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ABST ACT 
 

he spatial FFT processing used in Near-field Acoustical Holography (NAH) makes the 

ed which performs the plane-to-

rocessing, Windowing 

INTRODUCTION 
 

 plane-to-plane propagation of a sound field away from the source can be described 

ith a transfer function in the spatial frequency 

R

T
method computationally efficient, but it introduces severe spatial windowing effects, unless 
the measurement area is significantly larger than the source. 
A Statistically Optimal NAH (SONAH) method is introduc
plane calculations directly in the spatial domain. Thereby the need for a representation in the 
spatial frequency domain and for zero padding is avoided, and spatial windowing effects are 
significantly reduced.  The present paper describes the SONAH algorithm and presents some 
results from numerical simulations and practical measurements. 
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A
mathematically as a 2D spatial convolution with a propagation kernel.  A 2D spatial Fourier 
transform reduces this convolution to a simple multiplication by a transfer function. In Near-
field Acoustical Holography (NAH) the Fourier transform is implemented as a spatial FFT of 
the pressure data measured over a finite area. 
The use of spatial FFT and multiplication w
domain is computationally very efficient, but it introduces some errors. The discrete 
representation in the spatial frequency domain introduces periodic replica in the spatial 



domain, causing “wrap-around errors” in the calculation plane. A standard way of pushing the 
replica away from the real measurement area is to use zero padding, which will however 
introduce a sharp spatial window. Such a window causes spectral leakage in the spatial 
frequency domain, which will show up as “window effects” in the calculation plane, [1]. As a 
consequence, the measurement area must be significantly larger than the source to avoid very 
disturbing window effects. This is a problem for example in connection with Time Domain 
NAH, [2], and Real-time NAH, which do not allow the synthesis of a large measurement area 
through scanning.  The new Statistically Optimal NAH (SONAH) method performs the 
plane-to-plane transformation directly in the spatial domain rather than going via the spatial 
frequency domain, [3]. 

 
THEORY OF SONAH 

 
The derivation of the SONAH algorithm given in this 

nd pressure 

section is an extension of the derivation given in 
reference [4].  It is different from and probably 
simpler than the one given in reference [3]. 
We consider a complex, time-harmonic sou
field ( ) ( , , )p p x y z=r  with frequency f and wave 
number 2k cω π λ  where 2= = fω π=  is the 
angular f  propagat of so nd 
and λ is the wavelength.  For the following 
description we shall assume that the half space z d≥ − is
the sources of the sound field are for z d

requency, c is the ed uion spe

< − as shown in
are performed in the plane z = 0. 
From for example the theory of NAH, [1], it is well-kno
can be written as an infinite sum of plane propagating and
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Figure 1.  Geometry 
ogeneous, i.e. 
 Figure 1. The array measurements 
 source free and hom
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lane Wave Spectrum, 
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s, and the z-component kz of the 3D 
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Notice that the elementary wave functions ΦK have identical amplitude equal to one on the 
source plane z d= − . The evanescent wave functions outside the Radiation Circle, i.e. for 

k>K , are decaying exponentially away from the source.  Since equation (1) has the form 
verse spatial Fourier transform, the Plane Wave Spectrum P is a representation of the 

sound field in the spatial frequency domain. 
We assume that the complex sound press

of an in

ure  has been measured at N positions ( )np r
( , ,0)n n nx y≡r  on the measurement plane.  We wish to estimate the pressure ( )p r  at an 

tion ( , , )arbitrary posi x y z≡r  in the source free region z d≥ − , and we wish to estimate 
( )p r  as a linear co of the measured sound pressu  ( )np r : 

N

mbination re data

 r  (4) 

In order to determine the estimation coefficients cn we require formula (4) to provide good 

(5) 

Solution of this set of linear equations in a least squares sense means that we obtain the 

ectors: 

1
( ) ( ) ( )n n

n
p c p

=

≈ ⋅∑r r

estimation for a finite sub-set of the elementary wave functions of equation (2): 

 ( ) ( ) ( ), 1...
N

c m MΦ ≈ ⋅Φ =∑r r r  
1

m mn n
n=

K K

estimator (4) that is optimal for sound fields containing only the above function sub-set, and 
with approximately equal content of each function, i.e. with equal content of a set of spatial 
frequencies. Since all functions have amplitude equal to one on the source plane, the estimator 
is optimized for Plane Wave Spectra P, which are “white” in the source plane. 
To solve (5) in a least squares sense we arrange the quantities in matrices and v

 [ ]( ) ( ) ( ) ( ) ( )c   ≡ Φ ≡ Φ ≡A r α r r c r r  
m mn n   K K (6) 

This allows (5) to be written as follows 
(7) 

he regularized least s
(8) 

here  is the conjugate transp
at

 ( ) ( )≈α r Ac r  
T quares solution to (7) is 
 † 2 1 †( ) ( ) ( )θ −= +c r A A I A α r  
w ose of A,  I is a unit diagonal matrix and θ is a †A
regulariz ion parameter.  We now let the number M of elementary wave functions used to 
determine the estimation coefficients increase towards infinity, and we let the distribution of 
these wave functions in the K domain approach a continuous distribution: 

 † * *1( ) ( ) ( ) ( ) d  Φ → Φ Φ∑  (9) A A r r r r K2m mn n n nmnn
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ere, * represents complex conjugate and the integration is over the 2D 
domain.  Notice that the switch in (9-10) to integral representation introduces a re-scaling of 

ent 

H plane wave spectrum 

the matrix A†A, which in turn necessitates a re-scaling of the regularization parameter θ. 
The matrix A†A can be seen as an Auto-correlation matrix for the set of measurement 
positions, while A†α can be seen as containing cross correlations between the measurem
points and the calculation position. 

The integrals in equations (9) and (10) can be reduced analytically by conversion of K to 

polar co-ordinates: ( , ) (k k= =K cos( ), sin( ))x y K Kψ ψ

( , )x y≡R  and let Rn be the xy-component of rn.  From (9) and (2) we get 
* ( )( )†

2 2
jj k k d
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K R R
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. We introduce the xy-position vector 

 *1 1( ) ( ) n nz zd e e  = Φ Φ = ∫∫ ∫∫A A r r K Kd  (11) 

nd further by polar angle integration and use of (3): 
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where 

  ∫A A

nn n nR ′ ′≡ −R R .  Equation (10) can be treated in a similar way. 

, all diagonal † re identical because 
 for all n, and the value can be shown to be: 

Clearly elements of the Autocorrelation matrix A A a
0nnR =

 †
2

11
2( )nn kd

  = +

o solve for the vector c of p
regularization parameter 

 A A  (13) 

T rediction coefficients in equation (8), we need to choose the 
θ . It is shown in reference [3] that under some assumptions the 

optimal value is given by: 

 2 10
2

11 10
2( )

SNR

kd
θ − 

 
 (14) ⋅

w l-to-Noise-Ratio in Decibel for the microphone signals, 

= + 

here SNR is the effective Signa
taking into account all sources of error. 
We can now estimate the pressure at the position r through use of equation (4):   



 T T † 2 1 †( ) ( ) ( ) ( ) ( ) ( )
N

p c p θ −≈ ⋅ = = +∑r r r p c r p A A I A α r  
1

n n
n=

(15) 

Here, p is a vector containing the measured pressure signals, and we have used equation (8).  
Notice that the vector T † 2 1( )θ −+p A A I  of de-correlated pressure data over the microphone 
positions needs to be ca ne time.  After that it can be used for calculation of 
the pressure at many other positions r using other cross correlation vectors A†α(r). 
The particle velocity can be obtained in the same way as a linear combination of the

lculated only o

 measured 

(16) 

where A†β is a vector of correlations between the pressure at the microphone positions and 

pressure signals.  To derive the required estimation coefficients we start with an equation 
equivalent to (5), but with the particle velocity of the elementary wave functions on the left-
hand side.  As a result, we obtain the following expression for the particle velocity: 

 T † 2 1 †( ) ( ) ( )u θ −≈ +r p A A I A β r  z

the particle velocity at the calculation position.  Notice that the vector T † 2 1( )θ −+p A A I  of 
de-correlated measured pressure data from equation (15) applies also in eq
Based on the sound pressure and the particle velocity, the sound intensity can be calcula

uation (16). 
ted. 

NUMERICAL SIMULATIONS 
 

 set of measurements was simulated with the set-up 

investigated.  For this, the central 

 

A
illustrated in Figure 2. Here, the grid represents an 8x8 
element microphone array with 3 cm grid spacing, the 
microphones being at the corners of the grid. Two coherent 
in-phase monopole point sources of equal strength are 
positioned 6 cm below the array, i.e. at a distance that is two 
times the grid spacing. The positions of the point sources are 
indicated in Figure 2 by black dots. Clearly, the array does 
not cover the entire source area, so NAH will introduce 
severe spatial window effects. SONAH calculations were 
performed in the measurement plane (z=0) and in a plane 

half way between the source plane and the measurement plane (z=-3cm). The calculation grid 
had the same geometry as the measurement grid. The regularization parameter in equation (8) 
was set according to an SNR equal to 40 dB, and the source distance d was set to 6 cm. 
First, the accuracy of the particle velocity estimation was 

 
Figure 2.  Microphone grid
and point sources. The grid
spacing is 3 cm and the two
coherent point sources are 6 cm
below the array. The left source
is 6 cm to the left of the array. 

and the peripheral sections of the calculation area were considered separately, the peripheral 
section covering the 28 grid positions along the edges, and the central section covering the 



rest. For each section/area the relative average error level was calculated from the formula: 
2trueu u 

10 2true
10 log i i

err

i

L
u

 = ⋅
 
 ∑

 
−



∑  (17) 

where the summations are both over the relevant section. A consequence of this definition is 
 that a section with a low level of particle velocity will easier exhibit a high relative error level. 

Figure 3 shows the relative error levels in the measurement plane for the central area, for the 
edge and for the total area. For the central area the average relative error is seen to be lower 
than –18dB over the entire calculated frequency range from 500 Hz to 5 kHz. 
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Figure 3.  Relative average error level for SONAH calculation of particle velocity in the 
measurement plane, z=0. 
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Figure 4.  Relative average error level for SONAH calculation of particle velocity in the calculation 
plane at z = -3cm. 



Figure 4 shows the corresponding data for the calculation plane at z = -3cm. Clearly, the error 
level has increased significantly, in particular along the edges, where the true particle velocity 

p to around 

(z-component) is lower than before. The average error level over the central section/area is 
still better than around –18 dB up to 3.3 kHz and better than –12 dB up to 5 kHz. 
Figure 5 shows the Sound Power for the central and for the full sections of the calculation 
area at z = -3cm.  For both sections the sound power error is less than 0.2 dB u
3.5 kHz.  Above that frequency the estimated power slowly gets too small, probably because 
the number of microphones is too small to uniquely determine general sound fields in that 
frequency range. 
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Figure 5. True and estimated sound power for the central and the full sections of the calculation area 
at z = -3cm. 

PRACTICAL MEASUREMENT 

The SONAH calculation me l & Kjær’s Non-Stationary 
TSF software package, which is an implementation of Time Domain acoustical holography.  

 

 
thod has been implemented in Brüe

S
Here, time histories of sound pressure must be measured simultaneously at all measurement 
positions. The holography calculations are performed through an FFT transform of the full 
time-section to be studied to the frequency domain, followed by NAH or SONAH calculation 
for each FFT line and finally inverse FFT transform back to the time domain, [2].  In order to 
reduce the calculation time for the SONAH calculations, matrix interpolation was performed 
along the frequency axis on the correlation matrices A†A, A†α and A†β. With a few further 
efforts to reduce computation time, the SONAH calculations took only a few times longer 
than traditional NAH (based on spatial FFT processing) for the applied 120-element array. 



The example to be presented here was a measurement on the side of the steel track  
of a large Caterpillar track-type tractor. The main sources of sound radiation were around 

          
the 

areas where the track passes over the sprocket and around the rear and front idlers. We took a 
measurement with a 10 cm spaced 10x12 element array positioned over a small Carrier Roller 
with a relatively low level of noise radiation.  Figure 6 shows a picture of the measurement 
area and plots of the A-weighted, time-averaged (RMS) particle velocity maps for the 
frequency band 205-1454 Hz (1/12 octave bands).  Clearly, SONAH has a much better 
ability to suppress spatial window effects than the traditional NAH technique. 
 

 

SUMMARY 

Measurement area NAH calculation SONAH calculation 
Figure 6.  Averaged Particle Velocity maps for the 1/12-octave bands 205-1454 Hz, A-weighted. 

 

The new Statistically Optimal NAH (S d has been introduced.  This method 
erforms the plane-to-plane transformation directly in the spatial domain, avoiding the use of 
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ONAH) metho
p
spatial FFT.  Careful numerical programming ensures calculation times only a few times 
longer than FFT based NAH. Numerical simulations and practical results demonstrate that 
SONAH opens up a possibility to perform acoustical holography measurements with an array 
that is smaller than the source, and still keep errors at an acceptable level. 
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