied to mechanical 
and aerospace engineering applications (rotating 
machinery, on-road testing or in-flight testing)[1], [2], [3]. The 
enormous advantage of this technique is that it provides 
a modal model under operating conditions, within true 
boundary conditions, and actual force levels. Another 
advantage of the technique is that it provides a modal 
model in-situ, i.e. without removing parts under test or 
affecting the daily use of the machine. To obtain all 
modal contribution in the structure, the excitation should 
be broadband (having a relevant contribution through 
the entire frequency of interest). Practically, this would 
correspond to running up an engine or modifying the 
frequency of excitation, in cases where loading 
frequencies can be modified [4], [5], [6] .  
Since it is an in-situ type measurement, the art of 
Operational Modal Analysis is then to distinguish real 
structural behavior, from noise and excitation 
contributions (harmonics, noise or unstable modes, 
rigid body motion). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The measurements were taken using the Brüel & Kjær 
PULSETM Multi-analyzer system, and the Modal Test 
ConsultantTM (Type 7753) to create the geometry, 
assign the measurement points, and capture the data. 
The analysis was then performed using the Brüel & 
Kjær Operational Modal AnalysisTM software (Type 
7760), where all the advanced signal processing and 
modal extraction procedure was performed. 
Multiple test configurations were performed on a 
rectangular plate structure, 29cm×25cm resting on a 
foam pad, to simulate free-free boundary conditions: 
 
• Input/Output Modal Analysis using impact excitation, 
MDOF frequency domain curvefitting. 
• Ambient Response Modal Analysis using Acoustical 
Excitation. 
• Ambient Response Modal Analysis using hand-
tapping vibrational excitation. 
 
For Ambient Response test configurations, the modal 
parameters are extracted using a nonparametric 
technique EFDD (Enhanced Frequency Domain 
Decomposition), and a parametric technique SSI 
(Stochastic Subspace Identification) based on raw time 
data. 
 
Mobility Testing: Input/Output Modal Analysis 
An Impact test was performed on a structure, where a 
single-axis accelerometer was kept at a certain location, 
and the structure was impacted at different points 
(DOF’s). The data was acquired through an FFT 
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analyzer, set on linear averaging mode, with a 
maximum frequency of analysis of 1.6 kHz, and 1600 
lines. 
 
The {Y} vector being the output of the system, and {X} the 
input, the mechanical system response is written in the 
following as follows, 
 

{ } [ ]{ }XHY =  
 
In that test configuration, one row of the Transfer 
function matrix was measured, which allows for the 
complete determination of modal parameters. The 
response was measured by a fixed accelerometer, and 
the force was applied by an impact hammer at all 
locations (Figure (1), and Figure (2)). 
 
 
 

 

Figure 1-Transfer function matrix 

 
 
 
 

 

Figure 2-Impact testing procedure 

 
 
The frequency, damping and residue values were 
determined using the global polynomial technique [7] 
(Multi Degree of Freedom Curvefitting technique). This 
technique performs a global curvefitting in the frequency 
domain on the sets of FRF’s. In that technique, the 
calculation estimated 6 modes using least square error 

fit on the characteristic polynomial that contains all the 
modal information (excluding the first rigid body mode). 
 
Figure (3) shows the Magnitude of the Frequency 
Response Functions and a stability diagram for the 
modes estimated by the Global curvefitting technique. 
 

 

Figure 3-Sets of FRF's and Stability diagram 

 
 
 
Table (1) shows the results obtained by the curvefitter, 
and lists the modal parameters of the first physical 
modes. 
 
 
 

Mode Frequency 
(Hz) 

Damping 
(%) 

Residue 
(m/s2)/N.s 

(1,1) 354 1.02 5.9E3 
(2, 0) 495 0.913 2.36E3 
(0,2) 725 0.405 6.96E3 
(2,1) 880 0.288 11.5E3 
(1,2) 986 0.255 4.55E3 
(3,0) 1450 0.398 12E3 

 
Table 1-Result table for mobility testing. 

 
 
Figure (4) shows the deformation pattern obtained for 
the first bending mode of the structure. 
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Figure 4- (2, 0) First Flexural Mode 

 
Operational Modal Analysis 
Measurement Procedure 
 
2 ambient response tests were performed, one using 
acoustic excitation, and the other vibration excitation. In 
both cases 4 accelerometers were used. One was kept 
at a fixed location as a reference for phase 
determination, and the other ones roved along the 
different Degrees of Freedom on the structure. 
 
The reference accelerometer was kept at a well-chosen 
point in the plate, and all the measurements were 
performed on the 36 DOF’s. The selection of the 
reference point is very important to the results obtained. 
This reference point has to be placed such that all 
modes contribute well to the reference signal point.  
Each data set is then composed of the Reference 
accelerometer signal, and the 3 accelerometers 
measuring the response at the specified Degrees of 
Freedom. A total of 12 data sets were then performed 
on the plate. The raw time data was captured by a “Time 
Capture Analyzer” for each measurement set. A pre-test 
measurement indicated that the lowest frequency of 
interest was about 350Hz. In that case only 2 seconds 
of data capture would be enough to represent more 
than 500 cycles of the lowest frequency of interest. A 
Short Time Fourier Transform (STFT) analysis that 
provides a Time-Frequency representation of all the 
responses captured, and already gives an good idea 
about the different modes being excited in the structure. 
The STFT analysis is performed by a traveling FFT (Fast 
Fourier Transform) window, with user-defined 
parameters.  
All the raw time data, the geometry, and the series of 
measurements are then directly exported from the data 
acquisition system to the Operational Modal Analysis 

curve-fitter for signal processing calculations, and 
modal extraction.  
 
 
 
Signal Processing and Frequency Decomposition 
Preliminary Signal Processing 
 
The first step of the analysis is to perform a Discrete 
Fourier Transform (DFT) on the raw time data, to obtain 
the Power Spectral Density Matrices that will contain all 
the frequency information. The excitation being broad-
band and having a continuous type of spectrum, the 
best frequency descriptor is the Power Spectral Density 
(in units2/Hz), that normalizes the measurement with 
respect to the Bandwidth of the frequency analyzing filter 
(FFT). 
 
The analysis is performed by specifying the order of 
decimation (fraction of the original sampling frequency), 
and the number of spectral lines for the Fourier 
analysis. The software has the capability of applying a 
filter (bandpass, bandstop, highpass, or lowpass) on 
the data to remove unwanted components that may 
obscure any curvefitting process in the analysis. No 
decimation process was chosen since a proper 
frequency range was already set based on the pretest  
The spectral estimation was performed using the 
modified averaged periodogram method (Welch’s 
technique) with an overlap of 66.7 %, and a Hanning 
weighting function. This ensures that all data are 
equally weighted in the averaging process and 
minimizes leakage and picket fence effects. The Welch 
method performs a splitting of the time series, and then 
an overlap of the windowed segments, before averaging 
them all together. This technique minimizes the spectral 
noise, and artifacts effects. Considering the averaged 
spectrum (for frequency Peak-Picking) will reduce any 
ambiguity in the interpretation of the signal (possible 
misinterpretation of spectral components). 
 
For all the series of measurements, the Spectral 
Density Matrices are then calculated. The size of the 
matrix is n*n, n being the number of transducers (4 in 
this case-4 measured DOF’s). In this example 12 
matrices (of a size 4*4) were calculated for each 
frequency. Each element of those matrices is a Spectral 
Density function. The diagonal elements of the matrix 
are the Magnitude of the Spectral Densities between a 
response and itself (Power Spectral Density). The off-
diagonal elements are the Cross Spectral Densities 
between the 4 Responses. All those matrices are 
Hermitian (they are symmetric, and have complex 
conjugate elements around the diagonal).  
 



 

Each matrix is expressed in terms of Power and Cross-
Spectral densities as follows, the index i representing 
the Spectral Density Matrix for the measurement set i: 
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PSD(jω) denotes the Power Spectral Density (Magnitude 
of the Auto Spectral Density) and CSD(jω) the Cross 
Spectral Density. Since the matrices calculated are 
Hermitian, we have   
 

qpjCSDjCSD qppq ≠= ),()( * ωω             
 

The ‘*’ symbol denotes a complex conjugate value. The 
PSDpp (jω) are all real valued elements, and the CSDpq 
(jω) take complex values, carrying the phase information 
between the measurement and the reference Degree of 
Freedom. 
 
Frequency Domain Decomposition theory background 
 
The Frequency Domain Decomposition (FDD) is an 
extension of the Basic Frequency Domain (BFD) 
technique, or more often called the Peak-Picking 
technique. This approach uses the fact that modes can 
be estimated from the spectral densities calculated, in 
the condition of a white noise input, and a lightly 
damped structure. It is a non-parametric technique that 
estimates the modal parameters directly from signal 
processing calculations. 
 
The FDD technique estimates the modes using a 
Singular Value Decomposition (SVD) of each of the 
Spectral Density matrix. This decomposition 
corresponds to a Single Degree of Freedom (SDOF) 
identification of the system for each singular value.  
 
The relationship between the input x(t), and the output 
y(t) can be written in the following form  [8]: 
 

[ ] [ ] [ ][ ] T
xxyy jHjGjHjG )()()()( * ωωωω =  ,       

 
where Gxx (jω) is the input Power Spectral Density matrix, 
that turns out to be constant in the case of a stationary 
zero mean white noise input. This constant  will be 
called C in the rest of the mathematical derivation. Gyy 
(jω) is the output PSD matrix, and H(jω) is the Frequency 
Response function (FRF) matrix. As seen in equation 
(4), the output Gyy will be highly sensitive to the input 
constant C. The rest of the equation derivations and 

single degree of freedom identification will provide 
relevant results, only by assuming that the input is 
effectively represented by a constant value (mean 
Gaussian). It is therefore important to realize how this 
input assumption will be crucial to the technique. 
 
The FRF matrix can be written in a typical partial fraction 
form (used in classical Modal analysis), in terms of 
poles and residues 
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with 
 

dkkk jωσλ +−= ,        
 
 
m being the total number of modes, λk being the pole of 
the kth mode, σk the modal damping and ωdk the damped 
natural frequency of the kth mode: 
 

2
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ζk being the critical damping and ω0k the undamped 
natural frequency, both for the mode k. 
 
[Rk] is called the residue matrix and is expressed in an 
outer product form: 
 

[ ] T
kkkR γψ= ,        

 
where ψk is the mode shape, γk the modal participation 
vector. All those parameters are specified for the kth 
mode. 
 
The transfer function matrix [H] is symmetric, and an 
element Hpq(jω) of this matrix is then written in terms of 
the component rkpq(jω) of the residue matrix as follows: 
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Using the expression (4) for the matrix Gyy, and the 
Heaviside partial fraction theorem for polynomial 
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expansions, we obtain the following expression for the 
matrix output PSD matrix G: 
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where [Ak] is the kth residue matrix of the matrix [Gyy]. The 
matrix Gxx is assumed to be a constant value C, since 
the excitations signals are assumed to be uncorrelated 
zero mean white noise in all the measured DOF’s. This 
matrix is Hermitian and is described in the form: 
 

[ ] [ ] [ ] [ ]
sk

T
s

m

s sk

H
s

kk
RR

CRA
λλλλ −−

+
−−

= ∑
=1

*
        

 
The contribution of the residue has the following 
expression: 
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Considering a light damping model, we have the 
following relationship: 
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Where dk is a scalar constant. 
 
The contribution of the modes at a particular frequency 
is limited to a finite number (usually 1 or 2). The 
response spectral density matrix can then be written as 
the following final form: 
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where Sub(ω) is the set of modes that contribute at the 
particular frequency. 
 
This final form of the matrix is then decomposed into a 
set of singular values, and singular vectors, using the 
SVD technique (Singular Value Decomposition). This 
decomposition is performed to identify Single Degree of 
Freedom Models to the problem. 
 

Singular Value Decomposition 
The Singular Value Decomposition of an m*n complex 
matrix A is the following factorization: 
 

HVUA Σ=                        
 

Where U and V are unitary, S is a diagonal matrix that 
contains the real singular values.  
 

),.......,( 1 rssdiag=Σ                  
 

),min( nmr =                    
 
The superscript H on the matrix V denotes a hermitian 
transformation (Transpose and complex conjugate). In 
the case of real valued matrices, the V matrix is only 
transposed. The si elements in the matrix S are called 
the singular values, and their following singular vectors 
are contained in the matrices U and V.  
 
This singular value decomposition is performed for 
each of the matrices at each frequency, and for each 
measurement (Figure 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5-Singular Value Decomposition of the Spectral 
Density Matrix at each frequency 

 
 

The spectral density matrix is then approximated to the 
following expression after SVD decomposition: 
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with [ ] [ ] [ ]IH =ΦΦ     ,   
 
Σ being the singular value matrix, and Φ  the singular 
vectors unitary matrix: 
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The number of non-zero elements in the diagonal of the 
Singular matrix corresponds to the rank of each spectral 
density matrix. The singular vectors correspond to an 
estimation of the Mode Shapes, and the corresponding 
singular values are the Spectral Densities of the SDOF 
system expressed in equation (15). 

 
This technique allows the identification of possible 
coupled modes that are often indiscernible as they 
appear on the Spectral Density Functions. If only one 
mode is dominating at a particular frequency, then only 
one singular value will be dominating at this frequency. 
In the case of close or repeated modes, there will be as 
many dominating singular values as there are close or 
repeated modes.  
 
Each of the SDOF systems obtained by the Singular 
Value Decomposition, allows us to identify the natural 
frequency, and mode shape (unscaled), at a particular 
peak. Using the Operational Modal Analysis software, 
we perform the Peak-Picking technique (similar to the 
Quadrature-Picking in classical modal analysis), for 
each resonance, on the average of the normalized 
singular values for all data sets. 
 
It is also possible to obtain damping characteristics of 
each mode and more precise resonance frequencies 
by using the Enhanced Frequency Domain 
Decomposition, based on the determination of the 
correlation functions. 
 
Enhanced Frequency Domain Decomposition (EFDD)-
Determination of damping ratios 
 

The Enhanced FDD technique allows extracting the 
resonance frequency and the damping of a particular 
mode by computing the auto, and cross-correlation 
functions. The SDOF Power Spectral Density function 
identified around a peak of resonance, is taken back to 
the time domain using the Inverse Discrete Fourier 
Transform (IDFT). The resonance frequency is obtained 
by determining the zero crossing times, and the 
damping by the logarithmic decrement of the 
corresponding SDOF normalized auto correlation 
function. 
 
The free-decay time domain function (that is the 
correlation function of the SDOF system) is used to 
estimate the damping for the mode k: 
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where r0k is the initial value of the correlation function, 
and rpk the pth extrema. The critical damping ratio for the 
mode k, is obtained by the formula: 
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The damped natural frequency is obtained by linear 
regression on the crossing times corresponding to the 
extrema of the correlation function. The undamped 
natural frequency for the mode k is then: 
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Both parameters and an improved version of the mode 
shapes are estimated from the SDOF Bell functions. 
The SDOF Bell function is estimated using the mode 
determined by the previous FDD peak-picking. The latter 
being used as a reference vector in a correlation 
analysis based on the Modal Assurance Criteria (MAC). 
A MAC value is computed between the reference FDD 
vector and a singular vector for a particular frequency 
region. The MAC value describes the degree of 
correlation between 2 modes (it takes a value between 
0 and 1) and is defined as follows for 2 vectors Φ  and 
Ψ: 
 
 

{ } { }( )
{ } { }
{ } { }ΨΦ

ΨΦ
=ΨΦ

.
,

2*

MAC
      

(19) 

(20) 

(21) 

(22) 

(23) 

(25) 

(24) 

(26) 



 

If the largest MAC value of this vector is above a user-
specified MAC Rejection Level, the corresponding 
singular value is included in the description of the SDOF 
Spectral Bell function. The lower this MAC Rejection 
Level is, the larger the number of singular values 
included in the identification of the SDOF Bell function 
will be. A good compromise value for this rejection 
criteria is 0.9. An average value of the singular vector 
(weighted by the singular values) is then obtained.  
 
SSI parametric technique 
 
The FDD and EFDD techniques can be correlated with a 
parametric technique called the Stochastic Subspace 
Identification (SSI) technique [9], [10], [11]. This technique 
has been widely used in the domain of structural 
mechanics, and allows the user to compare results 
obtained from Signal processing calculations, and from 
time-domain model parameterization. The SSI 
technique involves the use of statistics, optimal 
prediction, linear system theory and stochastic 
processes.  
 
The dynamic system is expressed in terms of inertial 
(mass), dissipative (damping), and restoring (stiffness) 
matrices. It is written in terms of a linear set of 
differential equations of the type: 
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By rewriting the equations of motion in a classical state-
space formulation often used in Modern Control theory, 
the dynamic system is expressed as follows. 
 

[ ] ttt wxAx +=+1  
 

[ ] ttt vxCy +=  
 
 
where xt represents the Kalman sequences found by a 
orthogonal-projection technique. The first equation 
(state equation) represents the dynamic behavior of the 
physical system, and the second equation (observation 
equation) is called the output equation. The measured 
response yt is generated by 2 stochastic processes wt 
and vt that represent the unmeasured and unknown 
noise processes. The matrix A is called the state matrix, 
and the matrix C is called the observation matrix.  
 
This technique uses a mathematical framework based 
on stochastic processes. A stochastic process is a 
mathematical modelisation of a physical phenomenon 
that is not deterministic, and is somehow not 

predictable from the knowledge of the present state of 
the system.  
The intrinsic randomness of the operational modal 
analysis technique makes the stochastic techniques 
very suitable for modeling the physical system. The SSI 
technique works on the raw time data, and tries to fit a 
model to the data captured from the responses at the 
Degrees of Freedom.  
 
The system represented in (27) can be rewritten in the 
following form  
 
 
 

[ ] [ ] ttt eKxAx +=+ ˆˆ 1  
 

[ ] ttt exCy += ˆ  
 
The K-matrix is called the non-steady state Kalman gain 
(covariance matrix), and et is called the innovation 
Gaussian process. xt and xt+1 are the corresponding 
prediction state vectors for the equation (28). 
 
The idea behind the SSI technique is to be able to 
represent the system in equation (29) in the frequency 
domain, in terms of a Transfer Function that involves the 
matrix A, C, K, and the Identity matrix. The eigenvalue 
decomposition of the matrix A leads to a representation 
of the transfer function matrix, that contains the modal 
parameters (natural frequencies, and damping ratios). 
The mode shapes are extracted from the eigenvectors 
of the matrix A, and the Observation matrix C.  
  
Using equation (29) a modal decomposition can be 
performed on the matrix A as follows: 
 

[ ] 1−= VVA iµ  
 
Introducing a new state vector 

tt xVz ˆ1−= , the equation can be written as: 
 

[ ] ttit ezz Ψ+=+ µ1  
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where [ ]iµ  is a diagonal matrix holding the discrete 
poles related (eigenvalues: modal frequencies and 
damping) to the continuous time poles by 

))1(2exp(( 2 Tif iiii ςςπµ −±−= , T being the 

sampling interval, and where the matrix Φ is holding 
the left hand mode shapes (physical, scaled mode 

shapes) and the matrix Ψ is holding the right hand 
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mode shapes (non-physical mode shapes).  The right 
hand mode shapes are also referred to as the initial 
modal amplitudes. 
 
The stochastic subspace identification technique 
performs a least square approximation of an estimation 
of the matrices A and C.  
 
 

              
 

Figure 6 - Least Square optimal estimation 
 
 
The estimation of the state vectors is done using a 
singular value decomposition and introducing 
Weighting vectors W1 and W2: 
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O being the compressed form of the input format matrix, 
which is a mathematically manipulated Hankel matrix. 
There is one Hankel matrix for every data set (Block 
Hankel matrix). 
Using a certain state-space dimension, the algorithm 
will estimate physical and non-physical modes. 
Physical modes are the ones that are repeated for 
multiple Model orders. 
 
Results from Data Acquisition 
Acoustic Excitation 
 
The structure was excited by a sound source located 
close to it. The sound source was chosen to be uni-
directional in order not to favoratize a certain direction in 
the direction of excitation.  
 
The signal generated with the source was chosen to be 
random in order to excite a broad variety of modes in the 
structure, and to have relevant modal contribution at all 
frequencies. Figure (8) shows the Autospectrum of the 
sound measured close by the plate structure, and we 
can see that energy was present in the entire frequency 
spectrum. 
 

 

 

Figure 7- Acoustic excitation set-up 
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Figure 8- 1/3 Octave Autospectrum of microphone 
signal measured nearby the structure (Spectrum and 

Overall bands) 

 
 
Figure (9) shows the result obtained by performing a 
Peak-Picking on the Average values of the Singular 
Values. 
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Figure 9-Peak Picking technique 

 
The Stochastic Subspace technique was also applied, 
and a stability diagram was obtained (Figure (10)). All 
the modes were estimated with a high-degree of 
stability. The calculation for the stochastic process was 
performed using the Principal Component algorithms, 
where the system matrices are determined from a 
Singular Value Decomposition.  
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Figure 10- Stochastic stability diagram 

 
Random Hand-tapping excitation 
 
In order to compare results from acoustical and 
vibrational excitation, the OMA technique was applied in 
the case of a mechanical excitation, provided by a 
“hand-tapping” of the structure. The sets of data were 
acquired exactly the same way the acoustic technique 
was done, and the EFDD and SSI techniques were 
applied. 
 
 

 

 

Figure 11- Vibrational Excitation: Hand-tapping 

 
Figure(12) shows the Peak-Picking performed using the 
Frequency Domain Decomposition technique. 
Figure(13) is the results of the stabilization diagram for 
the Principal Component algorithm obtained with a 
state-space dimension of 40. 
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Figure 12-FDD Peak Picking 
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Figure 13-Stochastic results 

 
 
Conclusions and Final Results 
 
A comparison between the 3 different techniques is 
made for the modal results: resonance frequencies, 

damping ratio, as well as modal deformation. A good 
estimation of modal parameters for the plate was 
performed using Operational Modal Analysis, for the 
acoustic as well as for the vibrational excitation. The first 
torsional mode was not detected by the OMA acoustic 
technique due to insufficient structural energy excited 
around that frequency. For the other modes, the results 
were fairly close to the input/output technique. The 
Operational Modal Analysis technique reveals itself to 
be a valuable tool for the determination of the modal 
parameters of a structure when the input forces cannot 
be controlled or measured. The challenge of the 
technique is to be able to separate real physical 
deformation from forcing components, harmonics, or 
uncorrelated noise present in the analysis. 
 
 
 
 
 
 
 
 
 

  
 

Table 2- Comparison Input/Output with non-Parametric technique (Enhanced FDD)
 

Input/Output  Modal   Analysis Non-Parametric Operational   Modal Analysis  
  Excitation:  Acoustic Excitation: Vibrational 

Frequency Hz Damping % Frequency Hz Damping % Frequency Hz Damping % 
354 1.02 Not physical Not physical 373.3 0.8 
495 0.913 492.5 1.003 486.8 0.65 
725 0.405 726.4 0.75 712.1 0.66 
880 0.288 882.6 0.6 857.5 0.44 
986 0.255 973.5 0.53 969.7 0.4 
1450 0.398 1447 0.34 1419 0.45 

 
 
 

Table 3- Comparison Input/Output with Stochastic Parametric technique-Principal Component algorithm 
 
 

Input/Output  Modal   Analysis Parametric Operational   Modal Analysis  
  Excitation:  Acoustic Excitation: Vibrational 

Frequency Hz Damping % Frequency Hz Damping % Frequency Hz Damping % 
354 1.02 Not physical Not physical 357.4 0.61 
495 0.913 486.9 1.4 485.3 0.53 
725 0.405 729.1 1.8 713.9 0.52 
880 0.288 unstable - 866.3 0.37 
986 0.255 991.1 0.85 987.6 0.47 
1450 0.398 1444 1.1 1430 0.41 
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