Automotive tire/road sound quality

G. Cerrato Jay (a), T. Freeman (a), C. Raglin (b) and T. Carson (c)

a Sound Answers Inc, 4856 Alton Drive, Suite 100, Troy, MI 48085, United States of America
b Cooper Tire & Rubber Company, 701 Lima Avenue, Findlay, OH 45840, United States of America
c IAC North America, 47785 W Anchor CT, Plymouth, MI 48170, United States of America
gabriella.cerratojay@soundanswers.net
Vehicle Harmony Elements

Enjoyment Visual Appeal

Road Noise
- Annoyance
- Speech Intelligibility

Comfort
(level of performance related to senses)

User Friendliness Convenience

SOUND answers
PERCEPTION of ROAD NOISE

1) 600 to 1200 Hz range (Tire band)

2) Low-frequency tones (150 to 250 Hz)

Tire Acoustic Cavity Modes and Pitch harmonics
Road Noise Contributions

Tones = \(f(\text{Tire}, \text{NR}_{\text{vehicle}}) \)

- **STRUCTUREBORNE DOMINANT**
- **AIRBORNE DOMINANT**

SOUND answers
The perspective of the Aftermarket Tire Manufacturer

• **Background**
 – Current component test does not correlate to on-road SQ evaluation of tire noise (detectability/annoyance)
 – Vehicle not always available to tire OEM

• **Need**
 – Improved tire-only test that can be used to predict on-the-road SQ rating of set of tires

• **Solution**

 ![Diagram](image)

 - SYNTHESIS
 - Tire-to-vehicle (vehicle class-specific)

 - ROAD

 - SINGLE TIRE TEST FIXTURE

 - SOUND answers
ROAD NOISE ANNOYANCE/DETECTABILITY METRIC

SQ Rating (Loudness, Spectral Balance, Tonality)

SQ Rating

Tires

SOUND answers
The final step in the synthesis process is to add in the original parts produced during decomposition.
The perspective of the Vehicle Manufacturer

• **Background**
 – Vehicle not competitive for Road noise

• **Need**
 – Reduce in-vehicle contribution from tire inputs
 – Improve speech intelligibility between front and rear seats

• **Solution**
 – Developed countermeasures for road noise
 – Developed separate targets for:
 • road noise
 • speech transmission in lab (using Loudness inputs to RASTI calculation)
Forms of Speech Corruption

• **Masking**
 Noise from all external sources (tires, powertrain, wind) coming to the cabin interior from all paths (structure- and airborne)

 ![Original modulation](image1)
 +
 ![Corruption by background noise](image2)
 =
 ![Resulting lower modulation at listener](image3)

 Tests on the road

• **Reverberation**
 Depends on the absorption of the interior acoustic package

 ![Original modulation](image4)
 +
 ![Corruption by reverberation](image5)
 =
 ![Resulting lower modulation at listener](image6)

 Tests in the lab following RASTI procedure
Measures of Speech Intelligibility

• Articulation Index (AI)
 – uses third-octave band levels (from 160 to 6300 Hz) of background noise spectrum, each weighed by a factor which is minimum at the extremes of the frequency range and maximum at 1600Hz -> depends on background noise only

• Speech Transmission Index (STI) and Room Acoustics Transmission Index (RASTI)
 – Speech is simulated by a repeatable, synthesized signal which has the same characteristics of speech with regard to intelligibility (i.e., frequency content between 125 Hz and 8kHz and amplitude modulation between 1 and 16 Hz) and measures the loss of modulation from source to receiver -> depends on boundary conditions only
Speech Intelligibility Investigation

1. On the road:
 - Subjective evaluation in vehicle using pre-recorded sentences played back from “talking heads”

2. In-lab
 - Subjective evaluation of played back sentences recorded on the road
 - RASTI-type tests using Loudness inputs

Talking Head in front seat
Talking Head in rear seat
Speech Transmission Index tests in lab

- Subset of RASTI-like signals generated:
 - 500Hz, 1kHz and 2 kHz center frequency bandpassed noise
 - 1, 2, 4 and 8 Hz amplitude modulation
- Signals generated with “talking” head (source) and recorded at other two binaural heads (“receivers”)
- Engine OFF and condition of minimum background noise

[Graph showing loudness vs. time at source]
Loss of Modulation Depth

1. Time history of excitation signal
2. Loudness(t)

3. Modulation Depth = Peak-to-Peak of Loudness(t) of AM signal

4. Loss of Modulation = Modulation Depth(source) minus Modulation Depth(receiver)
1 Hz Modulation Depth drop comparison

“Talking head” in 1st row (passenger seat), receiver in 3rd row

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Good Vehicle</th>
<th>Bad Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>5.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1000</td>
<td>4.0</td>
<td>3.5</td>
</tr>
<tr>
<td>2000</td>
<td>3.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Conclusions

- Noticeable road noise produces:
 - Annoyance
 - Need to reduce contributions of air- and structure-borne paths from the tire
 - Loss of Speech Intelligibility
 - Need to optimize acoustic boundary conditions (reverberation) inside the vehicle

- For the tire manufacturer, the need is to develop a process to predict road noise detectability in-vehicle

- For the vehicle manufacturer, the need is to breakdown the problem in:
 1. noise/vibration transmitted from the tire
 2. reverberation (speech transmission -> speech intelligibility).