arrow_back_ios

Main Menu

See All Software See All Instruments See All Transducers See All Vibration Testing Equipment See All Electroacoustics See All Acoustic End-of-Line Test Systems See All Academy See All Resource Center See All Applications See All Industries See All Services See All Support See All Our Business See All Our History See All Global Presence
arrow_back_ios

Main Menu

See All Analysis & Simulation Software See All DAQ Software See All Drivers & API See All Utility See All Vibration Control See All High Precision and Calibration Systems See All DAQ Systems See All S&V Hand-held Devices See All Industrial Electronics See All Power Analyzer See All S&V Signal Conditioner See All Acoustic Transducers See All Current and Voltage Sensors See All Displacement Sensors See All Force Sensors See All Load Cells See All Multi Component Sensors See All Pressure Sensors See All Strain Sensors See All Strain Gauges See All Temperature Sensors See All Tilt Sensors See All Torque Sensors See All Vibration See All Accessories for Vibration Testing Equipment See All Vibration Controllers See All Measurement Exciters See All Modal Exciters See All Power Amplifiers See All LDS Shaker Systems See All Test Solutions See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All Training Courses See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance
arrow_back_ios

Main Menu

See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All API See All Experimental Testing See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Dynamic Weighing See All Vehicle Electrification See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

Performance of Vehicle Voice Recognition

This article deals with the analysis of vehicle voice recognition and how to optimize performance in response to background noise and gender-based frequency to increase customer satisfaction.

“With speech recognition becoming the go-to technology for the automotive industry customers, the urgency to improve the recognition rate was so important. This project addressed that need, and the outcome was very beneficial to Hyundai and added new insight in terms of recognition performance and human behavior.”Rasheed Khan, Manager, Multimedia Validation & Product Quality, Hyundai-Kia America Technical Center, Inc.

To address customer complaints on voice recognition (VR), Hyundai and Brüel & Kjær Global Engineering Services analyzed the performance of the in-vehicle VR system and the sensitivity to background noise and gender-based frequency.

Connected and smart devices are all around us in our daily life and their use is anticipated to increase exponentially over the years. Most of these devices are controlled by voice-activated assistants, and the quality of the VR system can be affected by multiple parameters.

For vehicles, VR is constantly reported as a major quality issue. For the 2017 model year, market research indicates that it is again the most frequent problem reported in vehicle dependability studies. In a vehicle, the performance of VR is affected by multiple parameters, including the background noise, the placement of the microphone, and the voice command itself. In addition, the gender of the speaker plays a role too, as it differentiates the speech pattern and the frequency content.

The North American team of Hyundai performed an R&D project together with Brüel & Kjær Global Engineering Services to analyze the performance of in-vehicle VR. The team defined a process based on actual vehicle tests to identify the sensitivity of the VR performance with respect to background noise and speaker gender. The results showed as one would expect, that background noise can be detrimental to VR, but that the effect can be reduced with proper tuning of the noise cancellation algorithm. The team also found out that for specific vehicles, there is a significant reduction in the recognition rate for female speakers compared to male speakers. For these investigations, the team developed a consistent process for lab-based VR evaluations that can be used to assist with the tuning and calibration of VR systems.

Read the whitepaper:

Analysis of vehicle voice recognition

 


RELATED ARTICLES