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Patch near-field acoustical holography methods like statistically optimized near-field acoustical

holography and equivalent source method are limited to relatively low frequencies, where the

average array-element spacing is less than half of the acoustic wavelength, while beamforming

provides useful resolution only at medium-to-high frequencies. With adequate array design, both

methods can be used with the same array. But for holography to provide good low-frequency

resolution, a small measurement distance is needed, whereas beamforming requires a larger

distance to limit sidelobe issues. The wideband holography method of the present paper was

developed to overcome that practical conflict. Only a single measurement is needed at a relatively

short distance and a single result is obtained covering the full frequency range. The method uses

the principles of compressed sensing: A sparse sound field representation is assumed with a chosen

set of basis functions, a measurement is taken with an irregular array, and the inverse problem is

solved with a method that enforces sparsity in the coefficient vector. Instead of using regularization

based on the 1-norm of the coefficient vector, an iterative solution procedure is used that promotes

sparsity. The iterative method is shown to provide very similar results in most cases and to be

computationally much more efficient. VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4944757]

[JM] Pages: 1508–1517

I. INTRODUCTION

Near-field acoustical holography (NAH) is based on

performing two-dimensional (2D) spatial discrete Fourier

transforms (DFT) and, therefore, the method requires a regu-

lar mesh of measurement positions. To avoid spatial aliasing

problems, the mesh spacing must be somewhat less than half

of the acoustic wavelength. In practice, this requirement sets

a serious limitation on the upper frequency limit.

Some patch NAH methods, for example, the equivalent

source method (ESM)1 and statistically optimized near-field

acoustical holography (SONAH),2,3 can work with irregular

microphone array geometries, but still require an average

array-element spacing less than half the wavelength. As

described by Hald,4 this allows the use of irregular arrays

that are actually designed for use with beamforming.

Typically, good performance with beamforming can be

achieved up to frequencies where the average array inter-

element spacing is 2–3 wavelengths. A practical issue with

such a solution is the fact that the patch NAH method

requires measurement at a small distance to provide good re-

solution at low frequencies, while beamforming requires a

medium-to-long distance to keep sidelobes at low levels. So

for optimal wideband performance, two measurements must

be taken at different distances, and separate types of process-

ing must be used with the two measurements, making it diffi-

cult to combine the results into a single result covering the

combined frequency range.

The rather new compressed sensing (CS) methods have

started making it possible to use irregular array geometries

for holography up to frequencies where the average array

inter-element spacing is significantly larger than half of the

wavelength; see, for example, Refs. 5–7. In general, CS tech-

niques allow reconstruction of a signal from sparse irregular

samples under the condition that the signal can be (approxi-

mately) represented by a sparse subset of expansion func-

tions in some domain, i.e., with the expansion coefficients of

most functions equal to zero. Typically, the number of avail-

able samples is much smaller than the number of expansion

functions, so the problem of determining the expansion coef-

ficients is severely underdetermined. To obtain the correct

solution, the solution method must enforce sparsity in the

coefficient vector. This is typically done by somehow mini-

mizing the 1-norm of the coefficient vector. In connection

with acoustical holography, a set of elementary waves or

elementary sources is used to represent the sound field in a

given three-dimensional (3D) region, and measurements are

taken with an irregular array. Chardon et al.5 used a set of

plane wave functions to represent the vibration of a planar

star-shaped plate, while Hald6,7 used a set of monopole point

sources. A key problem in basis-function selection is to

make sure that a sufficiently sparse coefficient vector can

represent the sound field with sufficient accuracy.

The present paper describes a new method called wide-

band holography (WBH), which was introduced in Refs. 6

and 7, and which is covered by a pending patent.8 The

method is similar to the generalized inverse beamforming

method published by Suzuki,9 which uses a source model in

terms of monopole and multipole point sources, and which

minimizes a cost function including the 1-norm of the coeffi-

cient vector. This minimization is performed by a special

iterative algorithm. WBH uses as source model a mesh ofa)Electronic mail: jorgen.hald@bksv.com
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monopole point sources with less than half wavelength spac-

ing, and instead of minimizing the 1-norm of the coefficient

vector to enforce sparsity, a dedicated iterative solver is used

that promotes sparsity in a different way. A main contribu-

tion of the present paper is a comparison of results between

WBH and a method that solves an optimization problem

with 1-norm minimization. The focus of the comparison is

on the reconstruction of the sound intensity pattern close to a

source surface. Section II outlines the basic theory. After an

introduction to the applied array design in Sec. III, results of

different simulated measurements are presented in Sec. IV,

and Sec. V contains results from real measurements. Finally,

Sec. VI contains a summary.

II. THEORY

Input data for patch holography processing are typically

obtained by simultaneous acquisition with an array of M
microphones, indexed by m¼ 1,2,…,M, followed by averag-

ing of the M � M element cross-power spectral matrix

between the microphones. For the subsequent description,

we arbitrarily select a single high-frequency line f with asso-

ciated cross-power matrix G. An eigenvector/eigenvalue

factorization is then performed of that Hermitian, positive-

semi-definite matrix G

G ¼ VSVH; (1)

with V being a unitary matrix with the columns containing

the eigenvectors vl, l¼ 1,2,….,M, and S a diagonal matrix

with the real non-negative eigenvalues sl on the diagonal.

Based on the factorization in Eq. (1), the principal compo-

nent vectors pl can be calculated as

pl ¼
ffiffiffiffi
sl
p

vl: (2)

Just like ESM and SONAH, the WBH algorithm is applied

independently to each of these principal components and,

subsequently, the output is added on a power basis, since the

components represent incoherent parts of the sound field. So

for the subsequent description, we consider a single principal

component, and we skip the index l, meaning that input data

are a single vector p with measured complex sound pressure

values.

WBH uses a source model in terms of a set of elemen-

tary sources with associated elementary wave functions (the

dictionary in CS terminology) and solves an inverse problem

to identify the complex amplitudes of all elementary sources.

The source model then applies for 3D reconstruction of the

sound field. Here, we will consider only the case where the

source model is a mesh of monopole point sources retracted

to be behind/inside the real/specified source surface, i.e.,

similar to the model applied in ESM.1 Figure 1(a) shows a

typical setup for patch ESM, where a planar array covers a

patch of the source surface, and a monopole source model

inside the source surface extends somewhat beyond the mea-

surement area. Figure 1(b) shows an alternative configura-

tion of the equivalent sources that avoids the need for a 3D

source surface geometry: A planar mesh of monopoles paral-

lel with the array is retracted some small distance inside the

real source surface and covers an area slightly larger than the

array.

With Ami representing the sound pressure at microphone

m due to a unit excitation of monopole number i, the require-

ment that the modeled sound pressure at microphone m must

equal the measured pressure pm can be written as

pm ¼
XI

i¼1

Amiqi: (3)

Here, I is the number of point sources, and qi, i¼ 1,2,…,I,
are the complex amplitudes of these sources. Equation (3)

can be rewritten in matrix-vector notation as

p ¼ Aq; (4)

where A is an M � I matrix containing the quantities Ami,

and q is a vector with elements qi. In CS terminology, the

matrix A is called the sensing matrix.

When doing standard patch holography calculations

using ESM, Tikhonov regularization is typically applied to

stabilize the minimization of the residual vector p-Aq. This

is done by adding a penalty proportional to the 2-norm of the

solution vector when minimizing the residual norm

Minimize
q

kp� Aqk2
2 þ h2kqk2

2: (5)

A very important property of that problem is the fact that it

has the simple analytic solution

q ¼ ½AHAþ h2I��1
AHp; (6)

where I is a unit diagonal matrix, and H represents

Hermitian transpose. A suitable value of the regularization

parameter h for given input data p can be identified auto-

matically, for example, by use of generalized cross valida-

tion (GCV); see Gomes and Hansen.10 When using a specific

irregular array well above the frequency of half wavelength

average microphone spacing, the system of linear equations

in Eq. (4) is, in general, strongly underdetermined, because

the monopole mesh must have spacing less than half of the

wavelength, i.e., much finer than the microphone grid.

During the minimization in Eq. (5), the undetermined

degrees of freedom will be used to minimize the 2-norm of

the solution vector. The consequence is a reconstructed

sound field that matches the measured pressure values at the

microphone positions, but with minimum sound pressure

elsewhere. Estimates of, for example, sound power will

FIG. 1. Illustration of two alternative setups for patch ESM.
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therefore be much too low. Another effect is ghost sources

that help focus radiation toward the microphones. This will

be illustrated in Sec. IV A by simulated measurements.

If the true source distribution is sparse (with a majority

of elements in q equal to zero), or close to sparse, the above

phenomena can be alleviated by replacing the 2-norm in the

penalty term of Eq. (5) by a 1-norm

Minimize
q

kp� Aqk2
2 þ h2kqk1; (7)

see, for example, Refs. 5 and 9. The minimization of the 1-

norm of the solution vector will have the effect of favoring

sparse solutions. Important problems related to this formula-

tion are the lack of an analytic solution and the fact that no

good tool is available to identify an optimal value of the reg-

ularization parameter h for given input data p. An equivalent

problem was solved by Chardon et al.5

Minimize
q

kqk1 subject to kp� Aqk2 � d: (8)

Here, however, the parameter d is difficult to determine. In

cases where the applied source model cannot represent the

full measured sound field (for example, due to sources out-

side the measurement region or reflections), a rather large

value of d may be needed in order that the constraint

kp� Aqk2 � d can be fulfilled. Instead of requiring a small

2-norm of the residual vector

rðqÞ � p� Aq; (9)

we can alternatively require a solution close to a minimum

of the squared residual function F

F qð Þ �
1

2
kr qð Þk2

2 ¼
1

2
kp� Aqk2

2 : (10)

Such a minimum will be characterized by the gradient vector

rF(q)

rFðqÞ ¼ �AHðp� AqÞ; (11)

having a small norm. Thus, instead of Eq. (8), we solve the

problem

Minimize
q

kqk1 subject to

krFðqÞk2 ¼ kAHðp� AqÞk2 � d: (12)

The optimization problem of Eq. (12) is convex and can

be solved by available MATLAB libraries. In the present paper,

the CVX library has been used (see Refs. 5 and 11) so the

method will just be called “CVX.” The computational

demand is, however, significantly higher than for the

Tikhonov problem in Eq. (5) because no analytic solution

exists. According to experience, a good way of defining the

parameter d in Eq. (12) is

d ¼ ekrFðq ¼ 0Þk2 ¼ ekAHpk2; (13)

where e is a small number. Its value must be chosen small

enough to guarantee that we get close to a minimum, but

large enough that we do not enforce a modeling of measure-

ment noise/errors. The requirement on the gradient norm in

Eq. (12) occurs also in the stopping criterion of the iterative

solution method implemented in WBH [see Eq. (14) below],

but only as one of several conditions that will imply

stopping.

A main idea behind the iterative WBH algorithm is to

remove/suppress the ghost sources associated with the real

sources in an iterative solution process, starting with the

strongest real sources. WBH applies a steepest descent itera-

tion to minimize the quadratic residual function F(q); see

Appendix A for details. In the first step, a number of real as

well as ghost sources will appear in q. When using irregular

array geometries, the ghost sources will in general be weaker

than the strongest real source(s). We can therefore suppress

the ghost sources by setting all components in q below a cer-

tain threshold to zero. The threshold is computed as being a

number of decibels D below the amplitude of the largest ele-

ment in q. Initially, D is set to a very small value D0, and it

is then increased during the iteration, typically by the same

number of decibels DD in every step. Application of the

algorithm to many different types of sources and the use of

several different arrays over a broad range of frequencies

has shown that D0¼ 0.1 and DD¼ 1 will work very well

in most cases. Notice that the dynamic range limitation will

gradually disappear during the iteration, so it has the role of

steering the iteration toward a sparse solution in its initial

phase. Therefore, the solution provided will, in most cases,

not be strictly sparse.

Figure 2 contains a block flowchart diagram for the iter-

ation, which is stopped when

D > Dmax or krFðqÞk2 � ekrFð0Þk2 ¼ ekAHpk2;

(14)

where Dmax is an upper limit on D and e is a small number.

The following values have been found to work, in general,

FIG. 2. Flowchart of the modified steepest descent algorithm used in WBH.
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very well: Dmax¼ 60 and e¼ 0.01. Typically, the steepest

descent method has very slow final convergence because

of zigzagging and, therefore, the first of the two criteria in

Eq. (14) will usually be fulfilled first. Dmax can be changed

to match the quality of data, but the choice does not seem to

be critical. Dmax¼ 60 has been found to support the identifi-

cation of weak sources, even when measurements are

slightly noisy. Larger values do not seem to improve much.

Smaller values may be required for very noisy data.

Starting with only 0.1 dB dynamic range means that

only the very strongest source(s) will be retained, while all

related ghost sources will be removed. When we use the

dynamic range limited source vector as the starting point for

the next iteration, the components of the residual vector

related to the very strongest source(s) have been reduced

and, therefore, the related ghost sources have been reduced

correspondingly. Increasing the dynamic range will then

cause the next level of real sources to be included, while sup-

pressing the related ghost sources, etc.

After the termination of the above algorithm based on

steepest descent directions, a good estimate of the basic

source distribution has been achieved. The typical zigzagging

progress in the last steepest descent steps means that often

the direction given as the sum of the last two steps will sup-

port good progress. The step-size that minimizes the quad-

ratic function F(q) along that direction can be calculated

analytically, and that so-called extrapolation step is used as

part of WBH in the present work.

A few conjugate gradient iteration steps without

dynamic range limitation can then optionally be performed

to ensure convergence to a point very close to a minimum of

F(q). See Appendix B for details on the algorithm. Usually,

the effect on the source model and the modeled sound field

is relatively small, because the primary steepest descent

algorithm has already reduced the residual to be close to a

minimum. However, it ensures that full convergence has

been achieved. The stopping criteria used with the conjugate

gradient iteration are

krFðqþ DqÞk2 < ekAHpk2 or

krFðqþ DqÞk2 > krFðqÞk2; (15)

where Dq is the latest step. In comparison with the CVX

method defined in Eqs. (12) and (13), notice that selection of

too small a value of e will not prevent termination of the con-

jugate gradient algorithm of WBH. In that case, it will stop

when the gradient norm starts increasing. When that hap-

pens, the last step is discarded. Notice that the conjugate gra-

dient steps have no dynamic range limitation and therefore

do not retain sparsity. This will compensate for the fact that,

in most cases, the real source distribution is not sparse. In

the context of the present paper, conjugate gradient iterations

are always used and they are considered as part of the WBH

algorithm.

Both the WBH and the CVX method will have problems

separating two compact, closely spaced sources at low fre-

quencies when only a limited dynamic range of data can be

used, which sets a lower limitation on the parameter e. In

that case, the combined sound pressure distribution from the

two real sources across the array cannot be distinguished

from the pressure distribution from a single source at an in-

termediate position. With a sufficiently large applicable

dynamic range of data, it would have been possible. As a

consequence, the two sources will be more or less repre-

sented by a single source at the intermediate position. An

example of this is given in Sec. IV B. The phenomenon is

worse in the case of WBH than for CVX for the following

reason: It is quite easy to show that the first steepest descent

direction Dq (see Fig. 2) is equivalent to a delay and sum

(DAS) beamforming map, which has poor low-frequency

resolution. The first source identified by WBH will therefore

be located at the peak of a DAS map, which, in this case, is

somewhere between the two real sources. At higher frequen-

cies, DAS has good resolution, so therefore the problem is of

much less practical importance.

The fact that the WBH algorithm will often replace two

(or more) physical low-frequency sources by a single central

source might lead the user to draw wrong conclusions about

the root cause of the noise. Use of the traditional Tikhonov

regularization of Eq. (6), i.e., a standard ESM algorithm,

will, in that case, typically show a single large source area

covering the two (or more) physical sources. To minimize

the risk of misleading results, it is recommended to use the

standard ESM solution up to a transition frequency at

approximately 0.7 times the frequency of half the wave-

length given by the average array inter-element spacing (i.e.,

spacing � 0.35k), and above that transition frequency switch

to the use of WBH. This is illustrated by the simulated mea-

surement in Sec. IV B. The fact that the CVX method exhib-

its similar behavior, although to a smaller extent, means

that it should probably also be supplemented by, typically,

an ESM algorithm at low frequencies. The proposed switch-

over frequency has been found to work well for many differ-

ent types of sources and different array geometries.

III. ARRAY DESIGN

As described in the Introduction, the method of the pres-

ent paper follows the principles of CS being based on meas-

urements with a random or pseudo-random array geometry

in combination with an enforced sparsity of the coefficient

vector of the source model. The array geometry used in the

simulated measurements of the present paper is shown in

Fig. 3. It has 12 microphones uniformly distributed in each

one of five identical angular sectors. The average element

spacing is �12 cm, implying a low-to-high transition fre-

quency close to 1 kHz (where 0.35k is close to 12 cm). The

geometry has been optimized for minimum sidelobe level

with DAS beamforming measurements up to 6 kHz as

described in Ref. 4. This optimization guarantees a maxi-

mum ability of the array to distinguish plane waves incident

from different directions. If the measurement distance is not

too short, the ability to distinguish point sources in different

directions will also be good.

An important finding from simulated measurements

with the chosen type of array design is that the measurement
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distance should not be shorter than approximately a factor

two times the average microphone spacing for the method to

work well at the highest frequencies. A factor of three is

even better, and distances up to, typically, 0.7 times the array

diameter work fine. When the measurement distance is

increased, each source in the WBH source model will expose

a greater part of the array. This means that a particular point

source will create an even sound pressure over a greater part

of the array, making more effective use of the resolution

capabilities of the full array. In addition, a longer measure-

ment distance will probably cause the non-sparsity of the

real source to be less “visible” in the measured data, causing

fewer problems in fitting a sparse model to the data. To get

acceptable low-frequency resolution, however, the measure-

ment distance should not be too long either, so, overall, the

best distance seems to be two to three times the average

array inter-element spacing. These considerations hold true

also when the CVX algorithm is used. A thorough investiga-

tion is not given in the present paper, so this could be a topic

for a future publication, together with a more extensive

investigation of the sound-field reconstruction errors.

IV. SIMULATED MEASUREMENTS

All CVX and WBH calculations in the present paper

were performed using D0¼ 0.1, DD¼ 1.0, Dmax¼ 60, and

e¼ 0.01.

A. Single monopole point source

The aim of the single-monopole simulated measurement

is to demonstrate: (i) What happens if Tikhonov regulariza-

tion is applied above the frequency of half wavelength aver-

age array element spacing? (ii) How much and which kind

of improvement is achieved by applying the sparsity promot-

ing CVX and WBH algorithms?

As illustrated in Fig. 4, we consider a setup with a

monopole point source located on the array axis at 28 cm dis-

tance from the array plane, while the source-model mesh is at

27 cm distance, and the sound field in reconstructed in a

“source plane” 24 cm from the array plane. The reconstruction

mesh has 51 columns and 51 rows with 2 cm spacing, cover-

ing a 1 m� 1 m area centered on the array axis. The source-

model mesh is similar, i.e., with 2 cm spacing, but it is

extended by six rows/columns in all four directions. In total,

63� 63¼ 3969 complex point-source amplitudes must be

determined from the 60 measured complex sound-pressure

values. No measurement errors/noise was added.

The left column of Fig. 5 shows the 4 kHz sound inten-

sity maps on the source plane, while the right column shows

the corresponding sound pressure maps on the measurement

plane. From the top and downward, the true maps are shown,

followed by the reconstructions using Tikhonov regulariza-

tion (using 20 dB dynamic range), CVX, and at the bottom

WBH. The CVX and WBH maps are both very close to the

true maps, as could be expected in the present case, where

the source-model plane is only 1 cm from the monopole

point source. The sound intensity reconstruction based on

Tikhonov regularization shows a small low-level peak at the

true source position, but, in addition, there are quite a lot of

ghost sources. These ghost sources are responsible for focus-

ing the modeled sound field toward the microphones to pro-

duce the measured pressure at these positions with a

minimum of radiated power. This is evident from the map of

the sound pressure in the array plane.

Area integration of sound intensity maps like those in

Fig. 5 leads to the sound power spectra compared in Fig. 6.

Here, the spectra from the three reconstruction methods have

been normalized by the spectrum from the true intensity

map. CVX and WBH produce accurate sound power esti-

mates over the entire range from 100 Hz to 6.4 kHz, while

Tikhonov regularization leads to acceptable accuracy up to

�1 kHz. Above that frequency, an increasing underestima-

tion is observed due to the increasing ability of the source

model to establish the measured pressure at the microphones

and low pressure in all other directions. Calculation times

for the 64 frequencies represented in Fig. 5, using MATLAB

implementations of the CVX and WBH methods, were 829 s

for CVX and 32 s for WBH.

FIG. 3. Geometry of the applied planar pseudo-random 60-element micro-

phone array with 1 m diameter.

FIG. 4. (Color online) Setup for simulated measurement on a single monop-

ole point source.

1512 J. Acoust. Soc. Am. 139 (4), April 2016 Jørgen Hald



B. Two coherent, in-phase monopole sources
of equal level

The aim of this simulated measurement is to demon-

strate some important resolution properties at low frequen-

cies. For that purpose, we use a setup similar to that of Fig.

4, but with two sources within a mapping area of half the

dimensions. The two monopole point sources are located

29 cm in front of the array plane at (x,y) coordinates (15,15)

cm and (�15,�15) cm relative to the array axis, while the

source-model mesh is at a distance of 25.5 cm, and the sound

field is reconstructed in a “source plane” 24 cm from the

array plane. Thus, in this case, the real sources are 3.5 cm

behind the source model. The reconstruction mesh has 51

columns and 51 rows with 1 cm spacing, covering a

0.5 m� 0.5 m area centered on the array axis, and the

source-model mesh is similar, i.e., with 1 cm spacing, but it

is extended by six rows/columns in all four directions.

Random noise was added to the complex microphone pres-

sure data at a level 30 dB below the average sound pressure

across the microphones.

Figure 7 shows sound intensity maps at 400 Hz. The top

row contains to the left the true intensity and to the right the

intensity obtained using Tikhonov regularization with 20 dB

dynamic range. With the applied combination of source sep-

aration, measurement distance and dynamic range, the two

sources are not resolved when using Tikhonov, although it is

close. The map indicates, however, the shape of the source

distribution. The bottom row contains to the left the CVX

reconstruction and to the right the WBH result. Both meth-

ods put a concentrated false source in the middle between

the two real sources plus two sources close to the real sour-

ces. This phenomenon, which is strongest for WBH, could

lead to wrong conclusions about the origin of the measured

noise. So, as described at the end of Sec. II, it is

FIG. 6. (Color online) Estimated sound power spectra relative to the true

sound power spectrum. All spectra were obtained by area integration of the

intensity maps in Fig. 5.

FIG. 5. (Color online) Results from a simulated measurement on a single

monopole point source. All plots in a column have equal scaling.

FIG. 7. (Color online) True and reconstructed sound intensity maps for two

coherent, in-phase monopole sources of equal amplitude. All plots have

1.5 dB contour interval, but different thresholds. The area-integrated sound

power is almost identical for all plots.
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recommended to have at least an option for use of standard

ESM (with Tikhonov regularization) at the low frequencies

instead of CVX or WBH.

C. Two coherent, in-phase monopole sources
with 10 dB level difference

A main purpose of this section is to investigate the abil-

ity of the CVX and WBH methods to identify weak sources

in the presence of strong ones. We use the same setup as in

Sec. IV B, except that the lower left source (source 2) is now

assigned an excitation 10 dB below that of the upper right

source (source 1). Figure 8 shows the true and the recon-

structed sound intensities on the “source plane” at 5 kHz

with a 20 dB display range. The two sources are well identi-

fied by both CVX and WBH, and the two methods show

very similar results. The maps actually look much the same

at all frequencies between 1 kHz and 5 kHz. Sound power

integration areas are shown with line style corresponding to

the associated sound power spectra in Fig. 9. Except for the

weak source 2 at the lowest frequencies, the two reconstruc-

tion methods estimate almost the same sound power spectra

for the two sources. As described above, a standard ESM

algorithm should be used anyway at the lowest frequencies –

for the present array up to 1 kHz. The apparent small overes-

timation of the sound power for source 1 up to around 4 kHz

is probably, instead, an underestimation of the true power:

The true intensity map is smoother and therefore some of the

power of source 1 will be outside the associated integration

area. Apart from a 2.5 dB dip around 4 kHz in the estimated

power for source 2, the accuracy is good up to around 5 kHz,

and above that frequency, an increasing underestimation is

observed. The maximum frequency of the present array

(with 12 cm average microphone spacing) in connection

with the SONAH and ESM algorithms is �1.2 kHz, so,

apparently, the CVX and WBH methods extend the fre-

quency range by a factor of around 4.

The calculation times for the 32 frequencies represented

in Fig. 9 were 490 s for CVX and 16 s for WBH, so again

WBH is faster by approximately a factor of 30. Another

advantage of WBH is the already mentioned smaller sensi-

tivity of WBH to the specified target reduction in the gradi-

ent norm: Too small a value of e causes the CVX method to

become unstable.

D. Plate in a baffle

The aim of the simulated plate measurements is to show

that both the CVX and the WBH methods can give quite

good results even when the true source distribution is not

sparse. As an example of a more distributed source, a

baffled, center-driven, simply supported, 6 mm thick,

40 cm� 40 cm aluminum plate has been used. The coinci-

dence frequency for the plate is at 2026 Hz. The vibration

pattern was calculated using the formulation by Williams12

and, subsequently, the radiated sound field was obtained

using the discretized Rayleigh integral, approximating the

plate velocity distribution by 161� 161 monopole point

sources. This allowed the microphone sound-pressure values

and the “true” pressure and particle velocity in a reconstruc-

tion plane 1 cm above the plate to be calculated. As for the

simulated measurements on two monopole point sources,

random noise was added to the complex microphone pres-

sure data at a level 30 dB below the average sound pressure

across the microphones. The reconstruction mesh had

41� 41 points with 1 cm spacing, covering exactly the plate

area, and the array was placed 24 cm above the plate. For the

WBH sound field reconstruction, a source model comprising

53� 53 monopole point sources with 1 cm spacing was

located 1 cm below the plate.

Figure 10 shows the true sound intensity and the corre-

sponding CVX and WBH reconstructions at 3 and 4 kHz

with a 20 dB display range. Overall, the reconstruction is

good, with a little too high weight on the central area, the

two methods performing again very equally. At 4 kHz, the

reconstructed intensity patterns start getting distorted

because the complexity of the vibration pattern becomes too

FIG. 8. (Color online) True and reconstructed sound intensities in the

“source plane.” Display range is 20 dB with 2 dB contour interval. All three

plots use the same scale. Source 1 is the stronger source in the upper right

corner.

FIG. 9. (Color online) Area-integrated sound power spectra for the areas of

Fig. 8.
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high in relation to the data provided by the array. As men-

tioned earlier, the reconstruction accuracy at the highest fre-

quencies can be improved by an increase of the

measurement distance up to three times the array inter-

element spacing, but, of course, at the expense of slightly

poorer low-frequency resolution.

Figure 11 shows the relative sound power spectrum of

the CVX and WBH reconstructions: At each frequency, the

reconstructed and true sound intensity maps (as shown in

Fig. 10) have been area integrated over the entire plate, and

the ratio between the estimated and the true sound power

values have been plotted in decibels. There is a consistent

small underestimation, but up to 5 kHz it remains within

2 dB. Above 5 kHz, the underestimation increases rapidly, in

particular, for the CVX based algorithm. The calculation

time for the 32 frequencies represented in Fig. 11 was 238 s

for CVX and 9 s for WBH.

V. REAL MEASUREMENT ON TWO SMALL
LOUDSPEAKERS

Figure 12 shows two Br€uel and Kjær Mouth Simulators

type 4227 set up 36 cm from the array and with 12 cm sepa-

ration between the two sources. Thus, the measurement dis-

tance has been increased to three times the average

microphone spacing. The two sources were excited from two

independent stationary-random white-noise generators

adjusted to equal levels. Beyond the array measurement, a

scan was also performed with a two-microphone sound

intensity probe across a plane 7 cm from the two sources.

13� 6 positions with 3 cm spacing were measured, covering

an area of 36 cm� 15 cm. The measurements were per-

formed in a normal room with no acoustical treatment.

The array measurement consisted in simultaneously

recording 10 s of time data with 12.8 kHz bandwidth from all

array microphones. As described in Sec. II, the processing

started with averaging of the 60� 60 element cross-spectral

matrix between all array microphones. Then, a principal

component decomposition of that matrix was performed, and

the WBH algorithm was applied to each significant compo-

nent. In the present case of two independently excited sour-

ces, there were two such significant principal components.

The planar WBH reconstruction mesh was in a source plane

parallel with the array plane and touching the source units,

and it consisted of 41� 41 points with 1 cm spacing. The

source model mesh was similar to the calculation mesh, but

shifted 1.5 cm away from the array and extended by six

rows/columns in all four directions.

Figure 13 shows contour plots of the reconstructed

sound intensity for the two 1/3-octave bands at 4 and 5 kHz.

WBH was applied to FFT spectra with 32 Hz line width, and

1/3 octaves were then synthesized. The significant level dif-

ference between the two source units in the 5 kHz band was

consistent with beamforming processing of the same array

data and with the intensity maps from the intensity probe

scan.

FIG. 10. (Color online) Contour plots at 3 and 4 kHz of sound intensity in

the reconstruction plane 1 cm above the plate. Display range is 20 dB with

2 dB contour interval. For each frequency, the same scale is used.

FIG. 11. (Color online) Reconstructed relative to true sound power of the

plate in decibels. All power values were obtained by area integration of

maps like those in Fig. 10.

FIG. 12. (Color online) Sixty-channel array at 36 cm distance from two

Br€uel & Kjær Mouth Simulators type 4227.
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Figure 14 compares the sound power spectrum from the

intensity probe scan with the sound power spectrum from the

WBH reconstruction. Both were obtained by area integration

of sound intensity maps. However, where the WBH map

covers a relatively large area in the source plane, the inten-

sity probe map covers a rather limited area at 7 cm distance.

Consequently, the WBH result will be an estimate of the

total sound power radiated to a hemisphere, while the

intensity-probe result will include only a part of that power.

The generally slightly higher level of the WBH spectrum in

Fig. 14 should therefore be expected. The part of the WBH

spectrum below �1 kHz was obtained using standard

ESM, so the iterative WBH algorithm seems to provide

more accurate sound power estimates than standard ESM.

As a conclusion, the sound power estimates from WBH are

very accurate.

VI. SUMMARY

An iterative algorithm has been described for sparsity

promoting NAH over a wide frequency range based on the

use of an optimized pseudo-random array geometry. The

method, which is called WBH, can be seen as an example of

CS. The algorithm has been tested by a series of simulated

measurements on point sources and on a plate in a baffle.

Very good results were, in general, obtained at frequencies

up to four times the normal upper limiting frequency for use

of the particular array with holography. The focus has been

on the ability to locate and quantify the main sources (source

areas) in terms of sound power within approximately a 10 dB

dynamic range. The method was found to work surprisingly

well with distributed sources, such as vibrating plates.

Typical application areas could be engines and gearboxes,

where measurements at close range are often not possible,

and the method seems to work very well at the distances that

are typically realistic in such applications.

The iterative WBH algorithm was shown to provide

sound field reconstructions almost identical to those of a

conventional CS algorithm, where an optimization problem

must be solved, involving minimization of the 1-norm of the

solution vector. In the present work, such optimization prob-

lems have been solved using the CVX MATLAB toolbox. For

all the considered examples, the computation time of the

CVX-based method were approximately 30 times longer

than those of the iterative WBH method. In addition, the

stopping criteria of the iterative WBH algorithm support the

reconstruction of a large dynamic range without the risk of

introducing numerical instability. This is not possible in the

CVX-based approach, where a fixed dynamic range must be

specified.

It was shown in the present paper that it may be advan-

tageous to supplement both the CVX and the WBH algo-

rithms with, typically, a standard ESM algorithm at the

lowest frequencies in order to avoid misleading ghost sour-

ces in super-resolution results.

Engine and gearbox measurements are characterized by

having sources at different distances. The sensitivity of the

WBH algorithm to sources located outside the assumed

source plane was therefore investigated in Ref. 6. In general,

the estimation of sound power was found not to be sensitive

to sources being within reasonable distances from the

assumed source plane.

APPENDIX A: STEEPEST DESCENT ALGORITHM

From a current approximation q to the complex source-

model amplitudes, we wish to find the step length s in the

direction w of steepest descent for the squared residual func-

tion F. The steepest descent direction is just the negative

gradient of F

w � �rFðqÞ ¼ AHðp� AqÞ ¼ AHr; (A1)

FIG. 13. (Color online) Sound inten-

sity maps from WBH for the 1/3-

octave bands 4 kHz (left) and 5 kHz

(right).

FIG. 14. (Color online) Comparison of narrow-band sound power spectra

from the intensity probe scan and from WBH processing of the array data.
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with r being the residual vector. In the calculation of s, we

need also the vector g defined as

g � Aw: (A2)

Using these quantities and the definition of F in Eq. (10), we

get after some manipulation

F qþ swð Þ ¼
1

2
s2gHg� 2swHwþ rHr
� �

: (A3)

From Eq. (A3), the step length s to the minimum of F along

the direction w can be easily found by setting the derivative

of F(qþ sw) with respect to s equal to zero. As a result, we

get

s ¼ wHw

gHg
: (A4)

So finally, the steepest descent step Dq is calculated as

Dq ¼ sw: (A5)

APPENDIX B: CONJUGATE GRADIENT ALGORITHM

There is a rich literature on such algorithms; see, for

example, Refs. 13 and 14. The algorithms solve a set of real

or complex linear equations, where the coefficient matrix is

positive definite and real symmetric or complex Hermitian.

In order to bring the system of equations in Eq. (4) into a

tractable form, we multiply by AH on both sides, which leads

to the normal equations

AHp ¼ AHAq: (B1)

Comparison with Eq. (11) shows that solution of Eq. (B1) is

equivalent to finding the vector q for which the gradient of

F(q) equals zero

rFðqÞ ¼ �AHðp� AqÞ ¼ 0: (B2)

The system of linear equations in Eq. (B1), with starting

point obtained from the modified steepest descent algorithm,

can be solved by application of the conjugate gradient

algorithm.
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